Abstract

We are concerned with the development of a three-dimensional (3D) full-field high-speed digital image correlation (DIC) measurement system using a single camera, specifically aimed at measuring large out-of-plane displacements. A system has been devised to record images at ultrahigh speeds using a single camera and a series of mirrors. These mirrors effectively converted a single camera into two virtual cameras that view a specimen surface from different angles and capture two images simultaneously. This pair of images enables one to perform DIC measurements to obtain 3D displacement fields at high framing rates. Bench testing along with results obtained using a shock wave blast test facility are used to show the validity of the method.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A. Sutton, W. J. Wolters, W. H. Peters, W. F. Ranson, and S. R. McNeill, “Determination of displacements using an improved digital correlation method,” Imag. Vision Comput. 1, 133–139 (1983).
    [CrossRef]
  2. Z. L. Kahn-Jetter and T. C. Chu, “Three-dimensional displacement measurements using digital image correlation and photogrammic analysis,” Exp. Mech. , 30, 10–16(1990).
    [CrossRef]
  3. J. D. Helm, S. R. McNeill, and M. A. Sutton, “Improved three-dimensional image correlation for surface displacement measurement,” Opt. Eng. 35, 1911–1920 (1996).
    [CrossRef]
  4. P. Synnergren and M. Sjodahl, “A stereoscopic digital speckle photography system for 3-d displacement field measurements,” Opt. Lasers Eng. 31, 425–443 (1999).
    [CrossRef]
  5. T. Hua, H. Xie, B. Pan, Q. Wang, and F. Dai, “A new mark shearing technique for strain measurement using digital image correlation method,” Rev. Sci. Instrum. 79, 105101(2008).
    [CrossRef] [PubMed]
  6. A. K. Prasad and K. Jensen, “Scheimpflug stereocamera for particle velocimetry in liquid flows,” Appl. Opt. 34, 7092–7099 (1995).
    [CrossRef] [PubMed]
  7. C. J. Tay, C. Quan, Y. H. Huang, and Y. Fu, “Digital image correlation for whole field out-of-plane measurement using a single camera,” Opt. Commun. 251, 23–36 (2005).
    [CrossRef]
  8. C. Quan, C. J. Tay, W. Sun, and X. He, “Determination of three-dimensional displacement using two-dimensional digital image correlation,” Appl. Opt. 47, 583–593 (2008).
    [CrossRef] [PubMed]
  9. W. Sun, E. Dong, and X. He, “3d displacement measurements with a single camera based on digital image correlation technique,” Proc. SPIE 6723, 37230 (2007).
    [CrossRef]
  10. M. S. Kirugulige and H. V. Tippur, “Measurement of fracture parameters for a mixed-mode crack driven by stress waves using image correlation technique and high-speed digital photography,” Strain 45, 108–122 (2008).
    [CrossRef]
  11. M. S. Kirugulige, H. V. Tippur, and T. S. Denney, “Measurement of transient deformations using digital image correlation method and high-speed photography: application to dynamic fracture,” Appl. Opt. 46, 5083–5096 (2007).
    [CrossRef] [PubMed]
  12. V. Tiwari, M. A. Sutton, S. R. McNeill, S. Xu, X. Deng, W. L. Fourney, and D. Bretall, “Application of 3d image correlation for full-field transient plate deformation measurements during blast loading,” Int. J. Impact Eng. 36, 862–874(2009).
    [CrossRef]
  13. D. Lee, M. S. Kirugulige, H. V. Tippur, and P. Bogert, “Experimental study of dynamic crack growth in unidirectional graphite/epoxy composites using digital image correlation method and high-speed photography,” J. Compos. Mater. 43, 2081–2108 (2009).
    [CrossRef]
  14. P. L. Reu and T. J. Miller, “The application of high-speed digital image correlation,” J. Strain Analysis (2008).
    [CrossRef]
  15. A. Hijazi and V. Madhavan, “A novel ultra-high speed camera for digital image processing applications,” Meas. Sci. Technol. 19, 085503 (2008).
    [CrossRef]
  16. V. Tiwari, M. A. Sutton, and S. R. McNeill, “Assessment of high speed imaging systems for 2d and 3d deformation measurements: methodology development and validation,” Exp. Mech. 47, 561–579 (2007).
    [CrossRef]
  17. MATLAB version 2008a (2008).
  18. M. Stoffel, R. Schmidt, and D. Weichert, “Shock wave-loaded plates,” Int. J. Solids Struct. 38, 7659–7680 (2001).
    [CrossRef]
  19. M. Pankow and A. Waas, “Blast loading of epoxy panels using a shock tube,” NASA Technical Memo (to be published).
  20. Abaqus Users Manual, Edition 6.8 (2008)
  21. D. J. Lloyd, “The deformation of commercial aluminum-magnesium alloys,” Metall. Trans. A 11, 1287–1294 (1980).
    [CrossRef]

2009 (2)

V. Tiwari, M. A. Sutton, S. R. McNeill, S. Xu, X. Deng, W. L. Fourney, and D. Bretall, “Application of 3d image correlation for full-field transient plate deformation measurements during blast loading,” Int. J. Impact Eng. 36, 862–874(2009).
[CrossRef]

D. Lee, M. S. Kirugulige, H. V. Tippur, and P. Bogert, “Experimental study of dynamic crack growth in unidirectional graphite/epoxy composites using digital image correlation method and high-speed photography,” J. Compos. Mater. 43, 2081–2108 (2009).
[CrossRef]

2008 (5)

P. L. Reu and T. J. Miller, “The application of high-speed digital image correlation,” J. Strain Analysis (2008).
[CrossRef]

A. Hijazi and V. Madhavan, “A novel ultra-high speed camera for digital image processing applications,” Meas. Sci. Technol. 19, 085503 (2008).
[CrossRef]

C. Quan, C. J. Tay, W. Sun, and X. He, “Determination of three-dimensional displacement using two-dimensional digital image correlation,” Appl. Opt. 47, 583–593 (2008).
[CrossRef] [PubMed]

T. Hua, H. Xie, B. Pan, Q. Wang, and F. Dai, “A new mark shearing technique for strain measurement using digital image correlation method,” Rev. Sci. Instrum. 79, 105101(2008).
[CrossRef] [PubMed]

M. S. Kirugulige and H. V. Tippur, “Measurement of fracture parameters for a mixed-mode crack driven by stress waves using image correlation technique and high-speed digital photography,” Strain 45, 108–122 (2008).
[CrossRef]

2007 (3)

W. Sun, E. Dong, and X. He, “3d displacement measurements with a single camera based on digital image correlation technique,” Proc. SPIE 6723, 37230 (2007).
[CrossRef]

M. S. Kirugulige, H. V. Tippur, and T. S. Denney, “Measurement of transient deformations using digital image correlation method and high-speed photography: application to dynamic fracture,” Appl. Opt. 46, 5083–5096 (2007).
[CrossRef] [PubMed]

V. Tiwari, M. A. Sutton, and S. R. McNeill, “Assessment of high speed imaging systems for 2d and 3d deformation measurements: methodology development and validation,” Exp. Mech. 47, 561–579 (2007).
[CrossRef]

2005 (1)

C. J. Tay, C. Quan, Y. H. Huang, and Y. Fu, “Digital image correlation for whole field out-of-plane measurement using a single camera,” Opt. Commun. 251, 23–36 (2005).
[CrossRef]

2001 (1)

M. Stoffel, R. Schmidt, and D. Weichert, “Shock wave-loaded plates,” Int. J. Solids Struct. 38, 7659–7680 (2001).
[CrossRef]

1999 (1)

P. Synnergren and M. Sjodahl, “A stereoscopic digital speckle photography system for 3-d displacement field measurements,” Opt. Lasers Eng. 31, 425–443 (1999).
[CrossRef]

1996 (1)

J. D. Helm, S. R. McNeill, and M. A. Sutton, “Improved three-dimensional image correlation for surface displacement measurement,” Opt. Eng. 35, 1911–1920 (1996).
[CrossRef]

1995 (1)

1990 (1)

Z. L. Kahn-Jetter and T. C. Chu, “Three-dimensional displacement measurements using digital image correlation and photogrammic analysis,” Exp. Mech. , 30, 10–16(1990).
[CrossRef]

1983 (1)

M. A. Sutton, W. J. Wolters, W. H. Peters, W. F. Ranson, and S. R. McNeill, “Determination of displacements using an improved digital correlation method,” Imag. Vision Comput. 1, 133–139 (1983).
[CrossRef]

1980 (1)

D. J. Lloyd, “The deformation of commercial aluminum-magnesium alloys,” Metall. Trans. A 11, 1287–1294 (1980).
[CrossRef]

Bogert, P.

D. Lee, M. S. Kirugulige, H. V. Tippur, and P. Bogert, “Experimental study of dynamic crack growth in unidirectional graphite/epoxy composites using digital image correlation method and high-speed photography,” J. Compos. Mater. 43, 2081–2108 (2009).
[CrossRef]

Bretall, D.

V. Tiwari, M. A. Sutton, S. R. McNeill, S. Xu, X. Deng, W. L. Fourney, and D. Bretall, “Application of 3d image correlation for full-field transient plate deformation measurements during blast loading,” Int. J. Impact Eng. 36, 862–874(2009).
[CrossRef]

Chu, T. C.

Z. L. Kahn-Jetter and T. C. Chu, “Three-dimensional displacement measurements using digital image correlation and photogrammic analysis,” Exp. Mech. , 30, 10–16(1990).
[CrossRef]

Dai, F.

T. Hua, H. Xie, B. Pan, Q. Wang, and F. Dai, “A new mark shearing technique for strain measurement using digital image correlation method,” Rev. Sci. Instrum. 79, 105101(2008).
[CrossRef] [PubMed]

Deng, X.

V. Tiwari, M. A. Sutton, S. R. McNeill, S. Xu, X. Deng, W. L. Fourney, and D. Bretall, “Application of 3d image correlation for full-field transient plate deformation measurements during blast loading,” Int. J. Impact Eng. 36, 862–874(2009).
[CrossRef]

Denney, T. S.

Dong, E.

W. Sun, E. Dong, and X. He, “3d displacement measurements with a single camera based on digital image correlation technique,” Proc. SPIE 6723, 37230 (2007).
[CrossRef]

Fourney, W. L.

V. Tiwari, M. A. Sutton, S. R. McNeill, S. Xu, X. Deng, W. L. Fourney, and D. Bretall, “Application of 3d image correlation for full-field transient plate deformation measurements during blast loading,” Int. J. Impact Eng. 36, 862–874(2009).
[CrossRef]

Fu, Y.

C. J. Tay, C. Quan, Y. H. Huang, and Y. Fu, “Digital image correlation for whole field out-of-plane measurement using a single camera,” Opt. Commun. 251, 23–36 (2005).
[CrossRef]

He, X.

C. Quan, C. J. Tay, W. Sun, and X. He, “Determination of three-dimensional displacement using two-dimensional digital image correlation,” Appl. Opt. 47, 583–593 (2008).
[CrossRef] [PubMed]

W. Sun, E. Dong, and X. He, “3d displacement measurements with a single camera based on digital image correlation technique,” Proc. SPIE 6723, 37230 (2007).
[CrossRef]

Helm, J. D.

J. D. Helm, S. R. McNeill, and M. A. Sutton, “Improved three-dimensional image correlation for surface displacement measurement,” Opt. Eng. 35, 1911–1920 (1996).
[CrossRef]

Hijazi, A.

A. Hijazi and V. Madhavan, “A novel ultra-high speed camera for digital image processing applications,” Meas. Sci. Technol. 19, 085503 (2008).
[CrossRef]

Hua, T.

T. Hua, H. Xie, B. Pan, Q. Wang, and F. Dai, “A new mark shearing technique for strain measurement using digital image correlation method,” Rev. Sci. Instrum. 79, 105101(2008).
[CrossRef] [PubMed]

Huang, Y. H.

C. J. Tay, C. Quan, Y. H. Huang, and Y. Fu, “Digital image correlation for whole field out-of-plane measurement using a single camera,” Opt. Commun. 251, 23–36 (2005).
[CrossRef]

Jensen, K.

Kahn-Jetter, Z. L.

Z. L. Kahn-Jetter and T. C. Chu, “Three-dimensional displacement measurements using digital image correlation and photogrammic analysis,” Exp. Mech. , 30, 10–16(1990).
[CrossRef]

Kirugulige, M. S.

D. Lee, M. S. Kirugulige, H. V. Tippur, and P. Bogert, “Experimental study of dynamic crack growth in unidirectional graphite/epoxy composites using digital image correlation method and high-speed photography,” J. Compos. Mater. 43, 2081–2108 (2009).
[CrossRef]

M. S. Kirugulige and H. V. Tippur, “Measurement of fracture parameters for a mixed-mode crack driven by stress waves using image correlation technique and high-speed digital photography,” Strain 45, 108–122 (2008).
[CrossRef]

M. S. Kirugulige, H. V. Tippur, and T. S. Denney, “Measurement of transient deformations using digital image correlation method and high-speed photography: application to dynamic fracture,” Appl. Opt. 46, 5083–5096 (2007).
[CrossRef] [PubMed]

Lee, D.

D. Lee, M. S. Kirugulige, H. V. Tippur, and P. Bogert, “Experimental study of dynamic crack growth in unidirectional graphite/epoxy composites using digital image correlation method and high-speed photography,” J. Compos. Mater. 43, 2081–2108 (2009).
[CrossRef]

Lloyd, D. J.

D. J. Lloyd, “The deformation of commercial aluminum-magnesium alloys,” Metall. Trans. A 11, 1287–1294 (1980).
[CrossRef]

Madhavan, V.

A. Hijazi and V. Madhavan, “A novel ultra-high speed camera for digital image processing applications,” Meas. Sci. Technol. 19, 085503 (2008).
[CrossRef]

McNeill, S. R.

V. Tiwari, M. A. Sutton, S. R. McNeill, S. Xu, X. Deng, W. L. Fourney, and D. Bretall, “Application of 3d image correlation for full-field transient plate deformation measurements during blast loading,” Int. J. Impact Eng. 36, 862–874(2009).
[CrossRef]

V. Tiwari, M. A. Sutton, and S. R. McNeill, “Assessment of high speed imaging systems for 2d and 3d deformation measurements: methodology development and validation,” Exp. Mech. 47, 561–579 (2007).
[CrossRef]

J. D. Helm, S. R. McNeill, and M. A. Sutton, “Improved three-dimensional image correlation for surface displacement measurement,” Opt. Eng. 35, 1911–1920 (1996).
[CrossRef]

M. A. Sutton, W. J. Wolters, W. H. Peters, W. F. Ranson, and S. R. McNeill, “Determination of displacements using an improved digital correlation method,” Imag. Vision Comput. 1, 133–139 (1983).
[CrossRef]

Miller, T. J.

P. L. Reu and T. J. Miller, “The application of high-speed digital image correlation,” J. Strain Analysis (2008).
[CrossRef]

Pan, B.

T. Hua, H. Xie, B. Pan, Q. Wang, and F. Dai, “A new mark shearing technique for strain measurement using digital image correlation method,” Rev. Sci. Instrum. 79, 105101(2008).
[CrossRef] [PubMed]

Pankow, M.

M. Pankow and A. Waas, “Blast loading of epoxy panels using a shock tube,” NASA Technical Memo (to be published).

Peters, W. H.

M. A. Sutton, W. J. Wolters, W. H. Peters, W. F. Ranson, and S. R. McNeill, “Determination of displacements using an improved digital correlation method,” Imag. Vision Comput. 1, 133–139 (1983).
[CrossRef]

Prasad, A. K.

Quan, C.

C. Quan, C. J. Tay, W. Sun, and X. He, “Determination of three-dimensional displacement using two-dimensional digital image correlation,” Appl. Opt. 47, 583–593 (2008).
[CrossRef] [PubMed]

C. J. Tay, C. Quan, Y. H. Huang, and Y. Fu, “Digital image correlation for whole field out-of-plane measurement using a single camera,” Opt. Commun. 251, 23–36 (2005).
[CrossRef]

Ranson, W. F.

M. A. Sutton, W. J. Wolters, W. H. Peters, W. F. Ranson, and S. R. McNeill, “Determination of displacements using an improved digital correlation method,” Imag. Vision Comput. 1, 133–139 (1983).
[CrossRef]

Reu, P. L.

P. L. Reu and T. J. Miller, “The application of high-speed digital image correlation,” J. Strain Analysis (2008).
[CrossRef]

Schmidt, R.

M. Stoffel, R. Schmidt, and D. Weichert, “Shock wave-loaded plates,” Int. J. Solids Struct. 38, 7659–7680 (2001).
[CrossRef]

Sjodahl, M.

P. Synnergren and M. Sjodahl, “A stereoscopic digital speckle photography system for 3-d displacement field measurements,” Opt. Lasers Eng. 31, 425–443 (1999).
[CrossRef]

Stoffel, M.

M. Stoffel, R. Schmidt, and D. Weichert, “Shock wave-loaded plates,” Int. J. Solids Struct. 38, 7659–7680 (2001).
[CrossRef]

Sun, W.

C. Quan, C. J. Tay, W. Sun, and X. He, “Determination of three-dimensional displacement using two-dimensional digital image correlation,” Appl. Opt. 47, 583–593 (2008).
[CrossRef] [PubMed]

W. Sun, E. Dong, and X. He, “3d displacement measurements with a single camera based on digital image correlation technique,” Proc. SPIE 6723, 37230 (2007).
[CrossRef]

Sutton, M. A.

V. Tiwari, M. A. Sutton, S. R. McNeill, S. Xu, X. Deng, W. L. Fourney, and D. Bretall, “Application of 3d image correlation for full-field transient plate deformation measurements during blast loading,” Int. J. Impact Eng. 36, 862–874(2009).
[CrossRef]

V. Tiwari, M. A. Sutton, and S. R. McNeill, “Assessment of high speed imaging systems for 2d and 3d deformation measurements: methodology development and validation,” Exp. Mech. 47, 561–579 (2007).
[CrossRef]

J. D. Helm, S. R. McNeill, and M. A. Sutton, “Improved three-dimensional image correlation for surface displacement measurement,” Opt. Eng. 35, 1911–1920 (1996).
[CrossRef]

M. A. Sutton, W. J. Wolters, W. H. Peters, W. F. Ranson, and S. R. McNeill, “Determination of displacements using an improved digital correlation method,” Imag. Vision Comput. 1, 133–139 (1983).
[CrossRef]

Synnergren, P.

P. Synnergren and M. Sjodahl, “A stereoscopic digital speckle photography system for 3-d displacement field measurements,” Opt. Lasers Eng. 31, 425–443 (1999).
[CrossRef]

Tay, C. J.

C. Quan, C. J. Tay, W. Sun, and X. He, “Determination of three-dimensional displacement using two-dimensional digital image correlation,” Appl. Opt. 47, 583–593 (2008).
[CrossRef] [PubMed]

C. J. Tay, C. Quan, Y. H. Huang, and Y. Fu, “Digital image correlation for whole field out-of-plane measurement using a single camera,” Opt. Commun. 251, 23–36 (2005).
[CrossRef]

Tippur, H. V.

D. Lee, M. S. Kirugulige, H. V. Tippur, and P. Bogert, “Experimental study of dynamic crack growth in unidirectional graphite/epoxy composites using digital image correlation method and high-speed photography,” J. Compos. Mater. 43, 2081–2108 (2009).
[CrossRef]

M. S. Kirugulige and H. V. Tippur, “Measurement of fracture parameters for a mixed-mode crack driven by stress waves using image correlation technique and high-speed digital photography,” Strain 45, 108–122 (2008).
[CrossRef]

M. S. Kirugulige, H. V. Tippur, and T. S. Denney, “Measurement of transient deformations using digital image correlation method and high-speed photography: application to dynamic fracture,” Appl. Opt. 46, 5083–5096 (2007).
[CrossRef] [PubMed]

Tiwari, V.

V. Tiwari, M. A. Sutton, S. R. McNeill, S. Xu, X. Deng, W. L. Fourney, and D. Bretall, “Application of 3d image correlation for full-field transient plate deformation measurements during blast loading,” Int. J. Impact Eng. 36, 862–874(2009).
[CrossRef]

V. Tiwari, M. A. Sutton, and S. R. McNeill, “Assessment of high speed imaging systems for 2d and 3d deformation measurements: methodology development and validation,” Exp. Mech. 47, 561–579 (2007).
[CrossRef]

Waas, A.

M. Pankow and A. Waas, “Blast loading of epoxy panels using a shock tube,” NASA Technical Memo (to be published).

Wang, Q.

T. Hua, H. Xie, B. Pan, Q. Wang, and F. Dai, “A new mark shearing technique for strain measurement using digital image correlation method,” Rev. Sci. Instrum. 79, 105101(2008).
[CrossRef] [PubMed]

Weichert, D.

M. Stoffel, R. Schmidt, and D. Weichert, “Shock wave-loaded plates,” Int. J. Solids Struct. 38, 7659–7680 (2001).
[CrossRef]

Wolters, W. J.

M. A. Sutton, W. J. Wolters, W. H. Peters, W. F. Ranson, and S. R. McNeill, “Determination of displacements using an improved digital correlation method,” Imag. Vision Comput. 1, 133–139 (1983).
[CrossRef]

Xie, H.

T. Hua, H. Xie, B. Pan, Q. Wang, and F. Dai, “A new mark shearing technique for strain measurement using digital image correlation method,” Rev. Sci. Instrum. 79, 105101(2008).
[CrossRef] [PubMed]

Xu, S.

V. Tiwari, M. A. Sutton, S. R. McNeill, S. Xu, X. Deng, W. L. Fourney, and D. Bretall, “Application of 3d image correlation for full-field transient plate deformation measurements during blast loading,” Int. J. Impact Eng. 36, 862–874(2009).
[CrossRef]

Appl. Opt. (3)

Exp. Mech. (2)

Z. L. Kahn-Jetter and T. C. Chu, “Three-dimensional displacement measurements using digital image correlation and photogrammic analysis,” Exp. Mech. , 30, 10–16(1990).
[CrossRef]

V. Tiwari, M. A. Sutton, and S. R. McNeill, “Assessment of high speed imaging systems for 2d and 3d deformation measurements: methodology development and validation,” Exp. Mech. 47, 561–579 (2007).
[CrossRef]

Imag. Vision Comput. (1)

M. A. Sutton, W. J. Wolters, W. H. Peters, W. F. Ranson, and S. R. McNeill, “Determination of displacements using an improved digital correlation method,” Imag. Vision Comput. 1, 133–139 (1983).
[CrossRef]

Int. J. Impact Eng. (1)

V. Tiwari, M. A. Sutton, S. R. McNeill, S. Xu, X. Deng, W. L. Fourney, and D. Bretall, “Application of 3d image correlation for full-field transient plate deformation measurements during blast loading,” Int. J. Impact Eng. 36, 862–874(2009).
[CrossRef]

Int. J. Solids Struct. (1)

M. Stoffel, R. Schmidt, and D. Weichert, “Shock wave-loaded plates,” Int. J. Solids Struct. 38, 7659–7680 (2001).
[CrossRef]

J. Compos. Mater. (1)

D. Lee, M. S. Kirugulige, H. V. Tippur, and P. Bogert, “Experimental study of dynamic crack growth in unidirectional graphite/epoxy composites using digital image correlation method and high-speed photography,” J. Compos. Mater. 43, 2081–2108 (2009).
[CrossRef]

J. Strain Analysis (1)

P. L. Reu and T. J. Miller, “The application of high-speed digital image correlation,” J. Strain Analysis (2008).
[CrossRef]

Meas. Sci. Technol. (1)

A. Hijazi and V. Madhavan, “A novel ultra-high speed camera for digital image processing applications,” Meas. Sci. Technol. 19, 085503 (2008).
[CrossRef]

Metall. Trans. A (1)

D. J. Lloyd, “The deformation of commercial aluminum-magnesium alloys,” Metall. Trans. A 11, 1287–1294 (1980).
[CrossRef]

Opt. Commun. (1)

C. J. Tay, C. Quan, Y. H. Huang, and Y. Fu, “Digital image correlation for whole field out-of-plane measurement using a single camera,” Opt. Commun. 251, 23–36 (2005).
[CrossRef]

Opt. Eng. (1)

J. D. Helm, S. R. McNeill, and M. A. Sutton, “Improved three-dimensional image correlation for surface displacement measurement,” Opt. Eng. 35, 1911–1920 (1996).
[CrossRef]

Opt. Lasers Eng. (1)

P. Synnergren and M. Sjodahl, “A stereoscopic digital speckle photography system for 3-d displacement field measurements,” Opt. Lasers Eng. 31, 425–443 (1999).
[CrossRef]

Proc. SPIE (1)

W. Sun, E. Dong, and X. He, “3d displacement measurements with a single camera based on digital image correlation technique,” Proc. SPIE 6723, 37230 (2007).
[CrossRef]

Rev. Sci. Instrum. (1)

T. Hua, H. Xie, B. Pan, Q. Wang, and F. Dai, “A new mark shearing technique for strain measurement using digital image correlation method,” Rev. Sci. Instrum. 79, 105101(2008).
[CrossRef] [PubMed]

Strain (1)

M. S. Kirugulige and H. V. Tippur, “Measurement of fracture parameters for a mixed-mode crack driven by stress waves using image correlation technique and high-speed digital photography,” Strain 45, 108–122 (2008).
[CrossRef]

Other (3)

MATLAB version 2008a (2008).

M. Pankow and A. Waas, “Blast loading of epoxy panels using a shock tube,” NASA Technical Memo (to be published).

Abaqus Users Manual, Edition 6.8 (2008)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic of the optical path from the specimen to the CCD. The dimensions shown were used for the experimental setup discussed in the paper.

Fig. 2
Fig. 2

Sample image taken with a Cordin 530 at 66,000 frames/s showing splitting of CCD: (a) sample image, (b) left image, and (c) right image.

Fig. 3
Fig. 3

Sample image showing the Z displacement (out-of-plane) images taken with a Nikon D2X: (a) noise, (b) 1 mm , and (c) horizontal and vertical displacement variations for 0 mm displacement.

Fig. 4
Fig. 4

Optical path diagram of internal components of a Cordin high-speed camera: M 1 , mirrors; F 1 , a fine focus lens; R 1 , relay lenses; r 1 , relay lenses for the CCDs; CCD 1 , CCD sensor [13].

Fig. 5
Fig. 5

Comparison between two separate CCD images showing strain bands that are formed: (a) unfiltered and (b) filtered.

Fig. 6
Fig. 6

Z displacement for case with 2 mm offset. Notice displacement bands forming: (a) displacement field for 2 mm and (b) horizontal and vertical displacement variations for case with 2 mm displacement.

Fig. 7
Fig. 7

Calibration data from static and dynamic tests.

Fig. 8
Fig. 8

Schematic of the shock tube test and placement of experimental equipment. (a) Schematic of how the shock tube works. Initially the driver and driven sections are separated by a diaphragm. Upon diaphragm rupture, a shock forms and travels down the tube. It impacts the specimen at the end of the driven section. The shock is then reflected back down the tube. (b) Details of the experimental setup showing the aluminum plate and placement of the Cordin.

Fig. 9
Fig. 9

Deflection time history along with contour profile at maximum displacement: (a) time versus maximum deflection as obtained from the Cordin images and (b) comparison of horizontal and vertical profiles through the center along with the FE solution at maximum displacement.

Fig. 10
Fig. 10

Displacement, ϵ x x , and ϵ y y contours at 120 μs with identical scales on both DIC and FE images. The gray and black contours represent values that are above and below, respectively, the displacement or strain limits: (a) displacement contour FE, (b) displacement contour DIC, (c) ϵ x x contour FE. d) ϵ x x contour DIC, (e) ϵ y y contour FE, and (f) ϵ y y contour DIC.

Fig. 11
Fig. 11

FE model parameters: (a) equivalent stress–equivalent plastic strain tensile response of 5052 aluminum and (b) results from the FE convergence study.

Tables (4)

Tables Icon

Table 1 Out-of-plane (Z-Direction) Position/Displacement Results Using Nikon D2X

Tables Icon

Table 2 Out-of-Plane (Z-Direction) Position/Displacement Results Using Cordin 530, Operated at 100,000 frames/s

Tables Icon

Table 3 Statistics of Individual Noise Floor Levels for Each Independent CCD

Tables Icon

Table 4 Sample Test Known Parameters

Metrics