Abstract

Reconfigurable liquid crystal microlenses employing arrays of multiwalled carbon nanotubes (MWNTs) have been designed and fabricated. The cells consist of arrays of 2μm high MWNTs grown by plasma-enhanced chemical vapor deposition on silicon with a top electrode of indium tin oxide coated glass positioned 20μm above the silicon and the gap filled with the nematic liquid crystal BLO48. Simulations have found that, while its nematic liquid crystal aligns with MWNTs within a distance of 10nm, this distance is greatly enhanced by the application of an external electric field. Polarized light experiments show that light is focused with focal lengths ranging from 7μm to 12μm.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Nose and S. Sato, “LCD devices obtained using scattering properties of microlens effects,” Proc. Soc. Inf. Disp. 32, 177–181 (1991).
  2. S. Sato, “Applications of liquid crystals to variable-focusing lenses,” Opt. Rev. 6, 471–485 (1999).
    [CrossRef]
  3. Y. Zhang, Y. Li, E. G. Kanterakis, A. Kats, X. J. Lu, R. Tolimieri, and N. P. Caviris, “Optical realization of wavelet transform for a one-dimensional signal,” Opt. Lett. 17, 210–212 (1992).
    [CrossRef] [PubMed]
  4. T. Nose and S. Sato, “Optical properties of liquid-crystal microlens,” Proc. SPIE 1230, 17 (1990).
  5. T. Nose and S. Sato, “Application of liquid crystal microlens in optical fiber switch,” Trans. IEICE 75-C1, 155–163 (1992) (in Japanese).
  6. T. Nose and S. Sato, “A liquid crystal microlens obtained with a non-uniform electric field,” Liq. Cryst. 5, 1425–1433 (1989).
    [CrossRef]
  7. K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, W. I. Milne, D. G. Hasko, G. Pirio, P. Legagneux, F. Wyczisk, and D. Pribat, “Uniform patterned growth of carbon nanotubes without surface carbon,” Appl. Phys. Lett. 79, 1534–1536 (2001).
    [CrossRef]
  8. W. I. Milne, K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, S. B. Lee, D. G. Hasko, H. Ahmed, O. Groening, P. Legagneux, L. Gangloff, J. P. Schnell, G. Pirio, D. Pribat, M. Castignolles, A. Loiseau, V. Semet, and V. T. Binh, “Electrical and field emission investigation of individual carbon nanotubes from plasma enhanced chemical vapour deposition,” Diamond Relat. Mater. 12, 422–428 (2003).
    [CrossRef]
  9. A. Modi, N. Koratkar, E. Lass, B. Wei, and P. M. Ajayan, “Miniaturized gas ionization sensors using carbon nanotubes,” Nature 424, 171 (2003).
    [CrossRef] [PubMed]
  10. T. Wilkinson, X. Wang, K. B. K. Teo, and W. I. Milne, “Sparse multiwall carbon nanotube electrode arrays for liquid-crystal photonic devices,” Adv. Mater. 20, 363–366 (2008).
    [CrossRef]
  11. K. B. K. Teo, E. Minoux, L. Hudanski, F. Peauger, J.-P. Schnell, L. Gangloff, P. Legagneux, D. Dieumgard, G. A. J. Amaratunga, and W. I. Milne, “Microwave devices: carbon nanotubes as cold cathodes,” Nature 437, 968 (2005).
    [CrossRef] [PubMed]
  12. I. Dierking, G. Scalia, and P. Morales, “Liquid crystal–carbon nanotube dispersions,” J. Appl. Phy. 97, 044309 (2005).
    [CrossRef]
  13. C. Y. Huang, C. Y. Hu, and H. C. Pan, “Electrooptical responses of carbon nanotube-doped liquid crystal devices,” Jpn. J. Appl. Phys. 44, 8077–8081 (2005).
    [CrossRef]
  14. I. S. Baik, S. Y. Jeon, and S. H. Lee, “Electrical-field effect on carbon nanotubes in a twisted nematic liquid crystal cell,” Appl. Phy. Lett. 87, 263110 (2005).
    [CrossRef]
  15. J. M. Soler, E. Artacho, J. D. Gale, A. García, J. Junquera, P. Ordejón, and D. Sánchez-Portal, “The SIESTA method for ab initio order-N materials simulation,” J. Phys. Condens. Matter 14, 2745–2779 (2002).
    [CrossRef]

2008 (1)

T. Wilkinson, X. Wang, K. B. K. Teo, and W. I. Milne, “Sparse multiwall carbon nanotube electrode arrays for liquid-crystal photonic devices,” Adv. Mater. 20, 363–366 (2008).
[CrossRef]

2005 (4)

K. B. K. Teo, E. Minoux, L. Hudanski, F. Peauger, J.-P. Schnell, L. Gangloff, P. Legagneux, D. Dieumgard, G. A. J. Amaratunga, and W. I. Milne, “Microwave devices: carbon nanotubes as cold cathodes,” Nature 437, 968 (2005).
[CrossRef] [PubMed]

I. Dierking, G. Scalia, and P. Morales, “Liquid crystal–carbon nanotube dispersions,” J. Appl. Phy. 97, 044309 (2005).
[CrossRef]

C. Y. Huang, C. Y. Hu, and H. C. Pan, “Electrooptical responses of carbon nanotube-doped liquid crystal devices,” Jpn. J. Appl. Phys. 44, 8077–8081 (2005).
[CrossRef]

I. S. Baik, S. Y. Jeon, and S. H. Lee, “Electrical-field effect on carbon nanotubes in a twisted nematic liquid crystal cell,” Appl. Phy. Lett. 87, 263110 (2005).
[CrossRef]

2003 (2)

W. I. Milne, K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, S. B. Lee, D. G. Hasko, H. Ahmed, O. Groening, P. Legagneux, L. Gangloff, J. P. Schnell, G. Pirio, D. Pribat, M. Castignolles, A. Loiseau, V. Semet, and V. T. Binh, “Electrical and field emission investigation of individual carbon nanotubes from plasma enhanced chemical vapour deposition,” Diamond Relat. Mater. 12, 422–428 (2003).
[CrossRef]

A. Modi, N. Koratkar, E. Lass, B. Wei, and P. M. Ajayan, “Miniaturized gas ionization sensors using carbon nanotubes,” Nature 424, 171 (2003).
[CrossRef] [PubMed]

2002 (1)

J. M. Soler, E. Artacho, J. D. Gale, A. García, J. Junquera, P. Ordejón, and D. Sánchez-Portal, “The SIESTA method for ab initio order-N materials simulation,” J. Phys. Condens. Matter 14, 2745–2779 (2002).
[CrossRef]

2001 (1)

K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, W. I. Milne, D. G. Hasko, G. Pirio, P. Legagneux, F. Wyczisk, and D. Pribat, “Uniform patterned growth of carbon nanotubes without surface carbon,” Appl. Phys. Lett. 79, 1534–1536 (2001).
[CrossRef]

1999 (1)

S. Sato, “Applications of liquid crystals to variable-focusing lenses,” Opt. Rev. 6, 471–485 (1999).
[CrossRef]

1992 (2)

Y. Zhang, Y. Li, E. G. Kanterakis, A. Kats, X. J. Lu, R. Tolimieri, and N. P. Caviris, “Optical realization of wavelet transform for a one-dimensional signal,” Opt. Lett. 17, 210–212 (1992).
[CrossRef] [PubMed]

T. Nose and S. Sato, “Application of liquid crystal microlens in optical fiber switch,” Trans. IEICE 75-C1, 155–163 (1992) (in Japanese).

1991 (1)

T. Nose and S. Sato, “LCD devices obtained using scattering properties of microlens effects,” Proc. Soc. Inf. Disp. 32, 177–181 (1991).

1990 (1)

T. Nose and S. Sato, “Optical properties of liquid-crystal microlens,” Proc. SPIE 1230, 17 (1990).

1989 (1)

T. Nose and S. Sato, “A liquid crystal microlens obtained with a non-uniform electric field,” Liq. Cryst. 5, 1425–1433 (1989).
[CrossRef]

Ahmed, H.

W. I. Milne, K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, S. B. Lee, D. G. Hasko, H. Ahmed, O. Groening, P. Legagneux, L. Gangloff, J. P. Schnell, G. Pirio, D. Pribat, M. Castignolles, A. Loiseau, V. Semet, and V. T. Binh, “Electrical and field emission investigation of individual carbon nanotubes from plasma enhanced chemical vapour deposition,” Diamond Relat. Mater. 12, 422–428 (2003).
[CrossRef]

Ajayan, P. M.

A. Modi, N. Koratkar, E. Lass, B. Wei, and P. M. Ajayan, “Miniaturized gas ionization sensors using carbon nanotubes,” Nature 424, 171 (2003).
[CrossRef] [PubMed]

Amaratunga, G. A. J.

K. B. K. Teo, E. Minoux, L. Hudanski, F. Peauger, J.-P. Schnell, L. Gangloff, P. Legagneux, D. Dieumgard, G. A. J. Amaratunga, and W. I. Milne, “Microwave devices: carbon nanotubes as cold cathodes,” Nature 437, 968 (2005).
[CrossRef] [PubMed]

W. I. Milne, K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, S. B. Lee, D. G. Hasko, H. Ahmed, O. Groening, P. Legagneux, L. Gangloff, J. P. Schnell, G. Pirio, D. Pribat, M. Castignolles, A. Loiseau, V. Semet, and V. T. Binh, “Electrical and field emission investigation of individual carbon nanotubes from plasma enhanced chemical vapour deposition,” Diamond Relat. Mater. 12, 422–428 (2003).
[CrossRef]

K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, W. I. Milne, D. G. Hasko, G. Pirio, P. Legagneux, F. Wyczisk, and D. Pribat, “Uniform patterned growth of carbon nanotubes without surface carbon,” Appl. Phys. Lett. 79, 1534–1536 (2001).
[CrossRef]

Artacho, E.

J. M. Soler, E. Artacho, J. D. Gale, A. García, J. Junquera, P. Ordejón, and D. Sánchez-Portal, “The SIESTA method for ab initio order-N materials simulation,” J. Phys. Condens. Matter 14, 2745–2779 (2002).
[CrossRef]

Baik, I. S.

I. S. Baik, S. Y. Jeon, and S. H. Lee, “Electrical-field effect on carbon nanotubes in a twisted nematic liquid crystal cell,” Appl. Phy. Lett. 87, 263110 (2005).
[CrossRef]

Binh, V. T.

W. I. Milne, K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, S. B. Lee, D. G. Hasko, H. Ahmed, O. Groening, P. Legagneux, L. Gangloff, J. P. Schnell, G. Pirio, D. Pribat, M. Castignolles, A. Loiseau, V. Semet, and V. T. Binh, “Electrical and field emission investigation of individual carbon nanotubes from plasma enhanced chemical vapour deposition,” Diamond Relat. Mater. 12, 422–428 (2003).
[CrossRef]

Castignolles, M.

W. I. Milne, K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, S. B. Lee, D. G. Hasko, H. Ahmed, O. Groening, P. Legagneux, L. Gangloff, J. P. Schnell, G. Pirio, D. Pribat, M. Castignolles, A. Loiseau, V. Semet, and V. T. Binh, “Electrical and field emission investigation of individual carbon nanotubes from plasma enhanced chemical vapour deposition,” Diamond Relat. Mater. 12, 422–428 (2003).
[CrossRef]

Caviris, N. P.

Chhowalla, M.

W. I. Milne, K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, S. B. Lee, D. G. Hasko, H. Ahmed, O. Groening, P. Legagneux, L. Gangloff, J. P. Schnell, G. Pirio, D. Pribat, M. Castignolles, A. Loiseau, V. Semet, and V. T. Binh, “Electrical and field emission investigation of individual carbon nanotubes from plasma enhanced chemical vapour deposition,” Diamond Relat. Mater. 12, 422–428 (2003).
[CrossRef]

K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, W. I. Milne, D. G. Hasko, G. Pirio, P. Legagneux, F. Wyczisk, and D. Pribat, “Uniform patterned growth of carbon nanotubes without surface carbon,” Appl. Phys. Lett. 79, 1534–1536 (2001).
[CrossRef]

Dierking, I.

I. Dierking, G. Scalia, and P. Morales, “Liquid crystal–carbon nanotube dispersions,” J. Appl. Phy. 97, 044309 (2005).
[CrossRef]

Dieumgard, D.

K. B. K. Teo, E. Minoux, L. Hudanski, F. Peauger, J.-P. Schnell, L. Gangloff, P. Legagneux, D. Dieumgard, G. A. J. Amaratunga, and W. I. Milne, “Microwave devices: carbon nanotubes as cold cathodes,” Nature 437, 968 (2005).
[CrossRef] [PubMed]

Gale, J. D.

J. M. Soler, E. Artacho, J. D. Gale, A. García, J. Junquera, P. Ordejón, and D. Sánchez-Portal, “The SIESTA method for ab initio order-N materials simulation,” J. Phys. Condens. Matter 14, 2745–2779 (2002).
[CrossRef]

Gangloff, L.

K. B. K. Teo, E. Minoux, L. Hudanski, F. Peauger, J.-P. Schnell, L. Gangloff, P. Legagneux, D. Dieumgard, G. A. J. Amaratunga, and W. I. Milne, “Microwave devices: carbon nanotubes as cold cathodes,” Nature 437, 968 (2005).
[CrossRef] [PubMed]

W. I. Milne, K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, S. B. Lee, D. G. Hasko, H. Ahmed, O. Groening, P. Legagneux, L. Gangloff, J. P. Schnell, G. Pirio, D. Pribat, M. Castignolles, A. Loiseau, V. Semet, and V. T. Binh, “Electrical and field emission investigation of individual carbon nanotubes from plasma enhanced chemical vapour deposition,” Diamond Relat. Mater. 12, 422–428 (2003).
[CrossRef]

García, A.

J. M. Soler, E. Artacho, J. D. Gale, A. García, J. Junquera, P. Ordejón, and D. Sánchez-Portal, “The SIESTA method for ab initio order-N materials simulation,” J. Phys. Condens. Matter 14, 2745–2779 (2002).
[CrossRef]

Groening, O.

W. I. Milne, K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, S. B. Lee, D. G. Hasko, H. Ahmed, O. Groening, P. Legagneux, L. Gangloff, J. P. Schnell, G. Pirio, D. Pribat, M. Castignolles, A. Loiseau, V. Semet, and V. T. Binh, “Electrical and field emission investigation of individual carbon nanotubes from plasma enhanced chemical vapour deposition,” Diamond Relat. Mater. 12, 422–428 (2003).
[CrossRef]

Hasko, D. G.

W. I. Milne, K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, S. B. Lee, D. G. Hasko, H. Ahmed, O. Groening, P. Legagneux, L. Gangloff, J. P. Schnell, G. Pirio, D. Pribat, M. Castignolles, A. Loiseau, V. Semet, and V. T. Binh, “Electrical and field emission investigation of individual carbon nanotubes from plasma enhanced chemical vapour deposition,” Diamond Relat. Mater. 12, 422–428 (2003).
[CrossRef]

K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, W. I. Milne, D. G. Hasko, G. Pirio, P. Legagneux, F. Wyczisk, and D. Pribat, “Uniform patterned growth of carbon nanotubes without surface carbon,” Appl. Phys. Lett. 79, 1534–1536 (2001).
[CrossRef]

Hu, C. Y.

C. Y. Huang, C. Y. Hu, and H. C. Pan, “Electrooptical responses of carbon nanotube-doped liquid crystal devices,” Jpn. J. Appl. Phys. 44, 8077–8081 (2005).
[CrossRef]

Huang, C. Y.

C. Y. Huang, C. Y. Hu, and H. C. Pan, “Electrooptical responses of carbon nanotube-doped liquid crystal devices,” Jpn. J. Appl. Phys. 44, 8077–8081 (2005).
[CrossRef]

Hudanski, L.

K. B. K. Teo, E. Minoux, L. Hudanski, F. Peauger, J.-P. Schnell, L. Gangloff, P. Legagneux, D. Dieumgard, G. A. J. Amaratunga, and W. I. Milne, “Microwave devices: carbon nanotubes as cold cathodes,” Nature 437, 968 (2005).
[CrossRef] [PubMed]

Jeon, S. Y.

I. S. Baik, S. Y. Jeon, and S. H. Lee, “Electrical-field effect on carbon nanotubes in a twisted nematic liquid crystal cell,” Appl. Phy. Lett. 87, 263110 (2005).
[CrossRef]

Junquera, J.

J. M. Soler, E. Artacho, J. D. Gale, A. García, J. Junquera, P. Ordejón, and D. Sánchez-Portal, “The SIESTA method for ab initio order-N materials simulation,” J. Phys. Condens. Matter 14, 2745–2779 (2002).
[CrossRef]

Kanterakis, E. G.

Kats, A.

Koratkar, N.

A. Modi, N. Koratkar, E. Lass, B. Wei, and P. M. Ajayan, “Miniaturized gas ionization sensors using carbon nanotubes,” Nature 424, 171 (2003).
[CrossRef] [PubMed]

Lass, E.

A. Modi, N. Koratkar, E. Lass, B. Wei, and P. M. Ajayan, “Miniaturized gas ionization sensors using carbon nanotubes,” Nature 424, 171 (2003).
[CrossRef] [PubMed]

Lee, S. B.

W. I. Milne, K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, S. B. Lee, D. G. Hasko, H. Ahmed, O. Groening, P. Legagneux, L. Gangloff, J. P. Schnell, G. Pirio, D. Pribat, M. Castignolles, A. Loiseau, V. Semet, and V. T. Binh, “Electrical and field emission investigation of individual carbon nanotubes from plasma enhanced chemical vapour deposition,” Diamond Relat. Mater. 12, 422–428 (2003).
[CrossRef]

Lee, S. H.

I. S. Baik, S. Y. Jeon, and S. H. Lee, “Electrical-field effect on carbon nanotubes in a twisted nematic liquid crystal cell,” Appl. Phy. Lett. 87, 263110 (2005).
[CrossRef]

Legagneux, P.

K. B. K. Teo, E. Minoux, L. Hudanski, F. Peauger, J.-P. Schnell, L. Gangloff, P. Legagneux, D. Dieumgard, G. A. J. Amaratunga, and W. I. Milne, “Microwave devices: carbon nanotubes as cold cathodes,” Nature 437, 968 (2005).
[CrossRef] [PubMed]

W. I. Milne, K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, S. B. Lee, D. G. Hasko, H. Ahmed, O. Groening, P. Legagneux, L. Gangloff, J. P. Schnell, G. Pirio, D. Pribat, M. Castignolles, A. Loiseau, V. Semet, and V. T. Binh, “Electrical and field emission investigation of individual carbon nanotubes from plasma enhanced chemical vapour deposition,” Diamond Relat. Mater. 12, 422–428 (2003).
[CrossRef]

K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, W. I. Milne, D. G. Hasko, G. Pirio, P. Legagneux, F. Wyczisk, and D. Pribat, “Uniform patterned growth of carbon nanotubes without surface carbon,” Appl. Phys. Lett. 79, 1534–1536 (2001).
[CrossRef]

Li, Y.

Loiseau, A.

W. I. Milne, K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, S. B. Lee, D. G. Hasko, H. Ahmed, O. Groening, P. Legagneux, L. Gangloff, J. P. Schnell, G. Pirio, D. Pribat, M. Castignolles, A. Loiseau, V. Semet, and V. T. Binh, “Electrical and field emission investigation of individual carbon nanotubes from plasma enhanced chemical vapour deposition,” Diamond Relat. Mater. 12, 422–428 (2003).
[CrossRef]

Lu, X. J.

Milne, W. I.

T. Wilkinson, X. Wang, K. B. K. Teo, and W. I. Milne, “Sparse multiwall carbon nanotube electrode arrays for liquid-crystal photonic devices,” Adv. Mater. 20, 363–366 (2008).
[CrossRef]

K. B. K. Teo, E. Minoux, L. Hudanski, F. Peauger, J.-P. Schnell, L. Gangloff, P. Legagneux, D. Dieumgard, G. A. J. Amaratunga, and W. I. Milne, “Microwave devices: carbon nanotubes as cold cathodes,” Nature 437, 968 (2005).
[CrossRef] [PubMed]

W. I. Milne, K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, S. B. Lee, D. G. Hasko, H. Ahmed, O. Groening, P. Legagneux, L. Gangloff, J. P. Schnell, G. Pirio, D. Pribat, M. Castignolles, A. Loiseau, V. Semet, and V. T. Binh, “Electrical and field emission investigation of individual carbon nanotubes from plasma enhanced chemical vapour deposition,” Diamond Relat. Mater. 12, 422–428 (2003).
[CrossRef]

K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, W. I. Milne, D. G. Hasko, G. Pirio, P. Legagneux, F. Wyczisk, and D. Pribat, “Uniform patterned growth of carbon nanotubes without surface carbon,” Appl. Phys. Lett. 79, 1534–1536 (2001).
[CrossRef]

Minoux, E.

K. B. K. Teo, E. Minoux, L. Hudanski, F. Peauger, J.-P. Schnell, L. Gangloff, P. Legagneux, D. Dieumgard, G. A. J. Amaratunga, and W. I. Milne, “Microwave devices: carbon nanotubes as cold cathodes,” Nature 437, 968 (2005).
[CrossRef] [PubMed]

Modi, A.

A. Modi, N. Koratkar, E. Lass, B. Wei, and P. M. Ajayan, “Miniaturized gas ionization sensors using carbon nanotubes,” Nature 424, 171 (2003).
[CrossRef] [PubMed]

Morales, P.

I. Dierking, G. Scalia, and P. Morales, “Liquid crystal–carbon nanotube dispersions,” J. Appl. Phy. 97, 044309 (2005).
[CrossRef]

Nose, T.

T. Nose and S. Sato, “Application of liquid crystal microlens in optical fiber switch,” Trans. IEICE 75-C1, 155–163 (1992) (in Japanese).

T. Nose and S. Sato, “LCD devices obtained using scattering properties of microlens effects,” Proc. Soc. Inf. Disp. 32, 177–181 (1991).

T. Nose and S. Sato, “Optical properties of liquid-crystal microlens,” Proc. SPIE 1230, 17 (1990).

T. Nose and S. Sato, “A liquid crystal microlens obtained with a non-uniform electric field,” Liq. Cryst. 5, 1425–1433 (1989).
[CrossRef]

Ordejón, P.

J. M. Soler, E. Artacho, J. D. Gale, A. García, J. Junquera, P. Ordejón, and D. Sánchez-Portal, “The SIESTA method for ab initio order-N materials simulation,” J. Phys. Condens. Matter 14, 2745–2779 (2002).
[CrossRef]

Pan, H. C.

C. Y. Huang, C. Y. Hu, and H. C. Pan, “Electrooptical responses of carbon nanotube-doped liquid crystal devices,” Jpn. J. Appl. Phys. 44, 8077–8081 (2005).
[CrossRef]

Peauger, F.

K. B. K. Teo, E. Minoux, L. Hudanski, F. Peauger, J.-P. Schnell, L. Gangloff, P. Legagneux, D. Dieumgard, G. A. J. Amaratunga, and W. I. Milne, “Microwave devices: carbon nanotubes as cold cathodes,” Nature 437, 968 (2005).
[CrossRef] [PubMed]

Pirio, G.

W. I. Milne, K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, S. B. Lee, D. G. Hasko, H. Ahmed, O. Groening, P. Legagneux, L. Gangloff, J. P. Schnell, G. Pirio, D. Pribat, M. Castignolles, A. Loiseau, V. Semet, and V. T. Binh, “Electrical and field emission investigation of individual carbon nanotubes from plasma enhanced chemical vapour deposition,” Diamond Relat. Mater. 12, 422–428 (2003).
[CrossRef]

K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, W. I. Milne, D. G. Hasko, G. Pirio, P. Legagneux, F. Wyczisk, and D. Pribat, “Uniform patterned growth of carbon nanotubes without surface carbon,” Appl. Phys. Lett. 79, 1534–1536 (2001).
[CrossRef]

Pribat, D.

W. I. Milne, K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, S. B. Lee, D. G. Hasko, H. Ahmed, O. Groening, P. Legagneux, L. Gangloff, J. P. Schnell, G. Pirio, D. Pribat, M. Castignolles, A. Loiseau, V. Semet, and V. T. Binh, “Electrical and field emission investigation of individual carbon nanotubes from plasma enhanced chemical vapour deposition,” Diamond Relat. Mater. 12, 422–428 (2003).
[CrossRef]

K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, W. I. Milne, D. G. Hasko, G. Pirio, P. Legagneux, F. Wyczisk, and D. Pribat, “Uniform patterned growth of carbon nanotubes without surface carbon,” Appl. Phys. Lett. 79, 1534–1536 (2001).
[CrossRef]

Sánchez-Portal, D.

J. M. Soler, E. Artacho, J. D. Gale, A. García, J. Junquera, P. Ordejón, and D. Sánchez-Portal, “The SIESTA method for ab initio order-N materials simulation,” J. Phys. Condens. Matter 14, 2745–2779 (2002).
[CrossRef]

Sato, S.

S. Sato, “Applications of liquid crystals to variable-focusing lenses,” Opt. Rev. 6, 471–485 (1999).
[CrossRef]

T. Nose and S. Sato, “Application of liquid crystal microlens in optical fiber switch,” Trans. IEICE 75-C1, 155–163 (1992) (in Japanese).

T. Nose and S. Sato, “LCD devices obtained using scattering properties of microlens effects,” Proc. Soc. Inf. Disp. 32, 177–181 (1991).

T. Nose and S. Sato, “Optical properties of liquid-crystal microlens,” Proc. SPIE 1230, 17 (1990).

T. Nose and S. Sato, “A liquid crystal microlens obtained with a non-uniform electric field,” Liq. Cryst. 5, 1425–1433 (1989).
[CrossRef]

Scalia, G.

I. Dierking, G. Scalia, and P. Morales, “Liquid crystal–carbon nanotube dispersions,” J. Appl. Phy. 97, 044309 (2005).
[CrossRef]

Schnell, J. P.

W. I. Milne, K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, S. B. Lee, D. G. Hasko, H. Ahmed, O. Groening, P. Legagneux, L. Gangloff, J. P. Schnell, G. Pirio, D. Pribat, M. Castignolles, A. Loiseau, V. Semet, and V. T. Binh, “Electrical and field emission investigation of individual carbon nanotubes from plasma enhanced chemical vapour deposition,” Diamond Relat. Mater. 12, 422–428 (2003).
[CrossRef]

Schnell, J.-P.

K. B. K. Teo, E. Minoux, L. Hudanski, F. Peauger, J.-P. Schnell, L. Gangloff, P. Legagneux, D. Dieumgard, G. A. J. Amaratunga, and W. I. Milne, “Microwave devices: carbon nanotubes as cold cathodes,” Nature 437, 968 (2005).
[CrossRef] [PubMed]

Semet, V.

W. I. Milne, K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, S. B. Lee, D. G. Hasko, H. Ahmed, O. Groening, P. Legagneux, L. Gangloff, J. P. Schnell, G. Pirio, D. Pribat, M. Castignolles, A. Loiseau, V. Semet, and V. T. Binh, “Electrical and field emission investigation of individual carbon nanotubes from plasma enhanced chemical vapour deposition,” Diamond Relat. Mater. 12, 422–428 (2003).
[CrossRef]

Soler, J. M.

J. M. Soler, E. Artacho, J. D. Gale, A. García, J. Junquera, P. Ordejón, and D. Sánchez-Portal, “The SIESTA method for ab initio order-N materials simulation,” J. Phys. Condens. Matter 14, 2745–2779 (2002).
[CrossRef]

Teo, K. B. K.

T. Wilkinson, X. Wang, K. B. K. Teo, and W. I. Milne, “Sparse multiwall carbon nanotube electrode arrays for liquid-crystal photonic devices,” Adv. Mater. 20, 363–366 (2008).
[CrossRef]

K. B. K. Teo, E. Minoux, L. Hudanski, F. Peauger, J.-P. Schnell, L. Gangloff, P. Legagneux, D. Dieumgard, G. A. J. Amaratunga, and W. I. Milne, “Microwave devices: carbon nanotubes as cold cathodes,” Nature 437, 968 (2005).
[CrossRef] [PubMed]

W. I. Milne, K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, S. B. Lee, D. G. Hasko, H. Ahmed, O. Groening, P. Legagneux, L. Gangloff, J. P. Schnell, G. Pirio, D. Pribat, M. Castignolles, A. Loiseau, V. Semet, and V. T. Binh, “Electrical and field emission investigation of individual carbon nanotubes from plasma enhanced chemical vapour deposition,” Diamond Relat. Mater. 12, 422–428 (2003).
[CrossRef]

K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, W. I. Milne, D. G. Hasko, G. Pirio, P. Legagneux, F. Wyczisk, and D. Pribat, “Uniform patterned growth of carbon nanotubes without surface carbon,” Appl. Phys. Lett. 79, 1534–1536 (2001).
[CrossRef]

Tolimieri, R.

Wang, X.

T. Wilkinson, X. Wang, K. B. K. Teo, and W. I. Milne, “Sparse multiwall carbon nanotube electrode arrays for liquid-crystal photonic devices,” Adv. Mater. 20, 363–366 (2008).
[CrossRef]

Wei, B.

A. Modi, N. Koratkar, E. Lass, B. Wei, and P. M. Ajayan, “Miniaturized gas ionization sensors using carbon nanotubes,” Nature 424, 171 (2003).
[CrossRef] [PubMed]

Wilkinson, T.

T. Wilkinson, X. Wang, K. B. K. Teo, and W. I. Milne, “Sparse multiwall carbon nanotube electrode arrays for liquid-crystal photonic devices,” Adv. Mater. 20, 363–366 (2008).
[CrossRef]

Wyczisk, F.

K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, W. I. Milne, D. G. Hasko, G. Pirio, P. Legagneux, F. Wyczisk, and D. Pribat, “Uniform patterned growth of carbon nanotubes without surface carbon,” Appl. Phys. Lett. 79, 1534–1536 (2001).
[CrossRef]

Zhang, Y.

Adv. Mater. (1)

T. Wilkinson, X. Wang, K. B. K. Teo, and W. I. Milne, “Sparse multiwall carbon nanotube electrode arrays for liquid-crystal photonic devices,” Adv. Mater. 20, 363–366 (2008).
[CrossRef]

Appl. Phy. Lett. (1)

I. S. Baik, S. Y. Jeon, and S. H. Lee, “Electrical-field effect on carbon nanotubes in a twisted nematic liquid crystal cell,” Appl. Phy. Lett. 87, 263110 (2005).
[CrossRef]

Appl. Phys. Lett. (1)

K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, W. I. Milne, D. G. Hasko, G. Pirio, P. Legagneux, F. Wyczisk, and D. Pribat, “Uniform patterned growth of carbon nanotubes without surface carbon,” Appl. Phys. Lett. 79, 1534–1536 (2001).
[CrossRef]

Diamond Relat. Mater. (1)

W. I. Milne, K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, S. B. Lee, D. G. Hasko, H. Ahmed, O. Groening, P. Legagneux, L. Gangloff, J. P. Schnell, G. Pirio, D. Pribat, M. Castignolles, A. Loiseau, V. Semet, and V. T. Binh, “Electrical and field emission investigation of individual carbon nanotubes from plasma enhanced chemical vapour deposition,” Diamond Relat. Mater. 12, 422–428 (2003).
[CrossRef]

J. Appl. Phy. (1)

I. Dierking, G. Scalia, and P. Morales, “Liquid crystal–carbon nanotube dispersions,” J. Appl. Phy. 97, 044309 (2005).
[CrossRef]

J. Phys. Condens. Matter (1)

J. M. Soler, E. Artacho, J. D. Gale, A. García, J. Junquera, P. Ordejón, and D. Sánchez-Portal, “The SIESTA method for ab initio order-N materials simulation,” J. Phys. Condens. Matter 14, 2745–2779 (2002).
[CrossRef]

Jpn. J. Appl. Phys. (1)

C. Y. Huang, C. Y. Hu, and H. C. Pan, “Electrooptical responses of carbon nanotube-doped liquid crystal devices,” Jpn. J. Appl. Phys. 44, 8077–8081 (2005).
[CrossRef]

Liq. Cryst. (1)

T. Nose and S. Sato, “A liquid crystal microlens obtained with a non-uniform electric field,” Liq. Cryst. 5, 1425–1433 (1989).
[CrossRef]

Nature (2)

A. Modi, N. Koratkar, E. Lass, B. Wei, and P. M. Ajayan, “Miniaturized gas ionization sensors using carbon nanotubes,” Nature 424, 171 (2003).
[CrossRef] [PubMed]

K. B. K. Teo, E. Minoux, L. Hudanski, F. Peauger, J.-P. Schnell, L. Gangloff, P. Legagneux, D. Dieumgard, G. A. J. Amaratunga, and W. I. Milne, “Microwave devices: carbon nanotubes as cold cathodes,” Nature 437, 968 (2005).
[CrossRef] [PubMed]

Opt. Lett. (1)

Opt. Rev. (1)

S. Sato, “Applications of liquid crystals to variable-focusing lenses,” Opt. Rev. 6, 471–485 (1999).
[CrossRef]

Proc. Soc. Inf. Disp. (1)

T. Nose and S. Sato, “LCD devices obtained using scattering properties of microlens effects,” Proc. Soc. Inf. Disp. 32, 177–181 (1991).

Proc. SPIE (1)

T. Nose and S. Sato, “Optical properties of liquid-crystal microlens,” Proc. SPIE 1230, 17 (1990).

Trans. IEICE (1)

T. Nose and S. Sato, “Application of liquid crystal microlens in optical fiber switch,” Trans. IEICE 75-C1, 155–163 (1992) (in Japanese).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Scanning electron microscopy (SEM) pictures for vertically aligned CNT arrays.

Fig. 2
Fig. 2

Model consists of a SWNT and a simplified LC molecule. The LC molecule has two benzene rings bridged by a carbon atom. The axis of this molecule is assumed to be in the same direction as the line connecting the center of two benzene rings. (a), (b), and (c) show both the cross view and top view. (a) The axis of LC molecule is perpendicular to and in the same plane as the axis of SWNT. (b) The axis of LC molecule is perpendicular to but in a different plane from the axis of SWNT. (c) The axis of LC molecule is parallel to the axis of SWNT. The distance between LC molecule and SWNT is defined to be between the nearest two carbon atoms in them respectively. Calculations are conducted for (a), (b), and (c) for distances between two molecules from 2 nm to 8 nm .

Fig. 3
Fig. 3

Total system energy curves A, B, C correspond to Figs. 2a, 2b, 2c, respectively. It can be noticed that the model shown as Fig. 2b has the lowest total energy, which means LC can be aligned by SWNT in such form without an electrical field. When the distance between two increases, the energy difference between any two of those three different systems becomes smaller. Thus when distance is further than 10 nm , it can be assumed that SWNT cannot align LC itself.

Fig. 4
Fig. 4

FEM consists of four vertical conductive rods with length of 10 μm that stand together spaced by less than half of their length as shown in (a). There are two parallel planar electrodes apart from each other, twice of the length of rods, which is 20 μm . 10 V is applied between them to generate DC field. (b) to (f), Top views of electrical field in different heights, from just above rods apex to near top electrode with the planar dimension of 30 μm × 20 μm . The heights from (b) to (f) are 11 μm , 13 μm , 15 μm , 17 μm , and 19 μm , respectively.

Fig. 5
Fig. 5

(a) MWNT focused by adjusting the voltage before voltage reaches the focal point for MWNT imaging. (b) Single MWNT is focused.

Fig. 6
Fig. 6

(a) Picture taken in microscope without polarization and applied voltage. (b) Picture taken with polarized light and applied voltage.

Fig. 7
Fig. 7

(a) Bright dots in the middle of black dots shows the focalization of reflected light. (b) By adjusting voltage in small range, bright dots become out of focus if the microscope lens keeps the same position.

Tables (1)

Tables Icon

Table 1 Focal Length of Microlens Adjusted by Voltage

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

f = ( D / 2 ) 2 2 δ n t ,

Metrics