Abstract

We present an image processing method for nondirectional edge extraction/enhancement. The method is based on the capability of twisted-nematic liquid-crystal displays (LCDs) to traduce the image information in changes of the state of polarization of the light, which allows us to generate simultaneously a “positive” and a “negative” (i.e., contrast-reversed) replica of the digital image displayed on the LCD. The negative image is low-pass filtered in a novel polarization-selective 4f optical processor. When the smoothed negative image is imagined together with the original image, an image with nondirectional edge enhancement is obtained. Unlike other Fourier methods presented in the literature, the proposed technique provides a simple way to control the relative amount of high frequencies present in the final image. The proposed method does not involve numerical processing, and, thus, it could be a useful tool for edge extraction/enhancement in large images in real-time applications. Validation experiments are presented.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Marr and E. Hildreth, “Theory of edge detection,” Proc. Roy. Soc. London B 207, 187–217 (1980).
  2. J. Canny, “A computational approach to edge detection,” IEEE Trans. Pattern Anal. Mach. Intell. PAMI-8, 679–698 (1986).
    [CrossRef]
  3. L. Ding and A. Goshtasby, “On the Canny edge detector,” Patt. Recog. 34, 721–725 (2001).
    [CrossRef]
  4. Y. Allusse, P. Horain, A. Agarwal, and C. Saipriyadarshn, “GpuCV: A GPU-accelerated framework for image processing and computer vision,” in Advances in Visual Computing: 4th International Symposium, ISVC, Part II, G.Bebis, R.Boyle, B.Parvin, D.Koracin, P.Remagnino, F.Porikli, J.Peters, J.Koslowski, L.Arns, Y.K.Chun, T.-M.Rhyne, and L.Monroe, eds. (Springer-Verlag, 2008), pp. 430–439.
  5. T. Luft, C. Colditz, and O. Deussen, “Image enhancement by unsharp masking the depth buffer,” ACM Trans. Graph. 25, 1206–1213 (2006).
    [CrossRef]
  6. C. S. Yelleswarapu, S. R. Kothapalli, and D. V. G. L. N. Rao, “Optical Fourier techniques for medical image processing and phase contrast imaging,” Opt. Commun. 281, 1876–1888(2008).
    [CrossRef] [PubMed]
  7. J. P. Huignard and J. P. Herriau, “Real-time coherent object edge reconstruction with Bi12SiO20 crystals,” Appl. Opt. 17, 2671–2672 (1978).
    [CrossRef] [PubMed]
  8. T. Y. Chang, J. H. Hong, and Pochi Yeh, “Spatial amplification: an image-processing technique using the selective amplification of spatial frequencies,” Opt. Lett. 15, 743–745 (1990).
    [CrossRef] [PubMed]
  9. R. Thoma, N. Hampp, and C. Brauchle, “Bacteriorhodopsin films as spatial light modulators for nonlinear-optical filtering,” Opt. Lett. 16, 651–653 (1991).
    [CrossRef] [PubMed]
  10. M. Storrs, D. J. Mehrl, and J. F. Walkup, “Programmable spatial filtering with bacteriorhodopsin,” Appl. Opt. 35, 4632–4636 (1996).
    [CrossRef] [PubMed]
  11. S. R. Kothapalli, P. Wu, C. S. Yelleswarapu, and D. V. G. L. N. Rao, “Nonlinear optical Fourier filtering technique for medical image processing,” J. Biomed. Opt. 10, 044028 (2005).
    [CrossRef]
  12. Casasent and J. Chen, “Nonlinear local image preprocessing using coherent optical techniques,” Appl. Opt. 22, 808–814(1983).
    [CrossRef] [PubMed]
  13. J. Mazzaferri and S. Ledesma, “Rotation invariant real-time optical edge detector,” Opt. Commun. 272, 367–376 (2007).
    [CrossRef]
  14. A. Hermerschmidt, “OptiXplorer—optics experiments with an addressable spatial light modulator,” http://www.holoeye.com/download_daten/OptiXplorer_presentation.pdf.
  15. J. L. Flores and J. A. Ferrari, “Orientation-selective edge detection/enhancement using the irradiance transport equation,” Appl. Opt. 49, 619–624 (2010).
    [CrossRef] [PubMed]
  16. J. A. Ferrari, J. L. Flores, and G. Garcia-Torales, “Directional edge enhancement using a liquid-crystal display,” Opt. Commun. 283, 2803–2806 (2010).
    [CrossRef]
  17. J. A. Ferrari, J. L. Flores, C. D. Perciante, and E. Frins, “Edge enhancement and image equalization by unsharp masking using self-adaptive photochromic filters,” Appl. Opt. 48, 3570–3579 (2009).
    [CrossRef] [PubMed]
  18. T. E. Gureyev, A. W. Stevenson, Ya. I. Nesterets, and S. W. Wilkins, “Image deblurring by means of defocus,” Opt. Commun. 240, 81–88 (2004).
    [CrossRef]
  19. T. E. Gureyev, Ya. I. Nesterets, A. W. Stevenson, and S. W. Wilkins, “A method for local deconvolution,” Appl. Opt. 42, 6488–6494 (2003).
    [CrossRef] [PubMed]

2010 (2)

J. A. Ferrari, J. L. Flores, and G. Garcia-Torales, “Directional edge enhancement using a liquid-crystal display,” Opt. Commun. 283, 2803–2806 (2010).
[CrossRef]

J. L. Flores and J. A. Ferrari, “Orientation-selective edge detection/enhancement using the irradiance transport equation,” Appl. Opt. 49, 619–624 (2010).
[CrossRef] [PubMed]

2009 (1)

2008 (1)

C. S. Yelleswarapu, S. R. Kothapalli, and D. V. G. L. N. Rao, “Optical Fourier techniques for medical image processing and phase contrast imaging,” Opt. Commun. 281, 1876–1888(2008).
[CrossRef] [PubMed]

2007 (1)

J. Mazzaferri and S. Ledesma, “Rotation invariant real-time optical edge detector,” Opt. Commun. 272, 367–376 (2007).
[CrossRef]

2006 (1)

T. Luft, C. Colditz, and O. Deussen, “Image enhancement by unsharp masking the depth buffer,” ACM Trans. Graph. 25, 1206–1213 (2006).
[CrossRef]

2005 (1)

S. R. Kothapalli, P. Wu, C. S. Yelleswarapu, and D. V. G. L. N. Rao, “Nonlinear optical Fourier filtering technique for medical image processing,” J. Biomed. Opt. 10, 044028 (2005).
[CrossRef]

2004 (1)

T. E. Gureyev, A. W. Stevenson, Ya. I. Nesterets, and S. W. Wilkins, “Image deblurring by means of defocus,” Opt. Commun. 240, 81–88 (2004).
[CrossRef]

2003 (1)

2001 (1)

L. Ding and A. Goshtasby, “On the Canny edge detector,” Patt. Recog. 34, 721–725 (2001).
[CrossRef]

1996 (1)

1991 (1)

1990 (1)

1986 (1)

J. Canny, “A computational approach to edge detection,” IEEE Trans. Pattern Anal. Mach. Intell. PAMI-8, 679–698 (1986).
[CrossRef]

1983 (1)

1980 (1)

D. Marr and E. Hildreth, “Theory of edge detection,” Proc. Roy. Soc. London B 207, 187–217 (1980).

1978 (1)

Agarwal, A.

Y. Allusse, P. Horain, A. Agarwal, and C. Saipriyadarshn, “GpuCV: A GPU-accelerated framework for image processing and computer vision,” in Advances in Visual Computing: 4th International Symposium, ISVC, Part II, G.Bebis, R.Boyle, B.Parvin, D.Koracin, P.Remagnino, F.Porikli, J.Peters, J.Koslowski, L.Arns, Y.K.Chun, T.-M.Rhyne, and L.Monroe, eds. (Springer-Verlag, 2008), pp. 430–439.

Allusse, Y.

Y. Allusse, P. Horain, A. Agarwal, and C. Saipriyadarshn, “GpuCV: A GPU-accelerated framework for image processing and computer vision,” in Advances in Visual Computing: 4th International Symposium, ISVC, Part II, G.Bebis, R.Boyle, B.Parvin, D.Koracin, P.Remagnino, F.Porikli, J.Peters, J.Koslowski, L.Arns, Y.K.Chun, T.-M.Rhyne, and L.Monroe, eds. (Springer-Verlag, 2008), pp. 430–439.

Brauchle, C.

Canny, J.

J. Canny, “A computational approach to edge detection,” IEEE Trans. Pattern Anal. Mach. Intell. PAMI-8, 679–698 (1986).
[CrossRef]

Casasent,

Chang, T. Y.

Chen, J.

Colditz, C.

T. Luft, C. Colditz, and O. Deussen, “Image enhancement by unsharp masking the depth buffer,” ACM Trans. Graph. 25, 1206–1213 (2006).
[CrossRef]

Deussen, O.

T. Luft, C. Colditz, and O. Deussen, “Image enhancement by unsharp masking the depth buffer,” ACM Trans. Graph. 25, 1206–1213 (2006).
[CrossRef]

Ding, L.

L. Ding and A. Goshtasby, “On the Canny edge detector,” Patt. Recog. 34, 721–725 (2001).
[CrossRef]

Ferrari, J. A.

Flores, J. L.

Frins, E.

Garcia-Torales, G.

J. A. Ferrari, J. L. Flores, and G. Garcia-Torales, “Directional edge enhancement using a liquid-crystal display,” Opt. Commun. 283, 2803–2806 (2010).
[CrossRef]

Goshtasby, A.

L. Ding and A. Goshtasby, “On the Canny edge detector,” Patt. Recog. 34, 721–725 (2001).
[CrossRef]

Gureyev, T. E.

T. E. Gureyev, A. W. Stevenson, Ya. I. Nesterets, and S. W. Wilkins, “Image deblurring by means of defocus,” Opt. Commun. 240, 81–88 (2004).
[CrossRef]

T. E. Gureyev, Ya. I. Nesterets, A. W. Stevenson, and S. W. Wilkins, “A method for local deconvolution,” Appl. Opt. 42, 6488–6494 (2003).
[CrossRef] [PubMed]

Hampp, N.

Hermerschmidt, A.

A. Hermerschmidt, “OptiXplorer—optics experiments with an addressable spatial light modulator,” http://www.holoeye.com/download_daten/OptiXplorer_presentation.pdf.

Herriau, J. P.

Hildreth, E.

D. Marr and E. Hildreth, “Theory of edge detection,” Proc. Roy. Soc. London B 207, 187–217 (1980).

Hong, J. H.

Horain, P.

Y. Allusse, P. Horain, A. Agarwal, and C. Saipriyadarshn, “GpuCV: A GPU-accelerated framework for image processing and computer vision,” in Advances in Visual Computing: 4th International Symposium, ISVC, Part II, G.Bebis, R.Boyle, B.Parvin, D.Koracin, P.Remagnino, F.Porikli, J.Peters, J.Koslowski, L.Arns, Y.K.Chun, T.-M.Rhyne, and L.Monroe, eds. (Springer-Verlag, 2008), pp. 430–439.

Huignard, J. P.

Kothapalli, S. R.

C. S. Yelleswarapu, S. R. Kothapalli, and D. V. G. L. N. Rao, “Optical Fourier techniques for medical image processing and phase contrast imaging,” Opt. Commun. 281, 1876–1888(2008).
[CrossRef] [PubMed]

S. R. Kothapalli, P. Wu, C. S. Yelleswarapu, and D. V. G. L. N. Rao, “Nonlinear optical Fourier filtering technique for medical image processing,” J. Biomed. Opt. 10, 044028 (2005).
[CrossRef]

Ledesma, S.

J. Mazzaferri and S. Ledesma, “Rotation invariant real-time optical edge detector,” Opt. Commun. 272, 367–376 (2007).
[CrossRef]

Luft, T.

T. Luft, C. Colditz, and O. Deussen, “Image enhancement by unsharp masking the depth buffer,” ACM Trans. Graph. 25, 1206–1213 (2006).
[CrossRef]

Marr, D.

D. Marr and E. Hildreth, “Theory of edge detection,” Proc. Roy. Soc. London B 207, 187–217 (1980).

Mazzaferri, J.

J. Mazzaferri and S. Ledesma, “Rotation invariant real-time optical edge detector,” Opt. Commun. 272, 367–376 (2007).
[CrossRef]

Mehrl, D. J.

Nesterets, Ya. I.

T. E. Gureyev, A. W. Stevenson, Ya. I. Nesterets, and S. W. Wilkins, “Image deblurring by means of defocus,” Opt. Commun. 240, 81–88 (2004).
[CrossRef]

T. E. Gureyev, Ya. I. Nesterets, A. W. Stevenson, and S. W. Wilkins, “A method for local deconvolution,” Appl. Opt. 42, 6488–6494 (2003).
[CrossRef] [PubMed]

Perciante, C. D.

Rao, D. V. G. L. N.

C. S. Yelleswarapu, S. R. Kothapalli, and D. V. G. L. N. Rao, “Optical Fourier techniques for medical image processing and phase contrast imaging,” Opt. Commun. 281, 1876–1888(2008).
[CrossRef] [PubMed]

S. R. Kothapalli, P. Wu, C. S. Yelleswarapu, and D. V. G. L. N. Rao, “Nonlinear optical Fourier filtering technique for medical image processing,” J. Biomed. Opt. 10, 044028 (2005).
[CrossRef]

Saipriyadarshn, C.

Y. Allusse, P. Horain, A. Agarwal, and C. Saipriyadarshn, “GpuCV: A GPU-accelerated framework for image processing and computer vision,” in Advances in Visual Computing: 4th International Symposium, ISVC, Part II, G.Bebis, R.Boyle, B.Parvin, D.Koracin, P.Remagnino, F.Porikli, J.Peters, J.Koslowski, L.Arns, Y.K.Chun, T.-M.Rhyne, and L.Monroe, eds. (Springer-Verlag, 2008), pp. 430–439.

Stevenson, A. W.

T. E. Gureyev, A. W. Stevenson, Ya. I. Nesterets, and S. W. Wilkins, “Image deblurring by means of defocus,” Opt. Commun. 240, 81–88 (2004).
[CrossRef]

T. E. Gureyev, Ya. I. Nesterets, A. W. Stevenson, and S. W. Wilkins, “A method for local deconvolution,” Appl. Opt. 42, 6488–6494 (2003).
[CrossRef] [PubMed]

Storrs, M.

Thoma, R.

Walkup, J. F.

Wilkins, S. W.

T. E. Gureyev, A. W. Stevenson, Ya. I. Nesterets, and S. W. Wilkins, “Image deblurring by means of defocus,” Opt. Commun. 240, 81–88 (2004).
[CrossRef]

T. E. Gureyev, Ya. I. Nesterets, A. W. Stevenson, and S. W. Wilkins, “A method for local deconvolution,” Appl. Opt. 42, 6488–6494 (2003).
[CrossRef] [PubMed]

Wu, P.

S. R. Kothapalli, P. Wu, C. S. Yelleswarapu, and D. V. G. L. N. Rao, “Nonlinear optical Fourier filtering technique for medical image processing,” J. Biomed. Opt. 10, 044028 (2005).
[CrossRef]

Yeh, Pochi

Yelleswarapu, C. S.

C. S. Yelleswarapu, S. R. Kothapalli, and D. V. G. L. N. Rao, “Optical Fourier techniques for medical image processing and phase contrast imaging,” Opt. Commun. 281, 1876–1888(2008).
[CrossRef] [PubMed]

S. R. Kothapalli, P. Wu, C. S. Yelleswarapu, and D. V. G. L. N. Rao, “Nonlinear optical Fourier filtering technique for medical image processing,” J. Biomed. Opt. 10, 044028 (2005).
[CrossRef]

ACM Trans. Graph. (1)

T. Luft, C. Colditz, and O. Deussen, “Image enhancement by unsharp masking the depth buffer,” ACM Trans. Graph. 25, 1206–1213 (2006).
[CrossRef]

Appl. Opt. (6)

IEEE Trans. Pattern Anal. Mach. Intell. (1)

J. Canny, “A computational approach to edge detection,” IEEE Trans. Pattern Anal. Mach. Intell. PAMI-8, 679–698 (1986).
[CrossRef]

J. Biomed. Opt. (1)

S. R. Kothapalli, P. Wu, C. S. Yelleswarapu, and D. V. G. L. N. Rao, “Nonlinear optical Fourier filtering technique for medical image processing,” J. Biomed. Opt. 10, 044028 (2005).
[CrossRef]

Opt. Commun. (4)

J. Mazzaferri and S. Ledesma, “Rotation invariant real-time optical edge detector,” Opt. Commun. 272, 367–376 (2007).
[CrossRef]

J. A. Ferrari, J. L. Flores, and G. Garcia-Torales, “Directional edge enhancement using a liquid-crystal display,” Opt. Commun. 283, 2803–2806 (2010).
[CrossRef]

T. E. Gureyev, A. W. Stevenson, Ya. I. Nesterets, and S. W. Wilkins, “Image deblurring by means of defocus,” Opt. Commun. 240, 81–88 (2004).
[CrossRef]

C. S. Yelleswarapu, S. R. Kothapalli, and D. V. G. L. N. Rao, “Optical Fourier techniques for medical image processing and phase contrast imaging,” Opt. Commun. 281, 1876–1888(2008).
[CrossRef] [PubMed]

Opt. Lett. (2)

Patt. Recog. (1)

L. Ding and A. Goshtasby, “On the Canny edge detector,” Patt. Recog. 34, 721–725 (2001).
[CrossRef]

Proc. Roy. Soc. London (1)

D. Marr and E. Hildreth, “Theory of edge detection,” Proc. Roy. Soc. London B 207, 187–217 (1980).

Other (2)

Y. Allusse, P. Horain, A. Agarwal, and C. Saipriyadarshn, “GpuCV: A GPU-accelerated framework for image processing and computer vision,” in Advances in Visual Computing: 4th International Symposium, ISVC, Part II, G.Bebis, R.Boyle, B.Parvin, D.Koracin, P.Remagnino, F.Porikli, J.Peters, J.Koslowski, L.Arns, Y.K.Chun, T.-M.Rhyne, and L.Monroe, eds. (Springer-Verlag, 2008), pp. 430–439.

A. Hermerschmidt, “OptiXplorer—optics experiments with an addressable spatial light modulator,” http://www.holoeye.com/download_daten/OptiXplorer_presentation.pdf.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Proposed setup.

Fig. 2
Fig. 2

Intensity step displayed on (a) the LCD, (b) a contrast- reverted smoothed replica, and (c) the optically processed image I out ( x , y ) . The subfigures in the bottom-right corners show intensity cuts along the dashed arrows.

Fig. 3
Fig. 3

(a) Binary image of a number “3,” (b) contrast-reverted smoothed replica, and (c) optically processed image showing nondirectional edge enhancement.

Fig. 4
Fig. 4

(a) Lena image displayed on the LCD, (b) contrast-reverted smoothed replica, and (c) optically processed image with enhanced edges.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

I 2 ( x , y ) = 1 I 1 ( x , y ) ,
I 2 ( x , y ) = 1 I 1 ( x , y ) ,
I out ( x , y ) = a · I 1 ( x , y ) + b · I 2 ( x , y ) = b + a · I 1 ( x , y ) b · I 1 ( x , y ) ,
I 1 ( x , y ) = I 1 ( x , y ) + a 20 2 I 1 ( x , y ) + higher-order derivatives ,
I out ( x , y ) = b + ( 1 2 b ) · I 1 ( x , y ) b { a 20 2 I 1 ( x , y ) + higher-order derivatives } .
I 1 ( x , y ) = + + P ( x , y ) I 1 ( x + x , y + y ) d x d y ,
I 1 ( x + x , y + x ) = I 1 ( x , y ) + I 1 x x + I 1 y y + 2 I 1 x y x y + 2 I 1 x 2 x 2 2 + 2 I 1 y 2 y 2 2 + higher-order derivatives..
I 1 ( x , y ) = a 00 I 1 ( x , y ) + a 10 I 1 x + a 01 I 1 y + a 11 2 I 1 x y + a 20 2 I 1 x 2 + a 02 2 I 1 y 2 + higher-order derivatives ,
I 1 ( x , y ) = I 1 ( x , y ) + a 20 2 I 1 x 2 + a 02 2 I 1 y 2 + higher-order devivatives .
I 1 ( x , y ) = I 1 ( x , y ) + a 20 2 I 1 ( x , y ) + higher-order derivatives ,
I 1 ( x , y ) = I 1 ( x , y ) * P ( x , y ) ,

Metrics