Abstract

We demonstrate the generation of multiple Brillouin Stokes lines generation assisted by Rayleigh scattering in Raman fiber laser. The linear cavity is utilized to take advantage of the Rayleigh scattering effect, and it also produces two strong spectral peaks at 1555 and 1565nm. Under a strong pumping condition, the Rayleigh backscatters contribute to the oscillation efficiency, which increases the Brillouin Stokes lines intensity between these two wavelength ranges. The multiple Stokes lines get stronger by suppressing the buildup of free-running longitudinal modes in the laser structure.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y.-G. Liu, D. Wang, and X. Dong, “Stable room-temperature multi-wavelength lasing oscillations in a Brillouin–Raman fiber ring laser,” Opt. Commun. 281, 5400–5404 (2008).
    [CrossRef]
  2. A. K. Zamzuri, M. A. Mahdi, M. H. Al-Mansoori, A. Ahmad, N. Md. Samsuri, and M. S. Islam, “OSNR variation of multiple laser lines in Brillouin-Raman fiber laser,” Opt. Express 17, 16904–16910 (2009).
    [CrossRef] [PubMed]
  3. A. A. Fotiadi, P. Megret, and M. Blondel, “Dynamics of a self-Q-switched fiber laser with a Rayleigh-stimulated Brillouin scattering ring mirror,” Opt. Lett. 29, 1078–1080 (2004).
    [CrossRef] [PubMed]
  4. A. A. Fotiadi and R. V. Kiyan, “Cooperative stimulated Brillouin and Rayleigh backscattering process in optical fiber,” Opt. Lett. 23, 1805–1807 (1998).
    [CrossRef]
  5. B. Min, P. Kim, and N. Park, “Flat amplitude equal spacing 798 channel Rayleigh assisted Brillouin/Raman multiwavelength comb generation in dispersion compensating fiber,” IEEE Photon. Technol. Lett. 13, 1352–1354 (2001).
    [CrossRef]
  6. A. K. Zamzuri, M. A. Mahdi, M. I. Md. Ali, A. Ahmad, and R. Mohamad, “Brillouin–Raman comb fiber laser with cooperative Rayleigh scattering in a linear cavity,” Opt. Lett. 31, 918–920 (2006).
    [CrossRef] [PubMed]
  7. A. K. Zamzuri, M. A. Mahdi, M. I. Md. Ali, A. Ahmad, and M. H. Al-Mansoori, “Flat amplitude Brillouin-Raman comb fiber laser in Rayleigh-scattering-enhanced linear cavity,” Opt. Express 15, 3000–3005 (2007).
    [CrossRef] [PubMed]
  8. K. D. Park, B. Min, P. Kim, N. Park, J. H. Lee, and J. S. Chang, “Dynamics of cascaded Brillouin–Rayleigh scattering in a distributed fiber Raman amplifier,” Opt. Lett. 27, 155–157(2002).
    [CrossRef]
  9. R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic , 2007).
  10. K. D. Park, H. Ryu, W. K. Lee, S. K. Kim, H. S. Moon, and H. S. Suh, “Threshold features of a Brillouin Stokes comb generated in a distributed fiber Raman amplifier,” Opt. Lett. 28, 1311–1313 (2003).
    [CrossRef] [PubMed]
  11. A. E. El-Taher, M. Alcon-Camas, S. A. Babin, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Dual-wavelength, ultralong Raman laser with Rayleigh-scattering feedback,” Opt. Lett. 35, 1100–1102 (2010).
    [CrossRef] [PubMed]
  12. S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nature Photon. 4, 231–235(2010).
    [CrossRef]
  13. S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, “Four-wave-mixing-induced turbulent spectral broadening in a long Raman fiber laser,” J. Opt. Soc. Am. B 24, 1729–1738 (2007).
    [CrossRef]
  14. S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, “Turbulence-induced square-root broadening of the Raman fiber laser output spectrum,” Opt. Lett. 33, 633–635 (2008).
    [CrossRef] [PubMed]

2010 (2)

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nature Photon. 4, 231–235(2010).
[CrossRef]

A. E. El-Taher, M. Alcon-Camas, S. A. Babin, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Dual-wavelength, ultralong Raman laser with Rayleigh-scattering feedback,” Opt. Lett. 35, 1100–1102 (2010).
[CrossRef] [PubMed]

2009 (1)

2008 (2)

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, “Turbulence-induced square-root broadening of the Raman fiber laser output spectrum,” Opt. Lett. 33, 633–635 (2008).
[CrossRef] [PubMed]

Y.-G. Liu, D. Wang, and X. Dong, “Stable room-temperature multi-wavelength lasing oscillations in a Brillouin–Raman fiber ring laser,” Opt. Commun. 281, 5400–5404 (2008).
[CrossRef]

2007 (2)

2006 (1)

2004 (1)

2003 (1)

2002 (1)

2001 (1)

B. Min, P. Kim, and N. Park, “Flat amplitude equal spacing 798 channel Rayleigh assisted Brillouin/Raman multiwavelength comb generation in dispersion compensating fiber,” IEEE Photon. Technol. Lett. 13, 1352–1354 (2001).
[CrossRef]

1998 (1)

Ahmad, A.

Alcon-Camas, M.

Ali, M. I.

Al-Mansoori, M. H.

Ania-Castañón, J. D.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nature Photon. 4, 231–235(2010).
[CrossRef]

A. E. El-Taher, M. Alcon-Camas, S. A. Babin, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Dual-wavelength, ultralong Raman laser with Rayleigh-scattering feedback,” Opt. Lett. 35, 1100–1102 (2010).
[CrossRef] [PubMed]

Babin, S. A.

Blondel, M.

Boyd, R. W.

R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic , 2007).

Chang, J. S.

Churkin, D. V.

Dong, X.

Y.-G. Liu, D. Wang, and X. Dong, “Stable room-temperature multi-wavelength lasing oscillations in a Brillouin–Raman fiber ring laser,” Opt. Commun. 281, 5400–5404 (2008).
[CrossRef]

El-Taher, A. E.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nature Photon. 4, 231–235(2010).
[CrossRef]

A. E. El-Taher, M. Alcon-Camas, S. A. Babin, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Dual-wavelength, ultralong Raman laser with Rayleigh-scattering feedback,” Opt. Lett. 35, 1100–1102 (2010).
[CrossRef] [PubMed]

Fotiadi, A. A.

Harper, P.

A. E. El-Taher, M. Alcon-Camas, S. A. Babin, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Dual-wavelength, ultralong Raman laser with Rayleigh-scattering feedback,” Opt. Lett. 35, 1100–1102 (2010).
[CrossRef] [PubMed]

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nature Photon. 4, 231–235(2010).
[CrossRef]

Islam, M. S.

Ismagulov, A. E.

Kablukov, S. I.

Karalekas, V.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nature Photon. 4, 231–235(2010).
[CrossRef]

Kim, P.

K. D. Park, B. Min, P. Kim, N. Park, J. H. Lee, and J. S. Chang, “Dynamics of cascaded Brillouin–Rayleigh scattering in a distributed fiber Raman amplifier,” Opt. Lett. 27, 155–157(2002).
[CrossRef]

B. Min, P. Kim, and N. Park, “Flat amplitude equal spacing 798 channel Rayleigh assisted Brillouin/Raman multiwavelength comb generation in dispersion compensating fiber,” IEEE Photon. Technol. Lett. 13, 1352–1354 (2001).
[CrossRef]

Kim, S. K.

Kiyan, R. V.

Lee, J. H.

Lee, W. K.

Liu, Y.-G.

Y.-G. Liu, D. Wang, and X. Dong, “Stable room-temperature multi-wavelength lasing oscillations in a Brillouin–Raman fiber ring laser,” Opt. Commun. 281, 5400–5404 (2008).
[CrossRef]

Mahdi, M. A.

Megret, P.

Min, B.

K. D. Park, B. Min, P. Kim, N. Park, J. H. Lee, and J. S. Chang, “Dynamics of cascaded Brillouin–Rayleigh scattering in a distributed fiber Raman amplifier,” Opt. Lett. 27, 155–157(2002).
[CrossRef]

B. Min, P. Kim, and N. Park, “Flat amplitude equal spacing 798 channel Rayleigh assisted Brillouin/Raman multiwavelength comb generation in dispersion compensating fiber,” IEEE Photon. Technol. Lett. 13, 1352–1354 (2001).
[CrossRef]

Mohamad, R.

Moon, H. S.

Park, K. D.

Park, N.

K. D. Park, B. Min, P. Kim, N. Park, J. H. Lee, and J. S. Chang, “Dynamics of cascaded Brillouin–Rayleigh scattering in a distributed fiber Raman amplifier,” Opt. Lett. 27, 155–157(2002).
[CrossRef]

B. Min, P. Kim, and N. Park, “Flat amplitude equal spacing 798 channel Rayleigh assisted Brillouin/Raman multiwavelength comb generation in dispersion compensating fiber,” IEEE Photon. Technol. Lett. 13, 1352–1354 (2001).
[CrossRef]

Podivilov, E. V.

Ryu, H.

Samsuri, N. Md.

Suh, H. S.

Turitsyn, S. K.

A. E. El-Taher, M. Alcon-Camas, S. A. Babin, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Dual-wavelength, ultralong Raman laser with Rayleigh-scattering feedback,” Opt. Lett. 35, 1100–1102 (2010).
[CrossRef] [PubMed]

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nature Photon. 4, 231–235(2010).
[CrossRef]

Wang, D.

Y.-G. Liu, D. Wang, and X. Dong, “Stable room-temperature multi-wavelength lasing oscillations in a Brillouin–Raman fiber ring laser,” Opt. Commun. 281, 5400–5404 (2008).
[CrossRef]

Zamzuri, A. K.

IEEE Photon. Technol. Lett. (1)

B. Min, P. Kim, and N. Park, “Flat amplitude equal spacing 798 channel Rayleigh assisted Brillouin/Raman multiwavelength comb generation in dispersion compensating fiber,” IEEE Photon. Technol. Lett. 13, 1352–1354 (2001).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nature Photon. (1)

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nature Photon. 4, 231–235(2010).
[CrossRef]

Opt. Commun. (1)

Y.-G. Liu, D. Wang, and X. Dong, “Stable room-temperature multi-wavelength lasing oscillations in a Brillouin–Raman fiber ring laser,” Opt. Commun. 281, 5400–5404 (2008).
[CrossRef]

Opt. Express (2)

Opt. Lett. (7)

Other (1)

R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic , 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Configuration of (a) Raman fiber amplifier and (b) BRFL to investigate the impact of Rayleigh scattering in the amplifying medium.

Fig. 2
Fig. 2

Measured output spectrum from the configuration, as depicted in Fig. 1a, at different pump powers.

Fig. 3
Fig. 3

Power evolution of Rayleigh backscatter of the first-order Brillouin Stokes line with respect to RPP.

Fig. 4
Fig. 4

Brillouin Stokes lines spectrum at different RPP of (a) 1.0 W , (b) 1.2 W , (c) 1.4 W , and (d) 1.5 W .

Fig. 5
Fig. 5

Magnified view of multiple Stokes lines for different RPP of 1.2 and 1.4 W .

Fig. 6
Fig. 6

Magnified view of the optical spectrum from 1564 to 1565 nm at RPP of (a) 1.4 W and (b) 1.5 W .

Metrics