Abstract

We explore the use of imaging surface plasmon resonance (iSPR) to simultaneously measure the refractive index and reaction rates of the commercially available Ormocore photosensitive resist during photopolymerization. To this end, we adapted a commercially available iSPR device. We demonstrate good accuracy in the measurement of the refractive index determined independently of the thickness of the polymerized film. Furthermore, we demonstrate that the refractive index is proportional to the degree of cure (double bond conversion) of the resist. This allows the determination of the reaction rates of the polymerization processes, which show reasonable agreement with photodifferential scanning calorimetry measurements.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. D. Goodner and C. N. Bowman, “Development of a comprehensive free radical photopolymerization model incorporating heat and mass transfer effects in thick films,” Chem. Eng. Sci. 57, 887–900 (2002).
    [CrossRef]
  2. M. D. Goodner and C. N. Bowman, “Modeling primary radical termination and its effects on autoacceleration in photopolymerization kinetics,” Macromolecules 32, 6552–6559 (1999).
    [CrossRef]
  3. M. D. Goodner, H. R. Lee, and C. N. Bowman, “Method for determining the kinetic parameters in diffusion-controlled free-radical homopolymerizations,” Ind. Eng. Chem. Res. 36, 1247–1252 (1997).
    [CrossRef]
  4. B. S. Kim and D. J. Mooney, “Engineering smooth muscle tissue with a predefined structure,” J. Biomed. Mater. Res. 41, 322–332 (1998).
    [CrossRef] [PubMed]
  5. U. Streppel, P. Dannberg, C. Wachter, A. Brauer, and R. Kowarschik, “Formation of micro-optical structures by self-writing processes in photosensitive polymers,” Appl. Opt. 42, 3570–3579 (2003).
    [CrossRef] [PubMed]
  6. K. Dorkenoo, A. J. van Wonderen, H. Bulou, M. Romeo, O. Cregut, and A. Fort, “Time-resolved measurement of the refractive index for photopolymerization processes,” Appl. Phys. Lett. 83, 2474–2476 (2003).
    [CrossRef]
  7. L. H. Weng, X. J. Zhou, X. M. Zhang, J. Xu, and L. N. Zhang, “In situ monitoring gelation process of N,N-dimethylacrylamide by refractive index technique,” Polymer 43, 6761–6765 (2002).
    [CrossRef]
  8. J. B. Beusink, A. M. C. Lokate, G. A. J. Besselink, G. J. M. Pruijn, and R. B. M. Schasfoort, “Angle-scanning SPR imaging for detection of biomolecular interactions on microarrays,” Biosens. Bioelectron. 23, 839–844 (2008).
    [CrossRef]
  9. R. P. H. Kooyman, H. Kolkman, J. Vangent, and J. Greve, “Surface-plasmon resonance immunosensors—sensitivity considerations,” Anal. Chim. Acta 213, 35–45 (1988).
    [CrossRef]
  10. H. Raether, Surface-Plasmons on Smooth and Rough Surfaces and on Gratings, Vol. 111 of Springer Tracts in Modern Physics (Springer, 1988).
  11. E. Kretschmann and H. Raether, “Plasma resonance emission in solids,” Z. Naturforsch. Teil A 23, 615–623 (1968).
  12. A. M. C. Lokate, J. B. Beusink, G. A. J. Besselink, G. J. M. Pruijn, and R. B. M. Schasfoort, “Biomolecular interaction monitoring of autoantibodies by scanning surface plasmon resonance microarray imaging,” J. Am. Chem. Soc. 129, 14013–14018 (2007).
    [CrossRef] [PubMed]
  13. J.-P. Fouassier, Photoinitiation, Photopolymerization, and Photocuring: Fundamentals and Applications (Hanser Gardner, 1995).
  14. A. Ravve, Light Associated Reactions of Synthetic Polymers (Springer, 2006).
  15. G. R. Tryson and A. R. Shultz, “Calorimetric study of acrylate photo-polymerization,” J. Polym. Sci. B Polym. Phys. 17, 2059–2075 (1979).
    [CrossRef]
  16. K. S. Anseth, M. D. Rothenberg, and C. N. Bowman, “A photochromic technique to study polymer network volume distributions and microstructure during photopolymerizations,” Macromolecules 27, 2890–2892 (1994).
    [CrossRef]
  17. R. T. Pogue, J. S. Ullett, and R. P. Chartoff, “Determination of the effects of cure conditions on the photopolymerization of liquid crystalline monomers using differential photo-calorimetry,” Thermochim. Acta 339, 21–27 (1999).
    [CrossRef]
  18. A. K. O’Brien and C. N. Bowman, “Modeling the effect of oxygen on photopolymerization kinetics,” Macromol. Theory Simul. 15, 176–182 (2006).
    [CrossRef]
  19. K. Studer, C. Decker, E. Beck, and R. Schwalm, “Overcoming oxygen inhibition in UV-curing of acrylate coatings by carbon dioxide inerting, Part I,” Prog. Org. Coatings 48, 92–100(2003).
    [CrossRef]

2008

J. B. Beusink, A. M. C. Lokate, G. A. J. Besselink, G. J. M. Pruijn, and R. B. M. Schasfoort, “Angle-scanning SPR imaging for detection of biomolecular interactions on microarrays,” Biosens. Bioelectron. 23, 839–844 (2008).
[CrossRef]

2007

A. M. C. Lokate, J. B. Beusink, G. A. J. Besselink, G. J. M. Pruijn, and R. B. M. Schasfoort, “Biomolecular interaction monitoring of autoantibodies by scanning surface plasmon resonance microarray imaging,” J. Am. Chem. Soc. 129, 14013–14018 (2007).
[CrossRef] [PubMed]

2006

A. K. O’Brien and C. N. Bowman, “Modeling the effect of oxygen on photopolymerization kinetics,” Macromol. Theory Simul. 15, 176–182 (2006).
[CrossRef]

2003

K. Studer, C. Decker, E. Beck, and R. Schwalm, “Overcoming oxygen inhibition in UV-curing of acrylate coatings by carbon dioxide inerting, Part I,” Prog. Org. Coatings 48, 92–100(2003).
[CrossRef]

U. Streppel, P. Dannberg, C. Wachter, A. Brauer, and R. Kowarschik, “Formation of micro-optical structures by self-writing processes in photosensitive polymers,” Appl. Opt. 42, 3570–3579 (2003).
[CrossRef] [PubMed]

K. Dorkenoo, A. J. van Wonderen, H. Bulou, M. Romeo, O. Cregut, and A. Fort, “Time-resolved measurement of the refractive index for photopolymerization processes,” Appl. Phys. Lett. 83, 2474–2476 (2003).
[CrossRef]

2002

L. H. Weng, X. J. Zhou, X. M. Zhang, J. Xu, and L. N. Zhang, “In situ monitoring gelation process of N,N-dimethylacrylamide by refractive index technique,” Polymer 43, 6761–6765 (2002).
[CrossRef]

M. D. Goodner and C. N. Bowman, “Development of a comprehensive free radical photopolymerization model incorporating heat and mass transfer effects in thick films,” Chem. Eng. Sci. 57, 887–900 (2002).
[CrossRef]

1999

M. D. Goodner and C. N. Bowman, “Modeling primary radical termination and its effects on autoacceleration in photopolymerization kinetics,” Macromolecules 32, 6552–6559 (1999).
[CrossRef]

R. T. Pogue, J. S. Ullett, and R. P. Chartoff, “Determination of the effects of cure conditions on the photopolymerization of liquid crystalline monomers using differential photo-calorimetry,” Thermochim. Acta 339, 21–27 (1999).
[CrossRef]

1998

B. S. Kim and D. J. Mooney, “Engineering smooth muscle tissue with a predefined structure,” J. Biomed. Mater. Res. 41, 322–332 (1998).
[CrossRef] [PubMed]

1997

M. D. Goodner, H. R. Lee, and C. N. Bowman, “Method for determining the kinetic parameters in diffusion-controlled free-radical homopolymerizations,” Ind. Eng. Chem. Res. 36, 1247–1252 (1997).
[CrossRef]

1994

K. S. Anseth, M. D. Rothenberg, and C. N. Bowman, “A photochromic technique to study polymer network volume distributions and microstructure during photopolymerizations,” Macromolecules 27, 2890–2892 (1994).
[CrossRef]

1988

R. P. H. Kooyman, H. Kolkman, J. Vangent, and J. Greve, “Surface-plasmon resonance immunosensors—sensitivity considerations,” Anal. Chim. Acta 213, 35–45 (1988).
[CrossRef]

1979

G. R. Tryson and A. R. Shultz, “Calorimetric study of acrylate photo-polymerization,” J. Polym. Sci. B Polym. Phys. 17, 2059–2075 (1979).
[CrossRef]

1968

E. Kretschmann and H. Raether, “Plasma resonance emission in solids,” Z. Naturforsch. Teil A 23, 615–623 (1968).

Anseth, K. S.

K. S. Anseth, M. D. Rothenberg, and C. N. Bowman, “A photochromic technique to study polymer network volume distributions and microstructure during photopolymerizations,” Macromolecules 27, 2890–2892 (1994).
[CrossRef]

Beck, E.

K. Studer, C. Decker, E. Beck, and R. Schwalm, “Overcoming oxygen inhibition in UV-curing of acrylate coatings by carbon dioxide inerting, Part I,” Prog. Org. Coatings 48, 92–100(2003).
[CrossRef]

Besselink, G. A. J.

J. B. Beusink, A. M. C. Lokate, G. A. J. Besselink, G. J. M. Pruijn, and R. B. M. Schasfoort, “Angle-scanning SPR imaging for detection of biomolecular interactions on microarrays,” Biosens. Bioelectron. 23, 839–844 (2008).
[CrossRef]

A. M. C. Lokate, J. B. Beusink, G. A. J. Besselink, G. J. M. Pruijn, and R. B. M. Schasfoort, “Biomolecular interaction monitoring of autoantibodies by scanning surface plasmon resonance microarray imaging,” J. Am. Chem. Soc. 129, 14013–14018 (2007).
[CrossRef] [PubMed]

Beusink, J. B.

J. B. Beusink, A. M. C. Lokate, G. A. J. Besselink, G. J. M. Pruijn, and R. B. M. Schasfoort, “Angle-scanning SPR imaging for detection of biomolecular interactions on microarrays,” Biosens. Bioelectron. 23, 839–844 (2008).
[CrossRef]

A. M. C. Lokate, J. B. Beusink, G. A. J. Besselink, G. J. M. Pruijn, and R. B. M. Schasfoort, “Biomolecular interaction monitoring of autoantibodies by scanning surface plasmon resonance microarray imaging,” J. Am. Chem. Soc. 129, 14013–14018 (2007).
[CrossRef] [PubMed]

Bowman, C. N.

A. K. O’Brien and C. N. Bowman, “Modeling the effect of oxygen on photopolymerization kinetics,” Macromol. Theory Simul. 15, 176–182 (2006).
[CrossRef]

M. D. Goodner and C. N. Bowman, “Development of a comprehensive free radical photopolymerization model incorporating heat and mass transfer effects in thick films,” Chem. Eng. Sci. 57, 887–900 (2002).
[CrossRef]

M. D. Goodner and C. N. Bowman, “Modeling primary radical termination and its effects on autoacceleration in photopolymerization kinetics,” Macromolecules 32, 6552–6559 (1999).
[CrossRef]

M. D. Goodner, H. R. Lee, and C. N. Bowman, “Method for determining the kinetic parameters in diffusion-controlled free-radical homopolymerizations,” Ind. Eng. Chem. Res. 36, 1247–1252 (1997).
[CrossRef]

K. S. Anseth, M. D. Rothenberg, and C. N. Bowman, “A photochromic technique to study polymer network volume distributions and microstructure during photopolymerizations,” Macromolecules 27, 2890–2892 (1994).
[CrossRef]

Brauer, A.

Bulou, H.

K. Dorkenoo, A. J. van Wonderen, H. Bulou, M. Romeo, O. Cregut, and A. Fort, “Time-resolved measurement of the refractive index for photopolymerization processes,” Appl. Phys. Lett. 83, 2474–2476 (2003).
[CrossRef]

Chartoff, R. P.

R. T. Pogue, J. S. Ullett, and R. P. Chartoff, “Determination of the effects of cure conditions on the photopolymerization of liquid crystalline monomers using differential photo-calorimetry,” Thermochim. Acta 339, 21–27 (1999).
[CrossRef]

Cregut, O.

K. Dorkenoo, A. J. van Wonderen, H. Bulou, M. Romeo, O. Cregut, and A. Fort, “Time-resolved measurement of the refractive index for photopolymerization processes,” Appl. Phys. Lett. 83, 2474–2476 (2003).
[CrossRef]

Dannberg, P.

Decker, C.

K. Studer, C. Decker, E. Beck, and R. Schwalm, “Overcoming oxygen inhibition in UV-curing of acrylate coatings by carbon dioxide inerting, Part I,” Prog. Org. Coatings 48, 92–100(2003).
[CrossRef]

Dorkenoo, K.

K. Dorkenoo, A. J. van Wonderen, H. Bulou, M. Romeo, O. Cregut, and A. Fort, “Time-resolved measurement of the refractive index for photopolymerization processes,” Appl. Phys. Lett. 83, 2474–2476 (2003).
[CrossRef]

Fort, A.

K. Dorkenoo, A. J. van Wonderen, H. Bulou, M. Romeo, O. Cregut, and A. Fort, “Time-resolved measurement of the refractive index for photopolymerization processes,” Appl. Phys. Lett. 83, 2474–2476 (2003).
[CrossRef]

Fouassier, J.-P.

J.-P. Fouassier, Photoinitiation, Photopolymerization, and Photocuring: Fundamentals and Applications (Hanser Gardner, 1995).

Goodner, M. D.

M. D. Goodner and C. N. Bowman, “Development of a comprehensive free radical photopolymerization model incorporating heat and mass transfer effects in thick films,” Chem. Eng. Sci. 57, 887–900 (2002).
[CrossRef]

M. D. Goodner and C. N. Bowman, “Modeling primary radical termination and its effects on autoacceleration in photopolymerization kinetics,” Macromolecules 32, 6552–6559 (1999).
[CrossRef]

M. D. Goodner, H. R. Lee, and C. N. Bowman, “Method for determining the kinetic parameters in diffusion-controlled free-radical homopolymerizations,” Ind. Eng. Chem. Res. 36, 1247–1252 (1997).
[CrossRef]

Greve, J.

R. P. H. Kooyman, H. Kolkman, J. Vangent, and J. Greve, “Surface-plasmon resonance immunosensors—sensitivity considerations,” Anal. Chim. Acta 213, 35–45 (1988).
[CrossRef]

Kim, B. S.

B. S. Kim and D. J. Mooney, “Engineering smooth muscle tissue with a predefined structure,” J. Biomed. Mater. Res. 41, 322–332 (1998).
[CrossRef] [PubMed]

Kolkman, H.

R. P. H. Kooyman, H. Kolkman, J. Vangent, and J. Greve, “Surface-plasmon resonance immunosensors—sensitivity considerations,” Anal. Chim. Acta 213, 35–45 (1988).
[CrossRef]

Kooyman, R. P. H.

R. P. H. Kooyman, H. Kolkman, J. Vangent, and J. Greve, “Surface-plasmon resonance immunosensors—sensitivity considerations,” Anal. Chim. Acta 213, 35–45 (1988).
[CrossRef]

Kowarschik, R.

Kretschmann, E.

E. Kretschmann and H. Raether, “Plasma resonance emission in solids,” Z. Naturforsch. Teil A 23, 615–623 (1968).

Lee, H. R.

M. D. Goodner, H. R. Lee, and C. N. Bowman, “Method for determining the kinetic parameters in diffusion-controlled free-radical homopolymerizations,” Ind. Eng. Chem. Res. 36, 1247–1252 (1997).
[CrossRef]

Lokate, A. M. C.

J. B. Beusink, A. M. C. Lokate, G. A. J. Besselink, G. J. M. Pruijn, and R. B. M. Schasfoort, “Angle-scanning SPR imaging for detection of biomolecular interactions on microarrays,” Biosens. Bioelectron. 23, 839–844 (2008).
[CrossRef]

A. M. C. Lokate, J. B. Beusink, G. A. J. Besselink, G. J. M. Pruijn, and R. B. M. Schasfoort, “Biomolecular interaction monitoring of autoantibodies by scanning surface plasmon resonance microarray imaging,” J. Am. Chem. Soc. 129, 14013–14018 (2007).
[CrossRef] [PubMed]

Mooney, D. J.

B. S. Kim and D. J. Mooney, “Engineering smooth muscle tissue with a predefined structure,” J. Biomed. Mater. Res. 41, 322–332 (1998).
[CrossRef] [PubMed]

O’Brien, A. K.

A. K. O’Brien and C. N. Bowman, “Modeling the effect of oxygen on photopolymerization kinetics,” Macromol. Theory Simul. 15, 176–182 (2006).
[CrossRef]

Pogue, R. T.

R. T. Pogue, J. S. Ullett, and R. P. Chartoff, “Determination of the effects of cure conditions on the photopolymerization of liquid crystalline monomers using differential photo-calorimetry,” Thermochim. Acta 339, 21–27 (1999).
[CrossRef]

Pruijn, G. J. M.

J. B. Beusink, A. M. C. Lokate, G. A. J. Besselink, G. J. M. Pruijn, and R. B. M. Schasfoort, “Angle-scanning SPR imaging for detection of biomolecular interactions on microarrays,” Biosens. Bioelectron. 23, 839–844 (2008).
[CrossRef]

A. M. C. Lokate, J. B. Beusink, G. A. J. Besselink, G. J. M. Pruijn, and R. B. M. Schasfoort, “Biomolecular interaction monitoring of autoantibodies by scanning surface plasmon resonance microarray imaging,” J. Am. Chem. Soc. 129, 14013–14018 (2007).
[CrossRef] [PubMed]

Raether, H.

E. Kretschmann and H. Raether, “Plasma resonance emission in solids,” Z. Naturforsch. Teil A 23, 615–623 (1968).

H. Raether, Surface-Plasmons on Smooth and Rough Surfaces and on Gratings, Vol. 111 of Springer Tracts in Modern Physics (Springer, 1988).

Ravve, A.

A. Ravve, Light Associated Reactions of Synthetic Polymers (Springer, 2006).

Romeo, M.

K. Dorkenoo, A. J. van Wonderen, H. Bulou, M. Romeo, O. Cregut, and A. Fort, “Time-resolved measurement of the refractive index for photopolymerization processes,” Appl. Phys. Lett. 83, 2474–2476 (2003).
[CrossRef]

Rothenberg, M. D.

K. S. Anseth, M. D. Rothenberg, and C. N. Bowman, “A photochromic technique to study polymer network volume distributions and microstructure during photopolymerizations,” Macromolecules 27, 2890–2892 (1994).
[CrossRef]

Schasfoort, R. B. M.

J. B. Beusink, A. M. C. Lokate, G. A. J. Besselink, G. J. M. Pruijn, and R. B. M. Schasfoort, “Angle-scanning SPR imaging for detection of biomolecular interactions on microarrays,” Biosens. Bioelectron. 23, 839–844 (2008).
[CrossRef]

A. M. C. Lokate, J. B. Beusink, G. A. J. Besselink, G. J. M. Pruijn, and R. B. M. Schasfoort, “Biomolecular interaction monitoring of autoantibodies by scanning surface plasmon resonance microarray imaging,” J. Am. Chem. Soc. 129, 14013–14018 (2007).
[CrossRef] [PubMed]

Schwalm, R.

K. Studer, C. Decker, E. Beck, and R. Schwalm, “Overcoming oxygen inhibition in UV-curing of acrylate coatings by carbon dioxide inerting, Part I,” Prog. Org. Coatings 48, 92–100(2003).
[CrossRef]

Shultz, A. R.

G. R. Tryson and A. R. Shultz, “Calorimetric study of acrylate photo-polymerization,” J. Polym. Sci. B Polym. Phys. 17, 2059–2075 (1979).
[CrossRef]

Streppel, U.

Studer, K.

K. Studer, C. Decker, E. Beck, and R. Schwalm, “Overcoming oxygen inhibition in UV-curing of acrylate coatings by carbon dioxide inerting, Part I,” Prog. Org. Coatings 48, 92–100(2003).
[CrossRef]

Tryson, G. R.

G. R. Tryson and A. R. Shultz, “Calorimetric study of acrylate photo-polymerization,” J. Polym. Sci. B Polym. Phys. 17, 2059–2075 (1979).
[CrossRef]

Ullett, J. S.

R. T. Pogue, J. S. Ullett, and R. P. Chartoff, “Determination of the effects of cure conditions on the photopolymerization of liquid crystalline monomers using differential photo-calorimetry,” Thermochim. Acta 339, 21–27 (1999).
[CrossRef]

van Wonderen, A. J.

K. Dorkenoo, A. J. van Wonderen, H. Bulou, M. Romeo, O. Cregut, and A. Fort, “Time-resolved measurement of the refractive index for photopolymerization processes,” Appl. Phys. Lett. 83, 2474–2476 (2003).
[CrossRef]

Vangent, J.

R. P. H. Kooyman, H. Kolkman, J. Vangent, and J. Greve, “Surface-plasmon resonance immunosensors—sensitivity considerations,” Anal. Chim. Acta 213, 35–45 (1988).
[CrossRef]

Wachter, C.

Weng, L. H.

L. H. Weng, X. J. Zhou, X. M. Zhang, J. Xu, and L. N. Zhang, “In situ monitoring gelation process of N,N-dimethylacrylamide by refractive index technique,” Polymer 43, 6761–6765 (2002).
[CrossRef]

Xu, J.

L. H. Weng, X. J. Zhou, X. M. Zhang, J. Xu, and L. N. Zhang, “In situ monitoring gelation process of N,N-dimethylacrylamide by refractive index technique,” Polymer 43, 6761–6765 (2002).
[CrossRef]

Zhang, L. N.

L. H. Weng, X. J. Zhou, X. M. Zhang, J. Xu, and L. N. Zhang, “In situ monitoring gelation process of N,N-dimethylacrylamide by refractive index technique,” Polymer 43, 6761–6765 (2002).
[CrossRef]

Zhang, X. M.

L. H. Weng, X. J. Zhou, X. M. Zhang, J. Xu, and L. N. Zhang, “In situ monitoring gelation process of N,N-dimethylacrylamide by refractive index technique,” Polymer 43, 6761–6765 (2002).
[CrossRef]

Zhou, X. J.

L. H. Weng, X. J. Zhou, X. M. Zhang, J. Xu, and L. N. Zhang, “In situ monitoring gelation process of N,N-dimethylacrylamide by refractive index technique,” Polymer 43, 6761–6765 (2002).
[CrossRef]

Anal. Chim. Acta

R. P. H. Kooyman, H. Kolkman, J. Vangent, and J. Greve, “Surface-plasmon resonance immunosensors—sensitivity considerations,” Anal. Chim. Acta 213, 35–45 (1988).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

K. Dorkenoo, A. J. van Wonderen, H. Bulou, M. Romeo, O. Cregut, and A. Fort, “Time-resolved measurement of the refractive index for photopolymerization processes,” Appl. Phys. Lett. 83, 2474–2476 (2003).
[CrossRef]

Biosens. Bioelectron.

J. B. Beusink, A. M. C. Lokate, G. A. J. Besselink, G. J. M. Pruijn, and R. B. M. Schasfoort, “Angle-scanning SPR imaging for detection of biomolecular interactions on microarrays,” Biosens. Bioelectron. 23, 839–844 (2008).
[CrossRef]

Chem. Eng. Sci.

M. D. Goodner and C. N. Bowman, “Development of a comprehensive free radical photopolymerization model incorporating heat and mass transfer effects in thick films,” Chem. Eng. Sci. 57, 887–900 (2002).
[CrossRef]

Ind. Eng. Chem. Res.

M. D. Goodner, H. R. Lee, and C. N. Bowman, “Method for determining the kinetic parameters in diffusion-controlled free-radical homopolymerizations,” Ind. Eng. Chem. Res. 36, 1247–1252 (1997).
[CrossRef]

J. Am. Chem. Soc.

A. M. C. Lokate, J. B. Beusink, G. A. J. Besselink, G. J. M. Pruijn, and R. B. M. Schasfoort, “Biomolecular interaction monitoring of autoantibodies by scanning surface plasmon resonance microarray imaging,” J. Am. Chem. Soc. 129, 14013–14018 (2007).
[CrossRef] [PubMed]

J. Biomed. Mater. Res.

B. S. Kim and D. J. Mooney, “Engineering smooth muscle tissue with a predefined structure,” J. Biomed. Mater. Res. 41, 322–332 (1998).
[CrossRef] [PubMed]

J. Polym. Sci. B Polym. Phys.

G. R. Tryson and A. R. Shultz, “Calorimetric study of acrylate photo-polymerization,” J. Polym. Sci. B Polym. Phys. 17, 2059–2075 (1979).
[CrossRef]

Macromol. Theory Simul.

A. K. O’Brien and C. N. Bowman, “Modeling the effect of oxygen on photopolymerization kinetics,” Macromol. Theory Simul. 15, 176–182 (2006).
[CrossRef]

Macromolecules

K. S. Anseth, M. D. Rothenberg, and C. N. Bowman, “A photochromic technique to study polymer network volume distributions and microstructure during photopolymerizations,” Macromolecules 27, 2890–2892 (1994).
[CrossRef]

M. D. Goodner and C. N. Bowman, “Modeling primary radical termination and its effects on autoacceleration in photopolymerization kinetics,” Macromolecules 32, 6552–6559 (1999).
[CrossRef]

Polymer

L. H. Weng, X. J. Zhou, X. M. Zhang, J. Xu, and L. N. Zhang, “In situ monitoring gelation process of N,N-dimethylacrylamide by refractive index technique,” Polymer 43, 6761–6765 (2002).
[CrossRef]

Prog. Org. Coatings

K. Studer, C. Decker, E. Beck, and R. Schwalm, “Overcoming oxygen inhibition in UV-curing of acrylate coatings by carbon dioxide inerting, Part I,” Prog. Org. Coatings 48, 92–100(2003).
[CrossRef]

Thermochim. Acta

R. T. Pogue, J. S. Ullett, and R. P. Chartoff, “Determination of the effects of cure conditions on the photopolymerization of liquid crystalline monomers using differential photo-calorimetry,” Thermochim. Acta 339, 21–27 (1999).
[CrossRef]

Z. Naturforsch. Teil A

E. Kretschmann and H. Raether, “Plasma resonance emission in solids,” Z. Naturforsch. Teil A 23, 615–623 (1968).

Other

J.-P. Fouassier, Photoinitiation, Photopolymerization, and Photocuring: Fundamentals and Applications (Hanser Gardner, 1995).

A. Ravve, Light Associated Reactions of Synthetic Polymers (Springer, 2006).

H. Raether, Surface-Plasmons on Smooth and Rough Surfaces and on Gratings, Vol. 111 of Springer Tracts in Modern Physics (Springer, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Photo-iSPR setup combining a commercial iSPR device with a UV exposure head. The resist is placed on top of a gold iSPR sensor disk and covered with a glass coverslip to obtain thin and homogeneous layers of the resist. The UV exposure head illuminates the resist with an intensity of 1 W m 2 . For details see main text.

Fig. 2
Fig. 2

Example of iSPR image where gold sensor spots (indicated by the white arrow) are in resonance (black).

Fig. 3
Fig. 3

Differential scanning calorimetry setup combined with an additional UV exposure head. A mercury lamp is used to initiate the photopolymerization. A neutral density (ND) filter is used to reduce the light intensity. A bandpass filter is used to select the wavelength used to decompose the photoinitiator. A polymer sample is placed in the sample pan (SP), while an empty pan was used as reference (RP). Two thermocouples (TC) are used to record the developed heat.

Fig. 4
Fig. 4

Chemical structure of the Ormocore macromer with Si O Si backbone and organic side chain R.

Fig. 5
Fig. 5

Measured SPR angle shift (averaged values of data obtained for six different areas of the iSPR sensor) for different oils that have different calibrated refractive indices. The dashed curve indicates the linear fit to the data. To illustrate the spread in sensitivities at the different sensor areas, two calibration curves for a single area (solid curves, linear fit) are also given for the lowest and highest observed sensitivity.

Fig. 6
Fig. 6

(a) Mean refractive index change ( Δ n ), obtained by averaging six separate iSPR traces, of Ormocore resist during UV exposure, measured using iSPR. (b) Zoom-in of the first 200 s of the photopolymerization process.

Fig. 7
Fig. 7

Normalized conversion X of the Ormocore resist upon UV radiation for different exposure times obtained by photo-DSC (solid symbols) and iSPR (open symbols).

Fig. 8
Fig. 8

(a) Correlation between conversion measured using iSPR and photo-DSC for long exposure time ( 2000 s ) and (b) comparison of final conversion X as calculated by averaging X between t = 1500 s and t = 2000 s for different exposure times (40, 60, 100, and 180 s ).

Fig. 9
Fig. 9

Rate constants calculated based on iSPR and photo- DSC experimental results: rate of termination (a) k t and (b) rate of propagation k p .

Tables (1)

Tables Icon

Table 1 Calculated Ratios k t k p 1 and k p k t 0.5 and Corresponding Rate Constants ( k t and k p ) Calculated for the Ormocore Resist

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

X ( t ) = [ M ] 0 [ M ] t [ M ] 0 .
X i SPR ( t ) = [ M ] 0 [ M ] t [ M ] 0 = n 0 n ( t ) n 0 n = Δ n ( t ) Δ n ,
X DSC ( t ) = 0 t q ( t ) d t 0 q ( t ) d t = Q ( t ) Q ,
Initiation I S h υ m · R ,
Initiation II R + M P ,
Propagation P n + M k p P n + 1 ,
Termination P n + P m k t P n + m .
R i = ϕ i · I a ,
R p = k p · [ P ] · [ M ] ,
R t = k t · [ P ] 2 .
k t k p = d d t ( ( 1 X ( t ) ) ( d X ( t ) d t ) 1 ) t = t exposure + t ,
k p k t = d X ( t ) d t | t = t exposure ( X ( t exposure ) 1 ) φ i I a ,
I a = 2.303 ε I 0 S 0 8.326 λ ,

Metrics