Abstract

Polarization parameters of diffuse backscattered light from a turbid sample are sensitive to its structural properties and can, therefore, be used to probe morphological features of tissue and, thus, monitor changes that arise due to a disease. Extraction of morphological information from measured polarization param eters, however, requires a careful understanding of the dependence of these on factors such as size, size distribution, shape, and dielectric constant of the scatterers, which are often quite involved. In particular, the presence of absorption complicates the dependence of polarization parameters on tissue morphological features. We have found that, while for medium comprising small size scatterers (Rayleigh scatterers), the depolarization shows the expected decrease with an increase in the absorption of the scattering medium, a counterintuitive behavior was observed for larger size (>λ) scatterers. Further analysis of the results suggests that the observed behavior might arise due to the relative contribution of two depolarizing processes, one resulting from a series of out-of-plane scattering and the other due to the angular variation of the state of polarization in a single scattering event.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Backman, R. Gurjar, K. Badizadegan, L. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5, 1019–1026 (1999).
    [CrossRef]
  2. L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80, 627–630 (1998).
    [CrossRef]
  3. J. F. de Boer, T. E. Milner, M. J. C. van Gemert, and J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography,” Opt. Lett. 22, 934–936 (1997).
    [CrossRef] [PubMed]
  4. D. J. Maitland and J. T. Walsh, Jr., “Quantitative measurement of linear birefringence during heating of native collagen,” Lasers Surg. Med. 20, 310–318 (1997).
    [CrossRef] [PubMed]
  5. D. A. Beach, C. Bustamante, K. Samwells, and K. M. Foucar, “Differential polarization imaging III. Theory confirmation. Patterns of polymerization of hemoglobin S in red blood sickle cells,” Biophys. J. 53, 449–456 (1988).
    [CrossRef] [PubMed]
  6. C. T. Gross, H. Salamon, A. J. Hunt, R. I. Macey, F. Orme, and A. T. Quintanilha, “Hemoglobin polymerization in sickle cells studied by circular polarized light scattering,” Biochim. Biophys. Acta 1079, 152–160 (1991).
    [CrossRef] [PubMed]
  7. I. A. Vitkin and E. Hoskinson, “Polarization studies in multiply scattering chiral media,” Opt. Eng. 39, 353–362(2000).
    [CrossRef]
  8. D. Cote and I. A. Vitkin, “Balanced detection for low-noise precision polarimetric measurements of optically active, multiply scattering tissue phantoms,” J. Biomed. Opt. 9, 213–220 (2004).
    [CrossRef] [PubMed]
  9. B. D. Cameron and G. L. Cote, “Noninvasive glucose sensing utilizing a digital closed loop polarimetric approach,” IEEE Trans. Biomed. Eng. 44, 1221–227 (1997).
    [CrossRef] [PubMed]
  10. K. C. Hadley and I. A. Vitkin, “Optical rotation and linear and circular depolarization rates in diffusively scattered light from chiral, racimic and achiral turbid media,” J. Biomed. Opt. 7, 291–299 (2002).
    [CrossRef] [PubMed]
  11. I. A. Vitkin, R. D. Laszlo, and C. L. Whyman, “Effects of molecular asymmetry of optically active molecules on the polarization properties of multiply scattered light,” Opt. Express 10, 222–229 (2002).
    [PubMed]
  12. D. Cote and I. Vitkin, “Robust concentration determination of optically active molecule in turbid media with validated three-dimensional polarization sensitive Monte Carlo calculation,” Opt. Express 13, 148–163 (2005).
    [CrossRef] [PubMed]
  13. S. Manhas, M. K. Swami, H. S. Patel, A. Uppal, N. Ghosh, and P. K. Gupta, “Polarized diffuse reflectance measurements on cancerous and noncancerous tissues,” J. Biophoton. 2, 581–587 (2009).
    [CrossRef]
  14. S. Manhas, M. K. Swami, P. Buddhiwant, N. Ghosh, P. K. Gupta, and K. Singh, “Mueller matrix approach for determination of optical rotation in chiral turbid media in backscattering geometry,” Opt. Express 14, 190–202(2006).
    [CrossRef] [PubMed]
  15. G. L. Liu, Y. Li, and B. D. Cameron, “Polarization based optical imaging and processing techniques with application to the cancer diagnostics,” Proc. SPIE 4617, 208–220 (2002).
    [CrossRef]
  16. M. H. Smith, “Interpreting Mueller matrix images of tissues,” Proc. SPIE 4257, 82–89 (2001).
    [CrossRef]
  17. J. Chung, W. Jung, M. J. Hammer-Wilson, P. W. Smith, and Z. Chen, “Use of polar decomposition for the diagnosis of oral precancer,” Appl. Opt. 46, 3038–3045 (2007).
    [CrossRef] [PubMed]
  18. D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, “Depolarization of multiply scattered waves by spherical diffusers: influence of the size parameter,” Phys. Rev. E 49, 1767–1770 (1994).
    [CrossRef]
  19. A. D. Kim and M. Moscoso, “Influence of the refractive index on the depolarization of multiply scattered waves,” Phys. Rev. E 64, 026612 (2001).
    [CrossRef]
  20. N. Ghosh, P. K. Gupta, H. S. Patel, B. Jain, and B. N. Singh, “Depolarization of light in tissue phantoms—effect of collection geometry,” Opt. Commun. 222, 93–100 (2003).
    [CrossRef]
  21. N. Ghosh, H. S. Patel, and P. K. Gupta, “Depolarization of light in tissue phantoms—effect of a distribution in the size of scatterers,” Opt. Express 11, 2198–2205 (2003).
    [CrossRef] [PubMed]
  22. N. Ghosh, A. Pradhan, P. K. Gupta, S. Gupta, V. Jaiswal, and R. P. Singh, “Depolarization of light in a multiply scattering medium: effect of refractive index of scatterer,” Phys. Rev. E 70, 066607 (2004).
    [CrossRef]
  23. I. A. Vitkin and R. C. N. Studinski, “Polarization preservation in diffusive scattering from in-vivo turbid biological media: effects of tissue optical absorption in the exact backscattering direction,” Opt. Commun. 190, 37–43 (2001).
    [CrossRef]
  24. M. I. Mishchenko, L. Liu, and J. W. Hovenier, “Effects of absorption on multiple scattering by random particulate media: exact results,” Opt. Express 15, 13182–13187(2007).
    [CrossRef] [PubMed]
  25. D. A. Zimnyakov, Yu. P. Sinichkin, I. V. Kiseleva, and D. N. Agafonov, “Effect of absorption of multiply scattering media on the degree of residual polarization of backscattered light,” Opt. Spectrosc. 92, 765–771 (2002).
    [CrossRef]
  26. R. S. Verma, M. K. Swami, S. S. Manhas, and P. K. Gupta, “Mueller matrix-based optimization of reflective type twisted nematic liquid crystal SLM at oblique incidences,” Opt. Commun. 283, 2580–2587 (2010).
    [CrossRef]
  27. S. Y. Lu and R. A. Chipman, “Interpretation of Mueller matrices based on polar decomposition,” J. Opt. Soc. Am. A 13, 1106–1113 (1996).
    [CrossRef]
  28. F. Le Roy-Brehonnet and B. Le Jeune, “Utilization of Mueller matrix formalism to obtain optical targets depolarization and polarization properties,” Prog. Quantum Electron. 21, 109–151 (1997).
    [CrossRef]

2010

R. S. Verma, M. K. Swami, S. S. Manhas, and P. K. Gupta, “Mueller matrix-based optimization of reflective type twisted nematic liquid crystal SLM at oblique incidences,” Opt. Commun. 283, 2580–2587 (2010).
[CrossRef]

2009

S. Manhas, M. K. Swami, H. S. Patel, A. Uppal, N. Ghosh, and P. K. Gupta, “Polarized diffuse reflectance measurements on cancerous and noncancerous tissues,” J. Biophoton. 2, 581–587 (2009).
[CrossRef]

2007

2006

2005

2004

N. Ghosh, A. Pradhan, P. K. Gupta, S. Gupta, V. Jaiswal, and R. P. Singh, “Depolarization of light in a multiply scattering medium: effect of refractive index of scatterer,” Phys. Rev. E 70, 066607 (2004).
[CrossRef]

D. Cote and I. A. Vitkin, “Balanced detection for low-noise precision polarimetric measurements of optically active, multiply scattering tissue phantoms,” J. Biomed. Opt. 9, 213–220 (2004).
[CrossRef] [PubMed]

2003

N. Ghosh, P. K. Gupta, H. S. Patel, B. Jain, and B. N. Singh, “Depolarization of light in tissue phantoms—effect of collection geometry,” Opt. Commun. 222, 93–100 (2003).
[CrossRef]

N. Ghosh, H. S. Patel, and P. K. Gupta, “Depolarization of light in tissue phantoms—effect of a distribution in the size of scatterers,” Opt. Express 11, 2198–2205 (2003).
[CrossRef] [PubMed]

2002

D. A. Zimnyakov, Yu. P. Sinichkin, I. V. Kiseleva, and D. N. Agafonov, “Effect of absorption of multiply scattering media on the degree of residual polarization of backscattered light,” Opt. Spectrosc. 92, 765–771 (2002).
[CrossRef]

G. L. Liu, Y. Li, and B. D. Cameron, “Polarization based optical imaging and processing techniques with application to the cancer diagnostics,” Proc. SPIE 4617, 208–220 (2002).
[CrossRef]

K. C. Hadley and I. A. Vitkin, “Optical rotation and linear and circular depolarization rates in diffusively scattered light from chiral, racimic and achiral turbid media,” J. Biomed. Opt. 7, 291–299 (2002).
[CrossRef] [PubMed]

I. A. Vitkin, R. D. Laszlo, and C. L. Whyman, “Effects of molecular asymmetry of optically active molecules on the polarization properties of multiply scattered light,” Opt. Express 10, 222–229 (2002).
[PubMed]

2001

M. H. Smith, “Interpreting Mueller matrix images of tissues,” Proc. SPIE 4257, 82–89 (2001).
[CrossRef]

I. A. Vitkin and R. C. N. Studinski, “Polarization preservation in diffusive scattering from in-vivo turbid biological media: effects of tissue optical absorption in the exact backscattering direction,” Opt. Commun. 190, 37–43 (2001).
[CrossRef]

A. D. Kim and M. Moscoso, “Influence of the refractive index on the depolarization of multiply scattered waves,” Phys. Rev. E 64, 026612 (2001).
[CrossRef]

2000

I. A. Vitkin and E. Hoskinson, “Polarization studies in multiply scattering chiral media,” Opt. Eng. 39, 353–362(2000).
[CrossRef]

1999

V. Backman, R. Gurjar, K. Badizadegan, L. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5, 1019–1026 (1999).
[CrossRef]

1998

L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80, 627–630 (1998).
[CrossRef]

1997

J. F. de Boer, T. E. Milner, M. J. C. van Gemert, and J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography,” Opt. Lett. 22, 934–936 (1997).
[CrossRef] [PubMed]

D. J. Maitland and J. T. Walsh, Jr., “Quantitative measurement of linear birefringence during heating of native collagen,” Lasers Surg. Med. 20, 310–318 (1997).
[CrossRef] [PubMed]

B. D. Cameron and G. L. Cote, “Noninvasive glucose sensing utilizing a digital closed loop polarimetric approach,” IEEE Trans. Biomed. Eng. 44, 1221–227 (1997).
[CrossRef] [PubMed]

F. Le Roy-Brehonnet and B. Le Jeune, “Utilization of Mueller matrix formalism to obtain optical targets depolarization and polarization properties,” Prog. Quantum Electron. 21, 109–151 (1997).
[CrossRef]

1996

1994

D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, “Depolarization of multiply scattered waves by spherical diffusers: influence of the size parameter,” Phys. Rev. E 49, 1767–1770 (1994).
[CrossRef]

1991

C. T. Gross, H. Salamon, A. J. Hunt, R. I. Macey, F. Orme, and A. T. Quintanilha, “Hemoglobin polymerization in sickle cells studied by circular polarized light scattering,” Biochim. Biophys. Acta 1079, 152–160 (1991).
[CrossRef] [PubMed]

1988

D. A. Beach, C. Bustamante, K. Samwells, and K. M. Foucar, “Differential polarization imaging III. Theory confirmation. Patterns of polymerization of hemoglobin S in red blood sickle cells,” Biophys. J. 53, 449–456 (1988).
[CrossRef] [PubMed]

Agafonov, D. N.

D. A. Zimnyakov, Yu. P. Sinichkin, I. V. Kiseleva, and D. N. Agafonov, “Effect of absorption of multiply scattering media on the degree of residual polarization of backscattered light,” Opt. Spectrosc. 92, 765–771 (2002).
[CrossRef]

Backman, V.

V. Backman, R. Gurjar, K. Badizadegan, L. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5, 1019–1026 (1999).
[CrossRef]

L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80, 627–630 (1998).
[CrossRef]

Badizadegan, K.

V. Backman, R. Gurjar, K. Badizadegan, L. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5, 1019–1026 (1999).
[CrossRef]

Beach, D. A.

D. A. Beach, C. Bustamante, K. Samwells, and K. M. Foucar, “Differential polarization imaging III. Theory confirmation. Patterns of polymerization of hemoglobin S in red blood sickle cells,” Biophys. J. 53, 449–456 (1988).
[CrossRef] [PubMed]

Bicout, D.

D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, “Depolarization of multiply scattered waves by spherical diffusers: influence of the size parameter,” Phys. Rev. E 49, 1767–1770 (1994).
[CrossRef]

Brosseau, C.

D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, “Depolarization of multiply scattered waves by spherical diffusers: influence of the size parameter,” Phys. Rev. E 49, 1767–1770 (1994).
[CrossRef]

Buddhiwant, P.

Bustamante, C.

D. A. Beach, C. Bustamante, K. Samwells, and K. M. Foucar, “Differential polarization imaging III. Theory confirmation. Patterns of polymerization of hemoglobin S in red blood sickle cells,” Biophys. J. 53, 449–456 (1988).
[CrossRef] [PubMed]

Cameron, B. D.

G. L. Liu, Y. Li, and B. D. Cameron, “Polarization based optical imaging and processing techniques with application to the cancer diagnostics,” Proc. SPIE 4617, 208–220 (2002).
[CrossRef]

B. D. Cameron and G. L. Cote, “Noninvasive glucose sensing utilizing a digital closed loop polarimetric approach,” IEEE Trans. Biomed. Eng. 44, 1221–227 (1997).
[CrossRef] [PubMed]

Chen, Z.

Chipman, R. A.

Chung, J.

Cote, D.

D. Cote and I. Vitkin, “Robust concentration determination of optically active molecule in turbid media with validated three-dimensional polarization sensitive Monte Carlo calculation,” Opt. Express 13, 148–163 (2005).
[CrossRef] [PubMed]

D. Cote and I. A. Vitkin, “Balanced detection for low-noise precision polarimetric measurements of optically active, multiply scattering tissue phantoms,” J. Biomed. Opt. 9, 213–220 (2004).
[CrossRef] [PubMed]

Cote, G. L.

B. D. Cameron and G. L. Cote, “Noninvasive glucose sensing utilizing a digital closed loop polarimetric approach,” IEEE Trans. Biomed. Eng. 44, 1221–227 (1997).
[CrossRef] [PubMed]

Crawford, J. M.

L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80, 627–630 (1998).
[CrossRef]

Dasari, R. R.

V. Backman, R. Gurjar, K. Badizadegan, L. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5, 1019–1026 (1999).
[CrossRef]

de Boer, J. F.

Feld, M. S.

V. Backman, R. Gurjar, K. Badizadegan, L. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5, 1019–1026 (1999).
[CrossRef]

L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80, 627–630 (1998).
[CrossRef]

Foucar, K. M.

D. A. Beach, C. Bustamante, K. Samwells, and K. M. Foucar, “Differential polarization imaging III. Theory confirmation. Patterns of polymerization of hemoglobin S in red blood sickle cells,” Biophys. J. 53, 449–456 (1988).
[CrossRef] [PubMed]

Ghosh, N.

S. Manhas, M. K. Swami, H. S. Patel, A. Uppal, N. Ghosh, and P. K. Gupta, “Polarized diffuse reflectance measurements on cancerous and noncancerous tissues,” J. Biophoton. 2, 581–587 (2009).
[CrossRef]

S. Manhas, M. K. Swami, P. Buddhiwant, N. Ghosh, P. K. Gupta, and K. Singh, “Mueller matrix approach for determination of optical rotation in chiral turbid media in backscattering geometry,” Opt. Express 14, 190–202(2006).
[CrossRef] [PubMed]

N. Ghosh, A. Pradhan, P. K. Gupta, S. Gupta, V. Jaiswal, and R. P. Singh, “Depolarization of light in a multiply scattering medium: effect of refractive index of scatterer,” Phys. Rev. E 70, 066607 (2004).
[CrossRef]

N. Ghosh, P. K. Gupta, H. S. Patel, B. Jain, and B. N. Singh, “Depolarization of light in tissue phantoms—effect of collection geometry,” Opt. Commun. 222, 93–100 (2003).
[CrossRef]

N. Ghosh, H. S. Patel, and P. K. Gupta, “Depolarization of light in tissue phantoms—effect of a distribution in the size of scatterers,” Opt. Express 11, 2198–2205 (2003).
[CrossRef] [PubMed]

Gross, C. T.

C. T. Gross, H. Salamon, A. J. Hunt, R. I. Macey, F. Orme, and A. T. Quintanilha, “Hemoglobin polymerization in sickle cells studied by circular polarized light scattering,” Biochim. Biophys. Acta 1079, 152–160 (1991).
[CrossRef] [PubMed]

Gupta, P. K.

R. S. Verma, M. K. Swami, S. S. Manhas, and P. K. Gupta, “Mueller matrix-based optimization of reflective type twisted nematic liquid crystal SLM at oblique incidences,” Opt. Commun. 283, 2580–2587 (2010).
[CrossRef]

S. Manhas, M. K. Swami, H. S. Patel, A. Uppal, N. Ghosh, and P. K. Gupta, “Polarized diffuse reflectance measurements on cancerous and noncancerous tissues,” J. Biophoton. 2, 581–587 (2009).
[CrossRef]

S. Manhas, M. K. Swami, P. Buddhiwant, N. Ghosh, P. K. Gupta, and K. Singh, “Mueller matrix approach for determination of optical rotation in chiral turbid media in backscattering geometry,” Opt. Express 14, 190–202(2006).
[CrossRef] [PubMed]

N. Ghosh, A. Pradhan, P. K. Gupta, S. Gupta, V. Jaiswal, and R. P. Singh, “Depolarization of light in a multiply scattering medium: effect of refractive index of scatterer,” Phys. Rev. E 70, 066607 (2004).
[CrossRef]

N. Ghosh, P. K. Gupta, H. S. Patel, B. Jain, and B. N. Singh, “Depolarization of light in tissue phantoms—effect of collection geometry,” Opt. Commun. 222, 93–100 (2003).
[CrossRef]

N. Ghosh, H. S. Patel, and P. K. Gupta, “Depolarization of light in tissue phantoms—effect of a distribution in the size of scatterers,” Opt. Express 11, 2198–2205 (2003).
[CrossRef] [PubMed]

Gupta, S.

N. Ghosh, A. Pradhan, P. K. Gupta, S. Gupta, V. Jaiswal, and R. P. Singh, “Depolarization of light in a multiply scattering medium: effect of refractive index of scatterer,” Phys. Rev. E 70, 066607 (2004).
[CrossRef]

Gurjar, R.

V. Backman, R. Gurjar, K. Badizadegan, L. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5, 1019–1026 (1999).
[CrossRef]

Hadley, K. C.

K. C. Hadley and I. A. Vitkin, “Optical rotation and linear and circular depolarization rates in diffusively scattered light from chiral, racimic and achiral turbid media,” J. Biomed. Opt. 7, 291–299 (2002).
[CrossRef] [PubMed]

Hamano, T.

L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80, 627–630 (1998).
[CrossRef]

Hammer-Wilson, M. J.

Hoskinson, E.

I. A. Vitkin and E. Hoskinson, “Polarization studies in multiply scattering chiral media,” Opt. Eng. 39, 353–362(2000).
[CrossRef]

Hovenier, J. W.

Hunt, A. J.

C. T. Gross, H. Salamon, A. J. Hunt, R. I. Macey, F. Orme, and A. T. Quintanilha, “Hemoglobin polymerization in sickle cells studied by circular polarized light scattering,” Biochim. Biophys. Acta 1079, 152–160 (1991).
[CrossRef] [PubMed]

Itzkan, I.

L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80, 627–630 (1998).
[CrossRef]

Itzkan, L.

V. Backman, R. Gurjar, K. Badizadegan, L. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5, 1019–1026 (1999).
[CrossRef]

Jain, B.

N. Ghosh, P. K. Gupta, H. S. Patel, B. Jain, and B. N. Singh, “Depolarization of light in tissue phantoms—effect of collection geometry,” Opt. Commun. 222, 93–100 (2003).
[CrossRef]

Jaiswal, V.

N. Ghosh, A. Pradhan, P. K. Gupta, S. Gupta, V. Jaiswal, and R. P. Singh, “Depolarization of light in a multiply scattering medium: effect of refractive index of scatterer,” Phys. Rev. E 70, 066607 (2004).
[CrossRef]

Jung, W.

Kim, A. D.

A. D. Kim and M. Moscoso, “Influence of the refractive index on the depolarization of multiply scattered waves,” Phys. Rev. E 64, 026612 (2001).
[CrossRef]

Kiseleva, I. V.

D. A. Zimnyakov, Yu. P. Sinichkin, I. V. Kiseleva, and D. N. Agafonov, “Effect of absorption of multiply scattering media on the degree of residual polarization of backscattered light,” Opt. Spectrosc. 92, 765–771 (2002).
[CrossRef]

Laszlo, R. D.

Le Jeune, B.

F. Le Roy-Brehonnet and B. Le Jeune, “Utilization of Mueller matrix formalism to obtain optical targets depolarization and polarization properties,” Prog. Quantum Electron. 21, 109–151 (1997).
[CrossRef]

Le Roy-Brehonnet, F.

F. Le Roy-Brehonnet and B. Le Jeune, “Utilization of Mueller matrix formalism to obtain optical targets depolarization and polarization properties,” Prog. Quantum Electron. 21, 109–151 (1997).
[CrossRef]

Li, Y.

G. L. Liu, Y. Li, and B. D. Cameron, “Polarization based optical imaging and processing techniques with application to the cancer diagnostics,” Proc. SPIE 4617, 208–220 (2002).
[CrossRef]

Lima, C.

L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80, 627–630 (1998).
[CrossRef]

Liu, G. L.

G. L. Liu, Y. Li, and B. D. Cameron, “Polarization based optical imaging and processing techniques with application to the cancer diagnostics,” Proc. SPIE 4617, 208–220 (2002).
[CrossRef]

Liu, L.

Lu, S. Y.

Macey, R. I.

C. T. Gross, H. Salamon, A. J. Hunt, R. I. Macey, F. Orme, and A. T. Quintanilha, “Hemoglobin polymerization in sickle cells studied by circular polarized light scattering,” Biochim. Biophys. Acta 1079, 152–160 (1991).
[CrossRef] [PubMed]

Maitland, D. J.

D. J. Maitland and J. T. Walsh, Jr., “Quantitative measurement of linear birefringence during heating of native collagen,” Lasers Surg. Med. 20, 310–318 (1997).
[CrossRef] [PubMed]

Manhas, S.

S. Manhas, M. K. Swami, H. S. Patel, A. Uppal, N. Ghosh, and P. K. Gupta, “Polarized diffuse reflectance measurements on cancerous and noncancerous tissues,” J. Biophoton. 2, 581–587 (2009).
[CrossRef]

S. Manhas, M. K. Swami, P. Buddhiwant, N. Ghosh, P. K. Gupta, and K. Singh, “Mueller matrix approach for determination of optical rotation in chiral turbid media in backscattering geometry,” Opt. Express 14, 190–202(2006).
[CrossRef] [PubMed]

Manhas, S. S.

R. S. Verma, M. K. Swami, S. S. Manhas, and P. K. Gupta, “Mueller matrix-based optimization of reflective type twisted nematic liquid crystal SLM at oblique incidences,” Opt. Commun. 283, 2580–2587 (2010).
[CrossRef]

Manoharan, R.

L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80, 627–630 (1998).
[CrossRef]

Martinez, A. S.

D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, “Depolarization of multiply scattered waves by spherical diffusers: influence of the size parameter,” Phys. Rev. E 49, 1767–1770 (1994).
[CrossRef]

Milner, T. E.

Mishchenko, M. I.

Moscoso, M.

A. D. Kim and M. Moscoso, “Influence of the refractive index on the depolarization of multiply scattered waves,” Phys. Rev. E 64, 026612 (2001).
[CrossRef]

Nelson, J. S.

Nusrat, A.

L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80, 627–630 (1998).
[CrossRef]

Orme, F.

C. T. Gross, H. Salamon, A. J. Hunt, R. I. Macey, F. Orme, and A. T. Quintanilha, “Hemoglobin polymerization in sickle cells studied by circular polarized light scattering,” Biochim. Biophys. Acta 1079, 152–160 (1991).
[CrossRef] [PubMed]

Patel, H. S.

S. Manhas, M. K. Swami, H. S. Patel, A. Uppal, N. Ghosh, and P. K. Gupta, “Polarized diffuse reflectance measurements on cancerous and noncancerous tissues,” J. Biophoton. 2, 581–587 (2009).
[CrossRef]

N. Ghosh, P. K. Gupta, H. S. Patel, B. Jain, and B. N. Singh, “Depolarization of light in tissue phantoms—effect of collection geometry,” Opt. Commun. 222, 93–100 (2003).
[CrossRef]

N. Ghosh, H. S. Patel, and P. K. Gupta, “Depolarization of light in tissue phantoms—effect of a distribution in the size of scatterers,” Opt. Express 11, 2198–2205 (2003).
[CrossRef] [PubMed]

Perelman, L. T.

V. Backman, R. Gurjar, K. Badizadegan, L. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5, 1019–1026 (1999).
[CrossRef]

L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80, 627–630 (1998).
[CrossRef]

Pradhan, A.

N. Ghosh, A. Pradhan, P. K. Gupta, S. Gupta, V. Jaiswal, and R. P. Singh, “Depolarization of light in a multiply scattering medium: effect of refractive index of scatterer,” Phys. Rev. E 70, 066607 (2004).
[CrossRef]

Quintanilha, A. T.

C. T. Gross, H. Salamon, A. J. Hunt, R. I. Macey, F. Orme, and A. T. Quintanilha, “Hemoglobin polymerization in sickle cells studied by circular polarized light scattering,” Biochim. Biophys. Acta 1079, 152–160 (1991).
[CrossRef] [PubMed]

Salamon, H.

C. T. Gross, H. Salamon, A. J. Hunt, R. I. Macey, F. Orme, and A. T. Quintanilha, “Hemoglobin polymerization in sickle cells studied by circular polarized light scattering,” Biochim. Biophys. Acta 1079, 152–160 (1991).
[CrossRef] [PubMed]

Samwells, K.

D. A. Beach, C. Bustamante, K. Samwells, and K. M. Foucar, “Differential polarization imaging III. Theory confirmation. Patterns of polymerization of hemoglobin S in red blood sickle cells,” Biophys. J. 53, 449–456 (1988).
[CrossRef] [PubMed]

Schmitt, J. M.

D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, “Depolarization of multiply scattered waves by spherical diffusers: influence of the size parameter,” Phys. Rev. E 49, 1767–1770 (1994).
[CrossRef]

Seiler, M.

L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80, 627–630 (1998).
[CrossRef]

Shields, S.

L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80, 627–630 (1998).
[CrossRef]

Singh, B. N.

N. Ghosh, P. K. Gupta, H. S. Patel, B. Jain, and B. N. Singh, “Depolarization of light in tissue phantoms—effect of collection geometry,” Opt. Commun. 222, 93–100 (2003).
[CrossRef]

Singh, K.

Singh, R. P.

N. Ghosh, A. Pradhan, P. K. Gupta, S. Gupta, V. Jaiswal, and R. P. Singh, “Depolarization of light in a multiply scattering medium: effect of refractive index of scatterer,” Phys. Rev. E 70, 066607 (2004).
[CrossRef]

Sinichkin, Yu. P.

D. A. Zimnyakov, Yu. P. Sinichkin, I. V. Kiseleva, and D. N. Agafonov, “Effect of absorption of multiply scattering media on the degree of residual polarization of backscattered light,” Opt. Spectrosc. 92, 765–771 (2002).
[CrossRef]

Smith, M. H.

M. H. Smith, “Interpreting Mueller matrix images of tissues,” Proc. SPIE 4257, 82–89 (2001).
[CrossRef]

Smith, P. W.

Studinski, R. C. N.

I. A. Vitkin and R. C. N. Studinski, “Polarization preservation in diffusive scattering from in-vivo turbid biological media: effects of tissue optical absorption in the exact backscattering direction,” Opt. Commun. 190, 37–43 (2001).
[CrossRef]

Swami, M. K.

R. S. Verma, M. K. Swami, S. S. Manhas, and P. K. Gupta, “Mueller matrix-based optimization of reflective type twisted nematic liquid crystal SLM at oblique incidences,” Opt. Commun. 283, 2580–2587 (2010).
[CrossRef]

S. Manhas, M. K. Swami, H. S. Patel, A. Uppal, N. Ghosh, and P. K. Gupta, “Polarized diffuse reflectance measurements on cancerous and noncancerous tissues,” J. Biophoton. 2, 581–587 (2009).
[CrossRef]

S. Manhas, M. K. Swami, P. Buddhiwant, N. Ghosh, P. K. Gupta, and K. Singh, “Mueller matrix approach for determination of optical rotation in chiral turbid media in backscattering geometry,” Opt. Express 14, 190–202(2006).
[CrossRef] [PubMed]

Uppal, A.

S. Manhas, M. K. Swami, H. S. Patel, A. Uppal, N. Ghosh, and P. K. Gupta, “Polarized diffuse reflectance measurements on cancerous and noncancerous tissues,” J. Biophoton. 2, 581–587 (2009).
[CrossRef]

Van Dam, J.

L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80, 627–630 (1998).
[CrossRef]

van Gemert, M. J. C.

Verma, R. S.

R. S. Verma, M. K. Swami, S. S. Manhas, and P. K. Gupta, “Mueller matrix-based optimization of reflective type twisted nematic liquid crystal SLM at oblique incidences,” Opt. Commun. 283, 2580–2587 (2010).
[CrossRef]

Vitkin, I.

Vitkin, I. A.

D. Cote and I. A. Vitkin, “Balanced detection for low-noise precision polarimetric measurements of optically active, multiply scattering tissue phantoms,” J. Biomed. Opt. 9, 213–220 (2004).
[CrossRef] [PubMed]

K. C. Hadley and I. A. Vitkin, “Optical rotation and linear and circular depolarization rates in diffusively scattered light from chiral, racimic and achiral turbid media,” J. Biomed. Opt. 7, 291–299 (2002).
[CrossRef] [PubMed]

I. A. Vitkin, R. D. Laszlo, and C. L. Whyman, “Effects of molecular asymmetry of optically active molecules on the polarization properties of multiply scattered light,” Opt. Express 10, 222–229 (2002).
[PubMed]

I. A. Vitkin and R. C. N. Studinski, “Polarization preservation in diffusive scattering from in-vivo turbid biological media: effects of tissue optical absorption in the exact backscattering direction,” Opt. Commun. 190, 37–43 (2001).
[CrossRef]

I. A. Vitkin and E. Hoskinson, “Polarization studies in multiply scattering chiral media,” Opt. Eng. 39, 353–362(2000).
[CrossRef]

Wallace, M.

L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80, 627–630 (1998).
[CrossRef]

Walsh, J. T.

D. J. Maitland and J. T. Walsh, Jr., “Quantitative measurement of linear birefringence during heating of native collagen,” Lasers Surg. Med. 20, 310–318 (1997).
[CrossRef] [PubMed]

Whyman, C. L.

Zimnyakov, D. A.

D. A. Zimnyakov, Yu. P. Sinichkin, I. V. Kiseleva, and D. N. Agafonov, “Effect of absorption of multiply scattering media on the degree of residual polarization of backscattered light,” Opt. Spectrosc. 92, 765–771 (2002).
[CrossRef]

Zonios, G.

L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80, 627–630 (1998).
[CrossRef]

Appl. Opt.

Biochim. Biophys. Acta

C. T. Gross, H. Salamon, A. J. Hunt, R. I. Macey, F. Orme, and A. T. Quintanilha, “Hemoglobin polymerization in sickle cells studied by circular polarized light scattering,” Biochim. Biophys. Acta 1079, 152–160 (1991).
[CrossRef] [PubMed]

Biophys. J.

D. A. Beach, C. Bustamante, K. Samwells, and K. M. Foucar, “Differential polarization imaging III. Theory confirmation. Patterns of polymerization of hemoglobin S in red blood sickle cells,” Biophys. J. 53, 449–456 (1988).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron.

V. Backman, R. Gurjar, K. Badizadegan, L. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5, 1019–1026 (1999).
[CrossRef]

IEEE Trans. Biomed. Eng.

B. D. Cameron and G. L. Cote, “Noninvasive glucose sensing utilizing a digital closed loop polarimetric approach,” IEEE Trans. Biomed. Eng. 44, 1221–227 (1997).
[CrossRef] [PubMed]

J. Biomed. Opt.

K. C. Hadley and I. A. Vitkin, “Optical rotation and linear and circular depolarization rates in diffusively scattered light from chiral, racimic and achiral turbid media,” J. Biomed. Opt. 7, 291–299 (2002).
[CrossRef] [PubMed]

D. Cote and I. A. Vitkin, “Balanced detection for low-noise precision polarimetric measurements of optically active, multiply scattering tissue phantoms,” J. Biomed. Opt. 9, 213–220 (2004).
[CrossRef] [PubMed]

J. Biophoton.

S. Manhas, M. K. Swami, H. S. Patel, A. Uppal, N. Ghosh, and P. K. Gupta, “Polarized diffuse reflectance measurements on cancerous and noncancerous tissues,” J. Biophoton. 2, 581–587 (2009).
[CrossRef]

J. Opt. Soc. Am. A

Lasers Surg. Med.

D. J. Maitland and J. T. Walsh, Jr., “Quantitative measurement of linear birefringence during heating of native collagen,” Lasers Surg. Med. 20, 310–318 (1997).
[CrossRef] [PubMed]

Opt. Commun.

N. Ghosh, P. K. Gupta, H. S. Patel, B. Jain, and B. N. Singh, “Depolarization of light in tissue phantoms—effect of collection geometry,” Opt. Commun. 222, 93–100 (2003).
[CrossRef]

I. A. Vitkin and R. C. N. Studinski, “Polarization preservation in diffusive scattering from in-vivo turbid biological media: effects of tissue optical absorption in the exact backscattering direction,” Opt. Commun. 190, 37–43 (2001).
[CrossRef]

R. S. Verma, M. K. Swami, S. S. Manhas, and P. K. Gupta, “Mueller matrix-based optimization of reflective type twisted nematic liquid crystal SLM at oblique incidences,” Opt. Commun. 283, 2580–2587 (2010).
[CrossRef]

Opt. Eng.

I. A. Vitkin and E. Hoskinson, “Polarization studies in multiply scattering chiral media,” Opt. Eng. 39, 353–362(2000).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Spectrosc.

D. A. Zimnyakov, Yu. P. Sinichkin, I. V. Kiseleva, and D. N. Agafonov, “Effect of absorption of multiply scattering media on the degree of residual polarization of backscattered light,” Opt. Spectrosc. 92, 765–771 (2002).
[CrossRef]

Phys. Rev. E

N. Ghosh, A. Pradhan, P. K. Gupta, S. Gupta, V. Jaiswal, and R. P. Singh, “Depolarization of light in a multiply scattering medium: effect of refractive index of scatterer,” Phys. Rev. E 70, 066607 (2004).
[CrossRef]

D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, “Depolarization of multiply scattered waves by spherical diffusers: influence of the size parameter,” Phys. Rev. E 49, 1767–1770 (1994).
[CrossRef]

A. D. Kim and M. Moscoso, “Influence of the refractive index on the depolarization of multiply scattered waves,” Phys. Rev. E 64, 026612 (2001).
[CrossRef]

Phys. Rev. Lett.

L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80, 627–630 (1998).
[CrossRef]

Proc. SPIE

G. L. Liu, Y. Li, and B. D. Cameron, “Polarization based optical imaging and processing techniques with application to the cancer diagnostics,” Proc. SPIE 4617, 208–220 (2002).
[CrossRef]

M. H. Smith, “Interpreting Mueller matrix images of tissues,” Proc. SPIE 4257, 82–89 (2001).
[CrossRef]

Prog. Quantum Electron.

F. Le Roy-Brehonnet and B. Le Jeune, “Utilization of Mueller matrix formalism to obtain optical targets depolarization and polarization properties,” Prog. Quantum Electron. 21, 109–151 (1997).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Flow chart for polar decomposition of an experimentally obtained Mueller matrix.

Fig. 2
Fig. 2

Schematic of the 16 element Mueller matrix measurement setup.

Fig. 3
Fig. 3

Absorption spectra for black ink, which is used as an absorber.

Fig. 4
Fig. 4

Depolarization curves for (a) Intralipid and combination of Intralipid and absorber (ink) with different concentrations and (b) scatterer (microsphere with 2.0 μm diameter) and combination of scatterer and absorber (ink).

Fig. 5
Fig. 5

Depolarization curves for the scatterer (microspheres) and combination of scatterer and absorber (ink) (a) for scatterer of 0.77 μm diameter, (b) for scatterer of 5.7 μm diameter, (c) for scatterer of 0.20 μm diameter, and (d) for mixture of scatterers ( 1 1 ) of diameters 0.77 and 5.7 μm . Dashed curve is for the combination (scatterer and absorber) and solid curve is for scatterer only.

Fig. 6
Fig. 6

Depolarization curves for the scatterer (microsphere with 2.0 μm diameter) and combination of scatterer and absorber (ink).

Fig. 7
Fig. 7

(a) Diattenuation curves for the scatterer (microsphere with 2.0 μm diameter) and combination of scatterer and absorber (ink). (b) Linear retardance curves for the scatterer (microsphere with 2.0 μm diameter) and combination of scatterer and absorber (ink). (δ is in radians).

Fig. 8
Fig. 8

Effect of aperture size on depolarization behavior of 2 μm size polystyrene microspheres ( μ s 0.1 mm 1 ) with and without absorber ( μ a 2 mm 1 ).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

PSG = ( 1 1 1 1 C θ in 1 2 + S θ in 1 2 C δ C θ in 2 2 + S θ in 2 2 C δ C θ in 3 2 + S θ in 3 2 C δ C θ in 4 2 + S θ in 4 2 C δ S θ in 1 C θ in 1 ( 1 C δ ) S θ in 2 C θ in 2 ( 1 C δ ) S θ in 3 C θ in 3 ( 1 C δ ) S θ in 4 C θ in 4 ( 1 C δ ) S θ in 1 S δ S θ in 2 S δ S θ in 3 S δ S θ in 4 S δ ) ,
PSA = ( 1 ( C θ o 1 2 + S θ o 1 2 C δ ) C θ o 1 S θ o 1 ( 1 C δ ) S θ o 1 S δ 1 ( C θ o 2 2 + S θ o 2 2 C δ ) C θ o 2 S θ o 2 ( 1 C δ ) S θ o 2 S δ 1 ( C θ o 3 2 + S θ o 3 2 C δ ) C θ o 3 S θ o 3 ( 1 C δ ) S θ o 3 S δ 1 ( C θ o 4 2 + S θ o 4 2 C δ ) C θ o 4 S θ o 4 ( 1 C δ ) S θ o 4 S δ ) ,
M i = PSA M s PSG ,
M i vec = W M s vec ,
W = PSA PSG T .

Metrics