Abstract

We analyze the intensity-modulation frequency-modulated continuous-wave (FMCW) technique for lidar remote sensing in the context of its application to distributed media. The goal of the technique is the reproduction of the sounded-medium profile along the emission path. A conceptual analysis is carried out to show the problems the basic version of the method presents for this application. The principal point is the appearance of a bandpass filtering effect, which seems to hinder its use in this context. A modified version of the technique is proposed to overcome this problem. A number of computer simulations confirm the ability of the modified FMCW technique to sound distributed media.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. M. Measures, Laser Remote Sensing: Fundamentals and Applications (Krieger, 1992).
  2. C. Weitkamp, Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere (Springer, 2005).
  3. N. Takeuchi, N. Sugimoto, H. Baba, and K. Sakurai, “Random modulation cw lidar,” Appl. Opt. 22, 1382–1386 (1983).
    [CrossRef] [PubMed]
  4. N. Takeuchi, H. Baba, K. Sakurai, and T. Ueno, “Diode-laser random-modulation cw lidar,” Appl. Opt. 25, 63–67 (1986).
    [CrossRef] [PubMed]
  5. R. Matthey and V. Mitev, “Pseudo-random noise-continuous-wave laser radar for surface and cloud measurements,” Opt. Lasers Eng. 43, 557–571 (2005).
    [CrossRef]
  6. G. M. Brooker, “Understanding millimetre wave FMCW radars,” in Proceedings of 1st International Conference on Sensing Technology, G.S.Gupta, S.C.Mukhopadhyay, and C.H.Messom, eds. ( 2005), pp. 152–157.
  7. A. Meta and P. Hoogeboom, “Development of signal processing algorithms for high resolution airborne millimeter wave FMCW SAR,” in Proceedings of IEEE International Radar Conference (IEEE, 2005), pp. 326–331.
    [CrossRef]
  8. T. Takano, Y. Suga, K. Takei, Y. Kawamura, K. Sakai, H. Kumagai, T. Takamura, Y. Nakanishi, and T. Nakajima, “Development of a cloud profiling FM-CW radar at 95GHz and its preliminary results,” Proc. SPIE 4894, 132–139 (2003).
    [CrossRef]
  9. T. Takano, Y. Suga, K. Akita, Y. Kawamura, H. Kumagai, T. Takamura, Y. Nakanishi, and T. Nakajima, “First observational results with the newly developed cloud profiling FM-CW radar at 95GHz,” Proc. SPIE 5235, 517–524 (2004).
    [CrossRef]
  10. T. Takano, K. Akita, H. Kubo, Y. Kawamura, H. Kumagai, T. Takamura, Y. Nakanishi, and T. Nakajima, “Observation of clouds with the newly developed cloud profiling FM-CW radar at 95GHz,” Proc. SPIE 5979, 597907 (2005).
    [CrossRef]
  11. T. Ince, S. J. Frasier, A. Muschinski, and A. L. Pazmany, “An S-band frequency-modulated continuous-wave boundary layer profiler: description and initial results,” Radio Sci. 38, 1072–1082 (2003).
    [CrossRef]
  12. M. U. Piracha, D. Nguyen, D. Mandridis, T. Yilmaz, I. Ozdur, S. Ozharar, and P. J. Delfyett, “Range resolved lidar for long distance ranging with sub-millimeter resolution,” Opt. Express 18, 7184–7189 (2010).
    [CrossRef] [PubMed]
  13. C. J. Karlsson, F. A. A. Olsson, D. Letalick, and M. Harris, “All-fiber multifunction continuous-wave coherent laser radar at 1.55μm for range, speed, vibration, and wind measurements,” Appl. Opt. 39, 3716–3726 (2000).
    [CrossRef]
  14. R. Schneider, P. Thurmel, and M. Stockmann, “Distance measurement of moving objects by frequency modulated laser radar,” Opt. Eng. 40, 33–37 (2001).
    [CrossRef]
  15. B. L. Stann, W. C. Ruff, and Z. G. Sztankay, “Intensity-modulated diode laser radar using frequency-modulation/continuous-wave ranging techniques,” Opt. Eng. 35, 3270–3278 (1996).
    [CrossRef]
  16. B. C. Redman, W. Ruff, and M. Giza, “Photon counting chirped AM ladar: concept, simulation, and initial experimental results,” Proc. SPIE 6214, 62140p (2006).
    [CrossRef]
  17. B. C. Redman, B. Stann, W. Lawler, M. Giza, and W. Ruff, “Chirped AM ladar for 3-D imaging and range-Doppler tracking at 1550nm wavelength,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications, Systems and Technologies, OSA Technical Digest (CD) (Optical Society of America, 2005), paper PThA4.
    [PubMed]
  18. F. Yang, Y. He, J. Shang, and W. Chen, “Experimental study on the 1550nm all fiber heterodyne laser range finder,” Appl. Opt. 48, 6575–6582 (2009).
    [CrossRef] [PubMed]
  19. R. R. Agishev, “Analytic comparison of some features of pulse-lidar and CW-FM-ladar remote sensing,” Proc. SPIE 5086, 305–316 (2003).
    [CrossRef]
  20. R. R. Agishev, A. Comeron, L. Duch, R. K. Sagdiev, V. F. Dios, J. C. Cifuentes, and M. A. Lopez, “Development features of atmospheric LD ladar based on the CW-FM-range-finding principles,” Proc. SPIE 5235, 549–558 (2004).
    [CrossRef]
  21. R. Agishev, B. Gross, F. Moshary, A. Gilerson, and S. Ahmed, “Range-resolved pulsed and CWFM lidars: potential capabilities comparison,” Appl. Phys. B 85, 149–162 (2006).
    [CrossRef]
  22. M. L. Simpson, M. Cheng, T. Q. Dam, K. E. Lenox, J. R. Price, J. M. Storey, E. A. Wachter, and W. G. Fisher, “Intensity-modulated, stepped frequency cw lidar for distributed aerosol and hard target measurements,” Appl. Opt. 44, 7210–7217 (2005).
    [CrossRef] [PubMed]
  23. R. R. Agishev and R. K. Sagdiev, “Theoretical description of LD-WM-CW ladar,” Atmos. Ocean. Opt. 13, 959–961 (2000).
  24. R. Agishev, B. Gross, F. Moshary, A. Gilerson, and S. Ahmed, “Atmospheric CW-FM-LD-RR ladar for trace-constituent detection: a concept development,” Appl. Phys. B 81, 695–703(2005).
    [CrossRef]

2010 (1)

2009 (1)

2006 (2)

R. Agishev, B. Gross, F. Moshary, A. Gilerson, and S. Ahmed, “Range-resolved pulsed and CWFM lidars: potential capabilities comparison,” Appl. Phys. B 85, 149–162 (2006).
[CrossRef]

B. C. Redman, W. Ruff, and M. Giza, “Photon counting chirped AM ladar: concept, simulation, and initial experimental results,” Proc. SPIE 6214, 62140p (2006).
[CrossRef]

2005 (4)

M. L. Simpson, M. Cheng, T. Q. Dam, K. E. Lenox, J. R. Price, J. M. Storey, E. A. Wachter, and W. G. Fisher, “Intensity-modulated, stepped frequency cw lidar for distributed aerosol and hard target measurements,” Appl. Opt. 44, 7210–7217 (2005).
[CrossRef] [PubMed]

T. Takano, K. Akita, H. Kubo, Y. Kawamura, H. Kumagai, T. Takamura, Y. Nakanishi, and T. Nakajima, “Observation of clouds with the newly developed cloud profiling FM-CW radar at 95GHz,” Proc. SPIE 5979, 597907 (2005).
[CrossRef]

R. Matthey and V. Mitev, “Pseudo-random noise-continuous-wave laser radar for surface and cloud measurements,” Opt. Lasers Eng. 43, 557–571 (2005).
[CrossRef]

R. Agishev, B. Gross, F. Moshary, A. Gilerson, and S. Ahmed, “Atmospheric CW-FM-LD-RR ladar for trace-constituent detection: a concept development,” Appl. Phys. B 81, 695–703(2005).
[CrossRef]

2004 (2)

R. R. Agishev, A. Comeron, L. Duch, R. K. Sagdiev, V. F. Dios, J. C. Cifuentes, and M. A. Lopez, “Development features of atmospheric LD ladar based on the CW-FM-range-finding principles,” Proc. SPIE 5235, 549–558 (2004).
[CrossRef]

T. Takano, Y. Suga, K. Akita, Y. Kawamura, H. Kumagai, T. Takamura, Y. Nakanishi, and T. Nakajima, “First observational results with the newly developed cloud profiling FM-CW radar at 95GHz,” Proc. SPIE 5235, 517–524 (2004).
[CrossRef]

2003 (3)

R. R. Agishev, “Analytic comparison of some features of pulse-lidar and CW-FM-ladar remote sensing,” Proc. SPIE 5086, 305–316 (2003).
[CrossRef]

T. Takano, Y. Suga, K. Takei, Y. Kawamura, K. Sakai, H. Kumagai, T. Takamura, Y. Nakanishi, and T. Nakajima, “Development of a cloud profiling FM-CW radar at 95GHz and its preliminary results,” Proc. SPIE 4894, 132–139 (2003).
[CrossRef]

T. Ince, S. J. Frasier, A. Muschinski, and A. L. Pazmany, “An S-band frequency-modulated continuous-wave boundary layer profiler: description and initial results,” Radio Sci. 38, 1072–1082 (2003).
[CrossRef]

2001 (1)

R. Schneider, P. Thurmel, and M. Stockmann, “Distance measurement of moving objects by frequency modulated laser radar,” Opt. Eng. 40, 33–37 (2001).
[CrossRef]

2000 (2)

1996 (1)

B. L. Stann, W. C. Ruff, and Z. G. Sztankay, “Intensity-modulated diode laser radar using frequency-modulation/continuous-wave ranging techniques,” Opt. Eng. 35, 3270–3278 (1996).
[CrossRef]

1986 (1)

1983 (1)

Agishev, R.

R. Agishev, B. Gross, F. Moshary, A. Gilerson, and S. Ahmed, “Range-resolved pulsed and CWFM lidars: potential capabilities comparison,” Appl. Phys. B 85, 149–162 (2006).
[CrossRef]

R. Agishev, B. Gross, F. Moshary, A. Gilerson, and S. Ahmed, “Atmospheric CW-FM-LD-RR ladar for trace-constituent detection: a concept development,” Appl. Phys. B 81, 695–703(2005).
[CrossRef]

Agishev, R. R.

R. R. Agishev, A. Comeron, L. Duch, R. K. Sagdiev, V. F. Dios, J. C. Cifuentes, and M. A. Lopez, “Development features of atmospheric LD ladar based on the CW-FM-range-finding principles,” Proc. SPIE 5235, 549–558 (2004).
[CrossRef]

R. R. Agishev, “Analytic comparison of some features of pulse-lidar and CW-FM-ladar remote sensing,” Proc. SPIE 5086, 305–316 (2003).
[CrossRef]

R. R. Agishev and R. K. Sagdiev, “Theoretical description of LD-WM-CW ladar,” Atmos. Ocean. Opt. 13, 959–961 (2000).

Ahmed, S.

R. Agishev, B. Gross, F. Moshary, A. Gilerson, and S. Ahmed, “Range-resolved pulsed and CWFM lidars: potential capabilities comparison,” Appl. Phys. B 85, 149–162 (2006).
[CrossRef]

R. Agishev, B. Gross, F. Moshary, A. Gilerson, and S. Ahmed, “Atmospheric CW-FM-LD-RR ladar for trace-constituent detection: a concept development,” Appl. Phys. B 81, 695–703(2005).
[CrossRef]

Akita, K.

T. Takano, K. Akita, H. Kubo, Y. Kawamura, H. Kumagai, T. Takamura, Y. Nakanishi, and T. Nakajima, “Observation of clouds with the newly developed cloud profiling FM-CW radar at 95GHz,” Proc. SPIE 5979, 597907 (2005).
[CrossRef]

T. Takano, Y. Suga, K. Akita, Y. Kawamura, H. Kumagai, T. Takamura, Y. Nakanishi, and T. Nakajima, “First observational results with the newly developed cloud profiling FM-CW radar at 95GHz,” Proc. SPIE 5235, 517–524 (2004).
[CrossRef]

Baba, H.

Brooker, G. M.

G. M. Brooker, “Understanding millimetre wave FMCW radars,” in Proceedings of 1st International Conference on Sensing Technology, G.S.Gupta, S.C.Mukhopadhyay, and C.H.Messom, eds. ( 2005), pp. 152–157.

Chen, W.

Cheng, M.

Cifuentes, J. C.

R. R. Agishev, A. Comeron, L. Duch, R. K. Sagdiev, V. F. Dios, J. C. Cifuentes, and M. A. Lopez, “Development features of atmospheric LD ladar based on the CW-FM-range-finding principles,” Proc. SPIE 5235, 549–558 (2004).
[CrossRef]

Comeron, A.

R. R. Agishev, A. Comeron, L. Duch, R. K. Sagdiev, V. F. Dios, J. C. Cifuentes, and M. A. Lopez, “Development features of atmospheric LD ladar based on the CW-FM-range-finding principles,” Proc. SPIE 5235, 549–558 (2004).
[CrossRef]

Dam, T. Q.

Delfyett, P. J.

Dios, V. F.

R. R. Agishev, A. Comeron, L. Duch, R. K. Sagdiev, V. F. Dios, J. C. Cifuentes, and M. A. Lopez, “Development features of atmospheric LD ladar based on the CW-FM-range-finding principles,” Proc. SPIE 5235, 549–558 (2004).
[CrossRef]

Duch, L.

R. R. Agishev, A. Comeron, L. Duch, R. K. Sagdiev, V. F. Dios, J. C. Cifuentes, and M. A. Lopez, “Development features of atmospheric LD ladar based on the CW-FM-range-finding principles,” Proc. SPIE 5235, 549–558 (2004).
[CrossRef]

Fisher, W. G.

Frasier, S. J.

T. Ince, S. J. Frasier, A. Muschinski, and A. L. Pazmany, “An S-band frequency-modulated continuous-wave boundary layer profiler: description and initial results,” Radio Sci. 38, 1072–1082 (2003).
[CrossRef]

Gilerson, A.

R. Agishev, B. Gross, F. Moshary, A. Gilerson, and S. Ahmed, “Range-resolved pulsed and CWFM lidars: potential capabilities comparison,” Appl. Phys. B 85, 149–162 (2006).
[CrossRef]

R. Agishev, B. Gross, F. Moshary, A. Gilerson, and S. Ahmed, “Atmospheric CW-FM-LD-RR ladar for trace-constituent detection: a concept development,” Appl. Phys. B 81, 695–703(2005).
[CrossRef]

Giza, M.

B. C. Redman, W. Ruff, and M. Giza, “Photon counting chirped AM ladar: concept, simulation, and initial experimental results,” Proc. SPIE 6214, 62140p (2006).
[CrossRef]

B. C. Redman, B. Stann, W. Lawler, M. Giza, and W. Ruff, “Chirped AM ladar for 3-D imaging and range-Doppler tracking at 1550nm wavelength,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications, Systems and Technologies, OSA Technical Digest (CD) (Optical Society of America, 2005), paper PThA4.
[PubMed]

Gross, B.

R. Agishev, B. Gross, F. Moshary, A. Gilerson, and S. Ahmed, “Range-resolved pulsed and CWFM lidars: potential capabilities comparison,” Appl. Phys. B 85, 149–162 (2006).
[CrossRef]

R. Agishev, B. Gross, F. Moshary, A. Gilerson, and S. Ahmed, “Atmospheric CW-FM-LD-RR ladar for trace-constituent detection: a concept development,” Appl. Phys. B 81, 695–703(2005).
[CrossRef]

Harris, M.

He, Y.

Hoogeboom, P.

A. Meta and P. Hoogeboom, “Development of signal processing algorithms for high resolution airborne millimeter wave FMCW SAR,” in Proceedings of IEEE International Radar Conference (IEEE, 2005), pp. 326–331.
[CrossRef]

Ince, T.

T. Ince, S. J. Frasier, A. Muschinski, and A. L. Pazmany, “An S-band frequency-modulated continuous-wave boundary layer profiler: description and initial results,” Radio Sci. 38, 1072–1082 (2003).
[CrossRef]

Karlsson, C. J.

Kawamura, Y.

T. Takano, K. Akita, H. Kubo, Y. Kawamura, H. Kumagai, T. Takamura, Y. Nakanishi, and T. Nakajima, “Observation of clouds with the newly developed cloud profiling FM-CW radar at 95GHz,” Proc. SPIE 5979, 597907 (2005).
[CrossRef]

T. Takano, Y. Suga, K. Akita, Y. Kawamura, H. Kumagai, T. Takamura, Y. Nakanishi, and T. Nakajima, “First observational results with the newly developed cloud profiling FM-CW radar at 95GHz,” Proc. SPIE 5235, 517–524 (2004).
[CrossRef]

T. Takano, Y. Suga, K. Takei, Y. Kawamura, K. Sakai, H. Kumagai, T. Takamura, Y. Nakanishi, and T. Nakajima, “Development of a cloud profiling FM-CW radar at 95GHz and its preliminary results,” Proc. SPIE 4894, 132–139 (2003).
[CrossRef]

Kubo, H.

T. Takano, K. Akita, H. Kubo, Y. Kawamura, H. Kumagai, T. Takamura, Y. Nakanishi, and T. Nakajima, “Observation of clouds with the newly developed cloud profiling FM-CW radar at 95GHz,” Proc. SPIE 5979, 597907 (2005).
[CrossRef]

Kumagai, H.

T. Takano, K. Akita, H. Kubo, Y. Kawamura, H. Kumagai, T. Takamura, Y. Nakanishi, and T. Nakajima, “Observation of clouds with the newly developed cloud profiling FM-CW radar at 95GHz,” Proc. SPIE 5979, 597907 (2005).
[CrossRef]

T. Takano, Y. Suga, K. Akita, Y. Kawamura, H. Kumagai, T. Takamura, Y. Nakanishi, and T. Nakajima, “First observational results with the newly developed cloud profiling FM-CW radar at 95GHz,” Proc. SPIE 5235, 517–524 (2004).
[CrossRef]

T. Takano, Y. Suga, K. Takei, Y. Kawamura, K. Sakai, H. Kumagai, T. Takamura, Y. Nakanishi, and T. Nakajima, “Development of a cloud profiling FM-CW radar at 95GHz and its preliminary results,” Proc. SPIE 4894, 132–139 (2003).
[CrossRef]

Lawler, W.

B. C. Redman, B. Stann, W. Lawler, M. Giza, and W. Ruff, “Chirped AM ladar for 3-D imaging and range-Doppler tracking at 1550nm wavelength,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications, Systems and Technologies, OSA Technical Digest (CD) (Optical Society of America, 2005), paper PThA4.
[PubMed]

Lenox, K. E.

Letalick, D.

Lopez, M. A.

R. R. Agishev, A. Comeron, L. Duch, R. K. Sagdiev, V. F. Dios, J. C. Cifuentes, and M. A. Lopez, “Development features of atmospheric LD ladar based on the CW-FM-range-finding principles,” Proc. SPIE 5235, 549–558 (2004).
[CrossRef]

Mandridis, D.

Matthey, R.

R. Matthey and V. Mitev, “Pseudo-random noise-continuous-wave laser radar for surface and cloud measurements,” Opt. Lasers Eng. 43, 557–571 (2005).
[CrossRef]

Measures, R. M.

R. M. Measures, Laser Remote Sensing: Fundamentals and Applications (Krieger, 1992).

Meta, A.

A. Meta and P. Hoogeboom, “Development of signal processing algorithms for high resolution airborne millimeter wave FMCW SAR,” in Proceedings of IEEE International Radar Conference (IEEE, 2005), pp. 326–331.
[CrossRef]

Mitev, V.

R. Matthey and V. Mitev, “Pseudo-random noise-continuous-wave laser radar for surface and cloud measurements,” Opt. Lasers Eng. 43, 557–571 (2005).
[CrossRef]

Moshary, F.

R. Agishev, B. Gross, F. Moshary, A. Gilerson, and S. Ahmed, “Range-resolved pulsed and CWFM lidars: potential capabilities comparison,” Appl. Phys. B 85, 149–162 (2006).
[CrossRef]

R. Agishev, B. Gross, F. Moshary, A. Gilerson, and S. Ahmed, “Atmospheric CW-FM-LD-RR ladar for trace-constituent detection: a concept development,” Appl. Phys. B 81, 695–703(2005).
[CrossRef]

Muschinski, A.

T. Ince, S. J. Frasier, A. Muschinski, and A. L. Pazmany, “An S-band frequency-modulated continuous-wave boundary layer profiler: description and initial results,” Radio Sci. 38, 1072–1082 (2003).
[CrossRef]

Nakajima, T.

T. Takano, K. Akita, H. Kubo, Y. Kawamura, H. Kumagai, T. Takamura, Y. Nakanishi, and T. Nakajima, “Observation of clouds with the newly developed cloud profiling FM-CW radar at 95GHz,” Proc. SPIE 5979, 597907 (2005).
[CrossRef]

T. Takano, Y. Suga, K. Akita, Y. Kawamura, H. Kumagai, T. Takamura, Y. Nakanishi, and T. Nakajima, “First observational results with the newly developed cloud profiling FM-CW radar at 95GHz,” Proc. SPIE 5235, 517–524 (2004).
[CrossRef]

T. Takano, Y. Suga, K. Takei, Y. Kawamura, K. Sakai, H. Kumagai, T. Takamura, Y. Nakanishi, and T. Nakajima, “Development of a cloud profiling FM-CW radar at 95GHz and its preliminary results,” Proc. SPIE 4894, 132–139 (2003).
[CrossRef]

Nakanishi, Y.

T. Takano, K. Akita, H. Kubo, Y. Kawamura, H. Kumagai, T. Takamura, Y. Nakanishi, and T. Nakajima, “Observation of clouds with the newly developed cloud profiling FM-CW radar at 95GHz,” Proc. SPIE 5979, 597907 (2005).
[CrossRef]

T. Takano, Y. Suga, K. Akita, Y. Kawamura, H. Kumagai, T. Takamura, Y. Nakanishi, and T. Nakajima, “First observational results with the newly developed cloud profiling FM-CW radar at 95GHz,” Proc. SPIE 5235, 517–524 (2004).
[CrossRef]

T. Takano, Y. Suga, K. Takei, Y. Kawamura, K. Sakai, H. Kumagai, T. Takamura, Y. Nakanishi, and T. Nakajima, “Development of a cloud profiling FM-CW radar at 95GHz and its preliminary results,” Proc. SPIE 4894, 132–139 (2003).
[CrossRef]

Nguyen, D.

Olsson, F. A. A.

Ozdur, I.

Ozharar, S.

Pazmany, A. L.

T. Ince, S. J. Frasier, A. Muschinski, and A. L. Pazmany, “An S-band frequency-modulated continuous-wave boundary layer profiler: description and initial results,” Radio Sci. 38, 1072–1082 (2003).
[CrossRef]

Piracha, M. U.

Price, J. R.

Redman, B. C.

B. C. Redman, W. Ruff, and M. Giza, “Photon counting chirped AM ladar: concept, simulation, and initial experimental results,” Proc. SPIE 6214, 62140p (2006).
[CrossRef]

B. C. Redman, B. Stann, W. Lawler, M. Giza, and W. Ruff, “Chirped AM ladar for 3-D imaging and range-Doppler tracking at 1550nm wavelength,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications, Systems and Technologies, OSA Technical Digest (CD) (Optical Society of America, 2005), paper PThA4.
[PubMed]

Ruff, W.

B. C. Redman, W. Ruff, and M. Giza, “Photon counting chirped AM ladar: concept, simulation, and initial experimental results,” Proc. SPIE 6214, 62140p (2006).
[CrossRef]

B. C. Redman, B. Stann, W. Lawler, M. Giza, and W. Ruff, “Chirped AM ladar for 3-D imaging and range-Doppler tracking at 1550nm wavelength,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications, Systems and Technologies, OSA Technical Digest (CD) (Optical Society of America, 2005), paper PThA4.
[PubMed]

Ruff, W. C.

B. L. Stann, W. C. Ruff, and Z. G. Sztankay, “Intensity-modulated diode laser radar using frequency-modulation/continuous-wave ranging techniques,” Opt. Eng. 35, 3270–3278 (1996).
[CrossRef]

Sagdiev, R. K.

R. R. Agishev, A. Comeron, L. Duch, R. K. Sagdiev, V. F. Dios, J. C. Cifuentes, and M. A. Lopez, “Development features of atmospheric LD ladar based on the CW-FM-range-finding principles,” Proc. SPIE 5235, 549–558 (2004).
[CrossRef]

R. R. Agishev and R. K. Sagdiev, “Theoretical description of LD-WM-CW ladar,” Atmos. Ocean. Opt. 13, 959–961 (2000).

Sakai, K.

T. Takano, Y. Suga, K. Takei, Y. Kawamura, K. Sakai, H. Kumagai, T. Takamura, Y. Nakanishi, and T. Nakajima, “Development of a cloud profiling FM-CW radar at 95GHz and its preliminary results,” Proc. SPIE 4894, 132–139 (2003).
[CrossRef]

Sakurai, K.

Schneider, R.

R. Schneider, P. Thurmel, and M. Stockmann, “Distance measurement of moving objects by frequency modulated laser radar,” Opt. Eng. 40, 33–37 (2001).
[CrossRef]

Shang, J.

Simpson, M. L.

Stann, B.

B. C. Redman, B. Stann, W. Lawler, M. Giza, and W. Ruff, “Chirped AM ladar for 3-D imaging and range-Doppler tracking at 1550nm wavelength,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications, Systems and Technologies, OSA Technical Digest (CD) (Optical Society of America, 2005), paper PThA4.
[PubMed]

Stann, B. L.

B. L. Stann, W. C. Ruff, and Z. G. Sztankay, “Intensity-modulated diode laser radar using frequency-modulation/continuous-wave ranging techniques,” Opt. Eng. 35, 3270–3278 (1996).
[CrossRef]

Stockmann, M.

R. Schneider, P. Thurmel, and M. Stockmann, “Distance measurement of moving objects by frequency modulated laser radar,” Opt. Eng. 40, 33–37 (2001).
[CrossRef]

Storey, J. M.

Suga, Y.

T. Takano, Y. Suga, K. Akita, Y. Kawamura, H. Kumagai, T. Takamura, Y. Nakanishi, and T. Nakajima, “First observational results with the newly developed cloud profiling FM-CW radar at 95GHz,” Proc. SPIE 5235, 517–524 (2004).
[CrossRef]

T. Takano, Y. Suga, K. Takei, Y. Kawamura, K. Sakai, H. Kumagai, T. Takamura, Y. Nakanishi, and T. Nakajima, “Development of a cloud profiling FM-CW radar at 95GHz and its preliminary results,” Proc. SPIE 4894, 132–139 (2003).
[CrossRef]

Sugimoto, N.

Sztankay, Z. G.

B. L. Stann, W. C. Ruff, and Z. G. Sztankay, “Intensity-modulated diode laser radar using frequency-modulation/continuous-wave ranging techniques,” Opt. Eng. 35, 3270–3278 (1996).
[CrossRef]

Takamura, T.

T. Takano, K. Akita, H. Kubo, Y. Kawamura, H. Kumagai, T. Takamura, Y. Nakanishi, and T. Nakajima, “Observation of clouds with the newly developed cloud profiling FM-CW radar at 95GHz,” Proc. SPIE 5979, 597907 (2005).
[CrossRef]

T. Takano, Y. Suga, K. Akita, Y. Kawamura, H. Kumagai, T. Takamura, Y. Nakanishi, and T. Nakajima, “First observational results with the newly developed cloud profiling FM-CW radar at 95GHz,” Proc. SPIE 5235, 517–524 (2004).
[CrossRef]

T. Takano, Y. Suga, K. Takei, Y. Kawamura, K. Sakai, H. Kumagai, T. Takamura, Y. Nakanishi, and T. Nakajima, “Development of a cloud profiling FM-CW radar at 95GHz and its preliminary results,” Proc. SPIE 4894, 132–139 (2003).
[CrossRef]

Takano, T.

T. Takano, K. Akita, H. Kubo, Y. Kawamura, H. Kumagai, T. Takamura, Y. Nakanishi, and T. Nakajima, “Observation of clouds with the newly developed cloud profiling FM-CW radar at 95GHz,” Proc. SPIE 5979, 597907 (2005).
[CrossRef]

T. Takano, Y. Suga, K. Akita, Y. Kawamura, H. Kumagai, T. Takamura, Y. Nakanishi, and T. Nakajima, “First observational results with the newly developed cloud profiling FM-CW radar at 95GHz,” Proc. SPIE 5235, 517–524 (2004).
[CrossRef]

T. Takano, Y. Suga, K. Takei, Y. Kawamura, K. Sakai, H. Kumagai, T. Takamura, Y. Nakanishi, and T. Nakajima, “Development of a cloud profiling FM-CW radar at 95GHz and its preliminary results,” Proc. SPIE 4894, 132–139 (2003).
[CrossRef]

Takei, K.

T. Takano, Y. Suga, K. Takei, Y. Kawamura, K. Sakai, H. Kumagai, T. Takamura, Y. Nakanishi, and T. Nakajima, “Development of a cloud profiling FM-CW radar at 95GHz and its preliminary results,” Proc. SPIE 4894, 132–139 (2003).
[CrossRef]

Takeuchi, N.

Thurmel, P.

R. Schneider, P. Thurmel, and M. Stockmann, “Distance measurement of moving objects by frequency modulated laser radar,” Opt. Eng. 40, 33–37 (2001).
[CrossRef]

Ueno, T.

Wachter, E. A.

Weitkamp, C.

C. Weitkamp, Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere (Springer, 2005).

Yang, F.

Yilmaz, T.

Appl. Opt. (5)

Appl. Phys. B (2)

R. Agishev, B. Gross, F. Moshary, A. Gilerson, and S. Ahmed, “Range-resolved pulsed and CWFM lidars: potential capabilities comparison,” Appl. Phys. B 85, 149–162 (2006).
[CrossRef]

R. Agishev, B. Gross, F. Moshary, A. Gilerson, and S. Ahmed, “Atmospheric CW-FM-LD-RR ladar for trace-constituent detection: a concept development,” Appl. Phys. B 81, 695–703(2005).
[CrossRef]

Atmos. Ocean. Opt. (1)

R. R. Agishev and R. K. Sagdiev, “Theoretical description of LD-WM-CW ladar,” Atmos. Ocean. Opt. 13, 959–961 (2000).

Opt. Eng. (2)

R. Schneider, P. Thurmel, and M. Stockmann, “Distance measurement of moving objects by frequency modulated laser radar,” Opt. Eng. 40, 33–37 (2001).
[CrossRef]

B. L. Stann, W. C. Ruff, and Z. G. Sztankay, “Intensity-modulated diode laser radar using frequency-modulation/continuous-wave ranging techniques,” Opt. Eng. 35, 3270–3278 (1996).
[CrossRef]

Opt. Express (1)

Opt. Lasers Eng. (1)

R. Matthey and V. Mitev, “Pseudo-random noise-continuous-wave laser radar for surface and cloud measurements,” Opt. Lasers Eng. 43, 557–571 (2005).
[CrossRef]

Proc. SPIE (6)

T. Takano, Y. Suga, K. Takei, Y. Kawamura, K. Sakai, H. Kumagai, T. Takamura, Y. Nakanishi, and T. Nakajima, “Development of a cloud profiling FM-CW radar at 95GHz and its preliminary results,” Proc. SPIE 4894, 132–139 (2003).
[CrossRef]

T. Takano, Y. Suga, K. Akita, Y. Kawamura, H. Kumagai, T. Takamura, Y. Nakanishi, and T. Nakajima, “First observational results with the newly developed cloud profiling FM-CW radar at 95GHz,” Proc. SPIE 5235, 517–524 (2004).
[CrossRef]

T. Takano, K. Akita, H. Kubo, Y. Kawamura, H. Kumagai, T. Takamura, Y. Nakanishi, and T. Nakajima, “Observation of clouds with the newly developed cloud profiling FM-CW radar at 95GHz,” Proc. SPIE 5979, 597907 (2005).
[CrossRef]

B. C. Redman, W. Ruff, and M. Giza, “Photon counting chirped AM ladar: concept, simulation, and initial experimental results,” Proc. SPIE 6214, 62140p (2006).
[CrossRef]

R. R. Agishev, “Analytic comparison of some features of pulse-lidar and CW-FM-ladar remote sensing,” Proc. SPIE 5086, 305–316 (2003).
[CrossRef]

R. R. Agishev, A. Comeron, L. Duch, R. K. Sagdiev, V. F. Dios, J. C. Cifuentes, and M. A. Lopez, “Development features of atmospheric LD ladar based on the CW-FM-range-finding principles,” Proc. SPIE 5235, 549–558 (2004).
[CrossRef]

Radio Sci. (1)

T. Ince, S. J. Frasier, A. Muschinski, and A. L. Pazmany, “An S-band frequency-modulated continuous-wave boundary layer profiler: description and initial results,” Radio Sci. 38, 1072–1082 (2003).
[CrossRef]

Other (5)

G. M. Brooker, “Understanding millimetre wave FMCW radars,” in Proceedings of 1st International Conference on Sensing Technology, G.S.Gupta, S.C.Mukhopadhyay, and C.H.Messom, eds. ( 2005), pp. 152–157.

A. Meta and P. Hoogeboom, “Development of signal processing algorithms for high resolution airborne millimeter wave FMCW SAR,” in Proceedings of IEEE International Radar Conference (IEEE, 2005), pp. 326–331.
[CrossRef]

R. M. Measures, Laser Remote Sensing: Fundamentals and Applications (Krieger, 1992).

C. Weitkamp, Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere (Springer, 2005).

B. C. Redman, B. Stann, W. Lawler, M. Giza, and W. Ruff, “Chirped AM ladar for 3-D imaging and range-Doppler tracking at 1550nm wavelength,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications, Systems and Technologies, OSA Technical Digest (CD) (Optical Society of America, 2005), paper PThA4.
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Scheme of detection of an FMCW lidar system.

Fig. 2
Fig. 2

Lidar impulse-response function r ( τ ) with respect to the delay τ.

Fig. 3
Fig. 3

Final result for an ideal FMCW lidar system in a continuous medium.

Fig. 4
Fig. 4

Evolution of (a) current amplitude and (b) frequency along time.

Fig. 5
Fig. 5

(a) Retrieved data without sum-frequency components and (b) result after Fourier transforming for a Gaussian-shaped medium. The retrieved data corresponds as well to the spatial-frequency spectrum of the simulated target. Ideal retrieved signal in the insets.

Fig. 6
Fig. 6

Results for the application of FMCW technique to continuous media for (a) one or two point targets and (b) an idealistic rectangular impulse-response medium with the ideal retrieved signal in the insets.

Fig. 7
Fig. 7

Evolution of frequency in P TB in (a) real and (b) formal representations.

Fig. 8
Fig. 8

Simulation of a rectangular pulse in baseband FMCW with the ideal retrieved signal in the inset. The interference of the sum-frequency components is clearly visible.

Fig. 9
Fig. 9

Real part of the sum-frequency components generated in three different cases: (a) one point target ( 100 m ), (b) four equidistant point targets ( 100 400 m ), and (c) 20 equidistant point targets ( 100 2000 m ). Dotted lines mark the zone where targets lie.

Fig. 10
Fig. 10

Simulation with the phase-hop method of a solid target with the ideal retrieved signal in the inset.

Fig. 11
Fig. 11

Simulations of (a) rectangular pulse and (b) Gaussian shape with (solid curve) and without (dashed curve) phase-hop with the ideal retrieved signal in the insets.

Fig. 12
Fig. 12

Simulation of (a) retrieved signal and (b) corresponding processed data of a lidarlike signal with both a rectangular and a Gaussian-shaped target along the path while using (solid curve) or not (dashed curve) the phase-hop method. The dotted curve corresponds to the ideally retrieved data.

Tables (1)

Tables Icon

Table 1 Interference between Two Nearby Targets

Equations (41)

Equations on this page are rendered with MathJax. Learn more.

s R ( t ) = A t S 0 cos { 2 π [ f 0 ( t τ ) + K 2 ( t τ ) 2 ] + φ 0 } ,
i ( t ) = i 0 + Δ i cos [ 2 π ( f 0 t + K t 2 / 2 ) ] ,
P T ( t ) = γ IP ( i ( t ) i th ) = P 0 { 1 + δ cos [ 2 π ( f 0 t + K t 2 2 ) ] } ,
P R ( t ) = P T ( t 2 R c ) A R R 2 β ( R ) exp ( 2 0 R d x α ( x ) ) d R ,
P R ( t ) = P T ( t 2 R c ) r ( R ) d R ,
P R ( t ) = P T ( t ) * r ( t ) ,
P R ( t ) = P 0 δ 0 τ MAX r ( τ ) cos { 2 π [ f 0 ( t τ ) + K 2 ( t τ ) 2 ] } d τ ,
h ( t ) = cos [ 2 π ( f 0 t + K 2 t 2 ) ] ,
g ( t ) = P R ( t ) h ( t ) = P 0 δ 2 0 τ MAX r ( τ ) [ cos { 2 π [ f 0 τ + K 2 ( 2 t τ τ 2 ) ] } + cos ( 2 π { f 0 ( 2 t τ ) + K 2 [ t 2 + ( t τ ) 2 ] } ) ] d τ .
g S ( t ) = P 0 δ 2 0 τ MAX r ( τ ) cos { 2 π [ f 0 τ + K 2 ( 2 t τ τ 2 ) ] } d τ .
G S ( f ) = P 0 δ 4 r ( | f | K ) exp { j sgn ( f ) 2 π [ f 0 | f | K K 2 ( | f | K ) 2 ] } ,
P ( t ) = n = P T ( t n T ) ,
P T ( t ) = P 0 { 1 + δ cos [ 2 π ( f 0 t + K 2 t 2 ) ] } Π ( t T / 2 T ) .
g p ( t ) = ( P 0 δ 2 0 τ MAX r ( τ ) cos { 2 π [ f 0 τ + K 2 ( 2 t τ τ 2 ) ] } Π ( t T / 2 T ) d τ ) * n δ ( t n T ) ,
G p ( f ) = P 0 δ 2 T [ 0 τ MAX r ( τ ) cos { 2 π [ f 0 τ + K 2 ( 2 t τ τ 2 ) ] } d τ × Π ( t T / 2 T ) exp ( j 2 π f t ) d t ] m δ ( f m T ) .
G p ( f ) = P 0 δ 4 ( 0 τ MAX r ( τ ) sinc [ T ( f K τ ) ] exp { j [ ϕ 1 ( τ ) + ϕ 2 ( τ ) ] } d τ + NP ) m δ ( f m T ) ,
G p ( f ) = P 0 δ 4 { 0 τ MAX r ( τ ) sinc [ T ( f K τ ) ] exp ( + j 2 π f c τ ) d τ } m = 0 N 1 δ ( f m T ) ,
G p ( f ) = P 0 δ 4 K T [ + R ( ν f c ) Π ( ν K T ) exp ( j 2 π ν f K ) d ν ] m = 0 N 1 δ ( f m T ) .
f c = f 0 + K T 2 = 0.
G p ( f ) = P 0 δ 4 { 0 τ MAX r ( τ ) sinc [ T ( f K τ ) ] d τ } m = 0 N 1 δ ( f m T ) .
P T B ( t ) = { P 0 ( 1 + δ cos { 2 π [ f 0 ( t T 2 ) + K 2 ( t T 2 ) 2 + ϕ 0 ] } ) ; 0 t < T 2 P 0 ( 1 + δ cos { 2 π [ f 0 ( t T 2 ) + K 2 ( t T 2 ) 2 ϕ 0 ] } ) ; T 2 t < T ,
g Sum _ F ( t ) = P 0 δ 2 0 τ MAX r ( τ ) cos ( 2 π { f 0 ( 2 t τ ) + K 2 [ t 2 + ( t τ ) 2 ] } ) d τ ,
G Sum _ F ( f ) = C I 2 exp [ j 2 π ( f f 0 ) 2 + f 0 2 2 K ] 0 τ MAX r ( τ ) exp [ j 2 π K 4 ( τ f K ) 2 ] d τ ,
cos ( a ) cos ( b ) = 1 2 [ cos ( a b ) + cos ( a + b ) ] .
h ( t ) = { cos [ 2 π ϕ FM ( t ) ] Π ( t T / 2 T ) + cos [ 2 π ϕ FM ( t T ) + π 2 ] Π ( t 3 T / 2 T ) } * n δ ( t 2 n T ) ,
P R ( t ) = P 0 δ ( 0 τ MAX r ( τ ) { cos [ 2 π ϕ FM ( t τ ) ] Π ( t T / 2 T ) + cos [ 2 π ϕ FM ( t T τ ) + π 2 ] Π ( t 3 T / 2 T ) } d τ ) * n δ ( t 2 n T ) ,
g ( t ) = P R ( t ) h ( t ) = P 0 δ ( 0 τ MAX r ( τ ) { cos [ 2 π ϕ FM ( t ) ] cos [ 2 π ϕ FM ( t τ ) ] Π ( t T / 2 T ) + cos [ 2 π ϕ FM ( t T ) + π 2 ] cos [ 2 π ϕ FM ( t T τ ) + π 2 ] Π ( t 3 T / 2 T ) } d τ ) * n δ ( t 2 n T ) .
g ( t ) = P 0 δ [ 0 τ MAX r ( τ ) ( [ cos ( θ ) + cos ( θ + ) ] Π ( t T / 2 T ) + { [ cos ( θ ) + cos ( θ + + π ) ] Π ( t T / 2 T ) } * δ ( t T ) ) d τ ] * n δ ( t 2 n T ) ,
θ = 2 π [ f 0 τ + K τ 2 ( 2 t τ T ) ] θ + = 2 π { f 0 [ 2 ( t T 2 ) τ ] + K 2 [ ( t T 2 ) 2 + ( t T 2 τ ) 2 ] } .
G ( f ) = P 0 δ ( 0 τ MAX r ( τ ) { FT [ cos ( θ ) Π ( t T / 2 T ) ] [ 1 + exp ( j 2 π f T ) ] + FT [ cos ( θ + ) Π ( t T / 2 T ) ] [ 1 exp ( j 2 π f T ) ] } d τ ) 1 2 T m δ ( f m 2 T ) .
Diff. frequency: FT [ cos ( θ ) Π ( t T / 2 T ) ] [ 1 + exp ( j 2 π f T ) ] f = m 2 T ,
Sum frequency: FT [ cos ( θ + ) Π ( t T / 2 T ) ] [ 1 exp ( j 2 π f T ) ] f = m 2 T .
ρ = x ( z ) y ( z ) d z [ x 2 ( z ) d z y 2 ( z ) d z ] 1 / 2 .
G p 1 p ( f ) = T 2 sinc [ T ( f K τ ) ] exp { + j 2 π [ ( f 0 + K T 2 ) τ ( K 2 τ 2 + f T 2 ) ] } .
G p ( f ; ν ) = P 0 δ 4 + r ( τ ) sinc [ T ( f K τ ) ] exp ( j 2 π ν τ ) d τ .
G p ( f ; ν ) = P 0 δ 4 K T R ( ν ) * [ Π ( ν K T ) exp ( j 2 π ν f K ) ] ,
G p ( f ; ν ) = P 0 δ 4 K T + R ( ν ν ) Π ( ν K T ) exp ( j 2 π ν f K ) d ν .
G Sum _ F ( f ) = + 0 τ MAX r ( τ ) cos ( 2 π { f 0 ( 2 t τ ) + K 2 [ t 2 + ( t τ ) 2 ] } ) d τ exp ( j 2 π f t ) d t .
G Sum _ F + ( f ) = 1 2 + 0 τ MAX r ( τ ) exp ( j 2 π { f 0 ( 2 t τ ) + K 2 [ t 2 + ( t τ ) 2 ] } ) d τ exp ( j 2 π f t ) d t .
G Sum _ F + ( f ) = 1 2 + 0 τ MAX r ( τ ) exp ( j 2 π { K [ t + ( f 0 f / 2 K τ 2 ) ] 2 } ) × exp { j 2 π [ K 4 · ( τ f K ) 2 ] } d τ d t exp { j 2 π [ ( f f 0 ) 2 + f 0 2 2 K ] } .
G Sum _ F ( f ) = C 2 2 exp [ j 2 π ( f + f 0 ) 2 + f 0 2 2 K ] 0 τ MAX r ( τ ) exp [ j 2 π K 4 ( τ + f K ) 2 ] d τ .

Metrics