Abstract

We demonstrate a high-power 556nm yellow-green laser generated by intracavity frequency doubling of a diode side-pumped Nd:YAG laser at 1112nm. A symmetrical L-shaped flat–flat cavity was employed to implement efficient operation of the low-gain 1112nm transition and to achieve good power scalability. The coatings of the cavity mirrors were carefully designed to optimize the performance of the laser, and a 92W continuous wave laser output at 1112nm was achieved when the pumping power of the laser diodes reached 960W. By intracavity frequency doubling of the fundamental laser in a lithium triborate crystal, the maximum power of the frequency-doubled output at 556nm was found to be as high as 52.3W with a pulse repetition frequency of 10kHz. This corresponds to an optical-to-optical conversion efficiency of about 5.4%.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription