Abstract

In the past decade we have observed a rapid development of ultrahigh-speed optical coherence tomography (OCT) instruments, which currently enable performing cross-sectional in vivo imaging of biological samples with speeds of more than 100,000 A-scans/s. This progress in OCT technology has been achieved by the development of Fourier-domain detection techniques. Introduction of high-speed imaging capabilities lifts the primary limitation of early OCT technology by giving access to in vivo three-dimensional volumetric reconstructions on large scales within reasonable time constraints. As result, novel tools can be created that add new perspective for existing OCT applications and open new fields of research in biomedical imaging. Especially promising is the capability of performing functional imaging, which shows a potential to enable the differentiation of tissue pathologies via metabolic properties or functional responses. In this contribution the fundamental limitations and advantages of time-domain and Fourier-domain interferometric detection methods are discussed. Additionally the progress of high-speed OCT instruments and their impact on imaging applications is reviewed. Finally new perspectives on functional imaging with the use of state-of-the-art high-speed OCT technology are demonstrated.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. V. Wang and H. Wu, Biomedical Optics (Wiley, 2007).
  2. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
    [CrossRef]
  3. W.Drexler and J.G.Fujimoto, eds., Optical Coherence Tomography (Springer-Verlag, 2008).
  4. B.Bouma and G.Tearney, eds., Handbook of Optical Coherence Tomography (Marcel-Dekker, 2002).
  5. E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “In vivo retinal imaging by optical coherence tomography,” Opt. Lett. 18, 1864–1866 (1993).
    [CrossRef]
  6. M. R. Hee, C. A. Puliafito, C. Wong, J. S. Duker, E. Reichel, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography of macular holes,” Ophthalmology annual 102, 748–756 (1995).
  7. M. Wojtkowski, T. Bajraszewski, P. Targowski, and A. Kowalczyk, “Real-time in vivo imaging by high-speed spectral optical coherence tomography,” Opt. Lett. 28, 1745–1747(2003).
    [CrossRef]
  8. M. Wojtkowski, T. Bajraszewski, I. Gorczynska, P. Targowski, A. Kowalczyk, W. Wasilewski, and C. Radzewicz, “Ophthalmic imaging by spectral optical coherence tomography,” Am. J. Ophthalmol. 138, 412–419 (2004).
    [CrossRef]
  9. M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, “Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmology annual 112, 1734–1746 (2005).
    [CrossRef]
  10. N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography,” Opt. Lett. 29, 480–482 (2004).
    [CrossRef]
  11. S. H. Yun, G. J. Tearney, B. E. Bouma, B. H. Park, and J. F. de Boer, “High-speed spectral-domain optical coherence tomography at 1.3 μm wavelength,” Opt. Express 11, 2953–2963 (2003).
    [CrossRef]
  12. B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral / Fourier-domain OCT ophthalmic imaging at 70,000 to 312,500 A-scans/s,” Opt. Express 16, 15149–15169 (2008).
    [CrossRef]
  13. B. Cense, N. A. Nassif, T. C. Chen, M. C. Pierce, S.-H. Yun, B. H. Park, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography,” Opt. Express 12, 2435–2447 (2004).
    [CrossRef]
  14. M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution high-speed Fourier-domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12, 2404–2422 (2004).
    [CrossRef]
  15. N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, and J. F. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Express 12, 367–376 (2004).
    [CrossRef]
  16. J. W. Goodman, Statistical Optics (Wiley, 1985).
  17. A. Fercher, Optics in Medicine, Biology and Environmental Research: Selected Contributions to the First International Conference on Optics Within Life Sciences (Manufacturing Research and Technology) (Elsevier, 1990), pp. 221–228.
  18. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
    [CrossRef]
  19. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
    [CrossRef]
  20. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier-domain optical coherence tomography,” J. Biomed. Opt. 7, 457–463 (2002).
  21. G. Hausler and M. W. Linduer, ““Coherence radar” and “spectral radar”-new tools for dermatological diagnosis,” J. Biomed. Opt. 3, 21–31 (1998).
  22. S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22, 340–342 (1997).
    [CrossRef]
  23. A. Szkulmowska, M. Wojtkowski, I. Gorczynska, T. Bajraszewski, M. Szkulmowski, P. Targowski, A. Kowalczyk, and J. J. Kaluzny, “Coherent noise-free ophthalmic imaging by spectral optical coherence tomography,” J. Phys. D 38, 2606–2611 (2005).
    [CrossRef]
  24. M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. F. Fercher, “Full range complex spectral optical coherence tomography technique in eye imaging,” Opt. Lett. 27, 1415–1417 (2002).
    [CrossRef]
  25. A. Fercher, “Optical coherence tomography,” J. Biomed. Opt. 1, 157–173 (1996).
  26. I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski, “Anterior segment imaging with spectral OCT system using a high-speed CMOS camera,” Opt. Express 17, 4842–4858 (2009).
    [CrossRef]
  27. F. Lexer, C. K. Hitzenberger, A. F. Fercher, and M. Kulhavy, “Wavelength-tuning interferometry of intraocular distances,” Appl. Opt. 36, 6548–6553 (1997).
    [CrossRef]
  28. S. Yun, G. Tearney, J. de Boer, N. Iftimia, and B. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express 11, 2953–2963 (2003).
    [CrossRef]
  29. S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, “High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter,” Opt. Lett. 28, 1981–1983 (2003).
    [CrossRef]
  30. S. W. Huang, A. D. Aguirre, R. A. Huber, D. C. Adler, and J. G. Fujimoto, “Swept source optical coherence microscopy using a Fourier-domain mode-locked laser,” Opt. Express 15, 6210–6217 (2007).
    [CrossRef]
  31. R. Huber, D. C. Adler, V. J. Srinivasan, and J. G. Fujimoto, “Fourier-domain mode locking at 1050 nm for ultrahigh-speed optical coherence tomography of the human retina at 236,000 axial scans per second,” Opt. Lett. 32, 2049–2051 (2007).
    [CrossRef]
  32. R. Huber, M. Wojtkowski, J. G. Fujimoto, J. Y. Jiang, and A. E. Cable, “Three-dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300 nm,” Opt. Express 13, 10523–10538 (2005).
    [CrossRef]
  33. R. Huber, M. Wojtkowski, K. Taira, J. Fujimoto, and K. Hsu, “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles,” Opt. Express 13, 3513–3528 (2005).
    [CrossRef]
  34. M. H. Niemz, Laser-Tissue Interactions (Springer-Verlag, 1996).
  35. J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nature Med. 1, 970–972 (1995).
  36. G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitvis, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037–2039 (1997).
    [CrossRef]
  37. B. E. Bouma, S. H. Yun, B. J. Vakoc, M. J. Suter, and G. J. Tearney, “Fourier-domain optical coherence tomography: recent advances toward clinical utility,” Curr. Opin. Biotechnol. 20, 111–118 (2009).
    [CrossRef]
  38. G. J. Tearney, S. Waxman, M. Shishkov, B. J. Vakoc, M. J. Suter, M. I. Freilich, A. E. Desjardins, W. Y. Oh, L. A. Bartlett, M. Rosenberg, and B. E. Bouma, “Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging,” JACC Cardiovasc. Imaging 1, 752–761 (2008).
  39. J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Arch. Ophthalmol. 112, 1584–1589 (1994).
  40. M. Gora, K. Karnowski, M. Szkulmowski, B. J. Kaluzny, R. Huber, A. Kowalczyk, and M. Wojtkowski, “Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range,” Opt. Express 17, 14880–14894 (2009).
    [CrossRef]
  41. M. Miura, K. Kawana, T. Iwasaki, T. Kiuchi, T. Oshika, H. Mori, M. Yamanari, S. Makita, T. Yatagai, and Y. Yasuno, “Three-dimensional anterior segment optical coherence tomography of filtering blebs after trabeculectomy,” J. Glaucoma 17, 193–196 (2008).
  42. B. Povazay, K. Bizheva, B. Hermann, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, C. Schubert, P. K. Ahnelt, M. Mei, R. Holzwarth, W. J. Wadsworth, J. C. Knight, and P. S. Russel, “Enhanced visualization of choroidal vessels using ultrahigh resolution ophthalmic OCT at 1050 nm,” Opt. Express 11, 1980–1986 (2003).
  43. A. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, A. Chavez-Pirson, and W. Drexler, “In vivo retinal optical coherence tomography at 1040 nm-enhanced penetration into the choroid,” Opt. Express 13, 3252–3258 (2005).
    [CrossRef]
  44. B. Povazay, B. Hermann, B. Hofer, V. Kajic, E. Simpson, T. Bridgford, and W. Drexler, “Wide-field optical coherence tomography of the choroid in vivo,” Invest. Ophthalmol. Vis. Sci. 50, 1856–1863 (2009).
  45. S. Makita, T. Fabritius, and Y. Yasuno, “Full-range, high-speed, high-resolution 1 μm spectral-domain optical coherence tomography using BM-scan for volumetric imaging of the human posterior eye,” Opt. Express 16, 8406–8420(2008).
    [CrossRef]
  46. A. Dubois, K. Grieve, G. Moneron, R. Lecaque, L. Vabre, and C. Boccara, “Ultrahigh-resolution full-field optical coherence tomography,” Appl. Opt. 43, 2874–2883 (2004).
    [CrossRef]
  47. A. Dubois, J. Moreau, and C. Boccara, “Spectroscopic ultrahigh-resolution full-field optical coherence microscopy,” Opt. Express 16, 17082–17091 (2008).
    [CrossRef]
  48. M. Akiba, K. P. Chan, and N. Tanno, “Full-field optical coherence tomography by 2D heterodyne detection with a pair of CCD cameras,” Opt. Lett. 28, 816–818 (2003).
    [CrossRef]
  49. A. G. Podoleanu, G. M. Dobre, and D. A. Jackson, “En-face coherence imaging using galvanometer scanner modulation,” Opt. Lett. 23, 147–149 (1998).
    [CrossRef]
  50. G. M. Dobre, A. G. Podoleanu, and R. B. Rosen, “Simultaneous optical coherence tomography—Indocyanine Green dye fluorescence imaging system for investigations of the eye’s fundus,” Opt. Lett. 30, 58–60 (2005).
    [CrossRef]
  51. C. K. Hitzenberger, P. Trost, P. W. Lo, and Q. Y. Zhou, “Three-dimensional imaging of the human retina by high-speed optical coherence tomography,” Opt. Express 11, 2753–2761(2003).
  52. A. G. Podoleanu, “Unbalanced versus balanced operation in an optical coherence tomography system,” Appl. Opt. 39, 173–182(2000).
    [CrossRef]
  53. K. Grieve, G. Moneron, A. Dubois, J.-F. Le Gargasson, and C. Boccara, “Ultrahigh resolution ex vivo ocular imaging using ultrashort acquisition time en face optical coherence tomography,” J. Opt. A Pure Appl. Opt. 7, 368–373 (2005).
    [CrossRef]
  54. M. V. Sarunic, S. Weinberg, and J. A. Izatt, “Full-field swept-source phase microscopy,” Opt. Lett. 31, 1462–1464(2006).
    [CrossRef]
  55. R. B. Rosen, M. Hathaway, J. Rogers, J. Pedro, P. Garcia, G. M. Dobre, and A. G. Podoleanu, “Simultaneous OCT/SLO/ICG imaging,” Invest. Ophthalmol. Vis. Sci. 50, 851–860(2009).
  56. M. A. Parker, Physics of Optoelectronics (Taylor & Francis, 2005).
  57. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of Fourier-domain vs. time domain optical coherence tomography,” Opt. Express 11, 889–894 (2003).
  58. M. A. Choma, M. V. Sarunic, C. H. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier-domain optical coherence tomography,” Opt. Express 11, 2183–2189(2003).
  59. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28, 2067–2069 (2003).
    [CrossRef]
  60. A. M. Rollins and J. A. Izatt, “Optimal interferometer designs for optical coherence tomography,” Opt. Lett. 24, 1484–1486(1999).
    [CrossRef]
  61. B. E. Saleh and M. Teich, Fundamentals of Photonics(Wiley, 1991).
  62. J. Ballif, R. Gianotti, P. Chavanne, R. Walti, and R. P. Salathe, “Rapid and scalable scans at 21 m/s in optical low-coherence reflectometry,” Opt. Lett. 22, 757–759 (1997).
    [CrossRef]
  63. G. J. Tearney, B. E. Bouma, S. A. Boppart, B. Golubovic, E. A. Swanson, and J. G. Fujimoto, “Rapid acquisition of in vivo biological images by use of optical coherence tomography,” Opt. Lett. 21, 1408–1410 (1996).
    [CrossRef]
  64. A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, “Programmable femtosecond pulse shaping by use of a multielement liquid-crystal phase modulator,” Opt. Lett. 15, 326(1990).
    [CrossRef]
  65. K. F. Kwong, D. Yankelevich, K. C. Chu, J. P. Heritage, and A. Dienes, “400 Hz mechanical scanning optical delay line,” Opt. Lett. 18, 558–560 (1993).
    [CrossRef]
  66. G. J. Tearney, B. E. Bouma, and J. G. Fujimoto, “High-speed phase- and group-delay scanning with a grating-based phase control delay line,” Opt. Lett. 22, 1811–1813 (1997).
    [CrossRef]
  67. A. M. Rollins, M. D. Kulkarni, S. Yazdanfar, R. Ung-arunyawee, and J. A. Izatt, “In vivo video rate optical coherence tomography,” Opt. Express 3, 219–229 (1998).
    [CrossRef]
  68. T. Bajraszewski, M. Wojtkowski, A. Szkulmowska, W. Fojt, M. Szkulmowski, and A. Kowalczyk, “Fourier-domain optical coherence tomography using optical frequency comb,” Proc. SPIE 6429, 64291F (2007).
  69. T. Bajraszewski, M. Wojtkowski, M. Szkulmowski, A. Szkulmowska, R. Huber, and A. Kowalczyk, “Improved spectral optical coherence tomography using optical frequency comb,” Opt. Express 16, 4163–4176 (2008).
    [CrossRef]
  70. A. Szkulmowska, M. Szkulmowski, D. Szlag, A. Kowalczyk, and M. Wojtkowski, “Three-dimensional quantitative imaging of retinal and choroidal blood flow velocity using joint spectral and time-domain optical coherence tomography,” Opt Express 17, 10584–10598 (2009).
  71. B. Golubovic, B. Bouma, G. Tearney, and J. Fujimoto, “Optical frequency-domain reflectometry using rapid wavelength tuning of a Cr4+ forsterite laser,” Opt. Lett. 22, 1704–1706 (1997).
    [CrossRef]
  72. W. Y. Oh, S. H. Yun, G. J. Tearney, and B. E. Bouma, “115 kHz tuning repetition rate ultrahigh-speed wavelength-swept semiconductor laser,” Opt. Lett. 30, 3159–3161 (2005).
    [CrossRef]
  73. W. Y. Oh, S. H. Yun, B. J. Vakoc, G. J. Tearney, and B. E. Bouma, “Ultrahigh-speed optical frequency domain imaging and application to laser ablation monitoring,” Appl. Phys. Lett. 88, (2006).
  74. I. V. Larina, K. Furushima, M. E. Dickinson, R. R. Behringer, and K. V. Larin, “Live imaging of rat embryos with Doppler swept-source optical coherence tomography,” J. Biomed. Opt. 14, 050506 (2009).
  75. A. Mariampillai, B. A. Standish, N. R. Munce, C. Randall, G. Liu, J. Y. Jiang, A. E. Cable, I. A. Vitkin, and V. X. D. Yang, “Doppler optical cardiogram gated 2D color flow imaging at 1000 fps and 4D in vivo visualization of embryonic heart at 45 fps on a swept source OCT system,” Opt. Express 15, 1627–1638 (2007).
    [CrossRef]
  76. M. A. Choma, K. Hsu, and J. A. Izatt, “Swept source optical coherence tomography using an all-fiber 1300 nm ring laser source,” J. Biomed. Opt. 10, 044009 (2005).
  77. J. Zhang, Q. Wang, B. Rao, Z. P. Chen, and K. Hsu, “Swept laser source at 1 μm for Fourier-domain optical coherence tomography,” Appl. Phys. Lett. 89, 073901 (2006).
    [CrossRef]
  78. R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier domain mode locking (FDML): a new laser operating regime and applications for optical coherence tomography,” Opt. Express 14, 3225–3237 (2006).
    [CrossRef]
  79. B. R. Biedermann, W. Wieser, C. M. Eigenwillig, T. Klein, and R. Huber, “Dispersion, coherence and noise of Fourier-domain mode locked lasers,” Opt Express 17, 9947–9961 (2009).
  80. C. M. Eigenwillig, B. R. Biedermann, G. Palte, and R. Huber, “K-space linear Fourier-domain mode locked laser and applications for optical coherence tomography,” Opt. Express 16, 8916–8937 (2008).
    [CrossRef]
  81. B. R. Biedermann, W. Wieser, C. M. Eigenwillig, G. Palte, D. C. Adler, V. J. Srinivasan, J. G. Fujimoto, and R. Huber, “Real time en face Fourier-domain optical coherence tomography with direct hardware frequency demodulation,” Opt. Lett. 33, 2556–2558 (2008).
    [CrossRef]
  82. S. W. Huang, A. D. Aguirre, R. A. Huber, D. C. Adler, and J. G. Fujimoto, “Swept source optical coherence microscopy using a Fourier-domain mode-locked laser,” Opt Express 15, 6210–6217 (2007).
  83. R. Huber, D. C. Adler, and J. G. Fujimoto, “Buffered Fourier-domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s,” Opt. Lett. 31, 2975–2977 (2006).
    [CrossRef]
  84. A. G. Podoleanu, J. A. Rogers, D. A. Jackson, and S. Dunne, “Three-dimensional OCT images from retina and skin,” Opt. Express 7, 292–298 (2000).
    [CrossRef]
  85. B. Grajciar, M. Pircher, A. Fercher, and R. Leitgeb, “Parallel Fourier-domain optical coherence tomography for in vivo measurement of the human eye,” Opt. Express 13, 1131–1137(2005).
    [CrossRef]
  86. W. Y. Oh, B. E. Bouma, N. Iftimia, S. H. Yun, R. Yelin, and G. J. Tearney, “Ultrahigh-resolution full-field optical coherence microscopy using InGaAs camera,” Opt. Express 14, 726–735(2006).
    [CrossRef]
  87. P. Koch, G. Huttmann, H. Schleiermacher, J. Eichholz, and E. Koch, “Linear optical coherence tomography system with a downconverted fringe pattern,” Opt. Lett. 29, 1644–1646(2004).
    [CrossRef]
  88. S. Moon and D. Y. Kim, “Ultra-high-speed optical coherence tomography with a stretched pulse supercontinuum source,” Opt. Express 14, 11575–11584 (2006).
    [CrossRef]
  89. S. Sanders, D. Mattison, L. Ma, J. Jeffries, and R. Hanson, “Wavelength-agile diode-laser sensing strategies for monitoring gas properties in optically harsh flows: application in cesium-seeded pulse detonation,” Opt. Express 10, 505–514(2002).
  90. D. Choi, H. Hiro-Oka, H. Furukawa, R. Yoshimura, M. Nakanishi, K. Shimizu, and K. Ohbayashi, “Fourier-domain optical coherence tomography using optical demultiplexers imaging at 60,000,000 lines/s,” Opt. Lett. 33, 1318–1320(2008).
    [CrossRef]
  91. J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, Optical Coherence Tomography of Ocular Diseases, 2nd ed. (Slack, 2004).
  92. M. R. Hee, C. R. Baumal, C. A. Puliafito, J. S. Duker, E. Reichel, J. R. Wilkins, J. G. Coker, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography of age-related macular degeneration and choroidal neovascularization,” Ophthalmology annual 103, 1260–1270 (1996).
  93. J. S. Schuman, M. R. Hee, A. V. Arya, T. Pedut-Kloizman, C. A. Puliafito, J. G. Fujimoto, and E. A. Swanson, “Optical coherence tomography: a new tool for glaucoma diagnosis,” Curr. Opin. Ophthalmol. 6, 89–95 (1995).
  94. J. S. Schuman, M. R. Hee, C. A. Puliafito, C. Wong, T. Pedut-Kloizman, C. P. Lin, E. Hertzmark, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, “Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography,” Arch. Ophthalmol. 113, 586–596 (1995).
  95. J. S. Schuman, T. PedutKloizman, L. Pieroth, E. Hertzmark, M. R. Hee, J. R. Wilkins, J. G. Coker, C. A. Puliafito, J. G. Fujimoto, and E. A. Swanson, “Quantitation of nerve fiber layer thickness loss over time in the glaucomatous monkey model using optical coherence tomography,” Investig. Ophthal. Vis. Sci. 37, 5255–5255 (1996).
  96. R. A. Costa, M. Skaf, L. A. Melo, Jr., D. Calucci, J. A. Cardillo, J. C. Castro, D. Huang, and M. Wojtkowski, “Retinal assessment using optical coherence tomography,” Prog. Retin. Eye Res. 25, 325–353 (2006).
  97. R. A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. F. Fercher, “Ultrahigh resolution Fourier-domain optical coherence tomography,” Opt. Express 12, 2156–2165 (2004).
    [CrossRef]
  98. V. J. Srinivasan, M. Wojtkowski, A. J. Witkin, J. S. Duker, T. H. Ko, M. Carvalho, J. S. Schuman, A. Kowalczyk, and J. G. Fujimoto, “High-definition and 3-dimensional imaging of macular pathologies with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmology annual 113, 2054–2065 (2006).
    [CrossRef]
  99. S. L. Jiao, R. Knighton, X. R. Huang, G. Gregori, and C. A. Puliafito, “Simultaneous acquisition of sectional and fundus ophthalmic images with spectral-domain optical coherence tomography,” Opt. Express 13, 444–452 (2005).
    [CrossRef]
  100. B. L. Sikorski, M. Wojtkowski, J. J. Kaluzny, M. Szkulmowski, and A. Kowalczyk, “Correlation of spectral optical coherence tomography with fluorescein and indocyanine green angiography in multiple evanescent white dot syndrome,” Br. J. Ophthalmol. 92, 1552–1557 (2008).
    [CrossRef]
  101. M. Wojtkowski, B. Sikorski, I. Gorczynska, M. Gora, M. Szkulmowski, D. Bukowska, J. J. Kaluzny, J. G. Fujimoto, and A. Kowalczyk, “Comparison of reflectivity maps and outer retinal topography in retinal disease by three-dimensional Fourier-domain optical coherence tomography,” Opt. Express 17, 4189–4207 (2009).
    [CrossRef]
  102. I. Gorczynska, V. J. Srinivasan, L. N. Vuong, R. W. Chen, J. J. Liu, E. Reichel, M. Wojtkowski, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Projection OCT fundus imaging for visualising outer retinal pathology in non-exudative age-related macular degeneration,” Br. J. Ophthalmol. 93, 603–609 (2009).
  103. R. J. Zawadzki, A. R. Fuller, D. F. Wiley, B. Hamann, S. S. Choi, and J. S. Werner, “Adaptation of a support vector machine algorithm for segmentation and visualization of retinal structures in volumetric optical coherence tomography data sets,” J. Biomed. Opt. 12, 041206 (2007).
  104. J. J. Kaluzny, M. Wojtkowski, B. L. Sikorski, M. Szkulmowski, A. Szkulmowska, T. Bajraszewski, J. G. Fujimoto, J. S. Duker, J. S. Schuman, and A. Kowalczyk, “Analysis of the outer retina reconstructed by high-resolution, three-dimensional spectral domain optical coherence tomography,” Ophthalmic Surg. Lasers Imaging 40, 102–108 (2009).
  105. T. Fabritius, S. Makita, M. Miura, R. Myllyla, and Y. Yasuno, “Automated segmentation of the macula by optical coherence tomography,” Opt Express 17, 15659–15669 (2009).
  106. B. J. Kaluzny, J. J. Kaluzny, A. Szkulmowska, I. Gorczynska, M. Szkulmowski, T. Bajraszewski, M. Wojtkowski, and P. Targowski, “Spectral optical coherence tomography: a novel technique for cornea imaging,” Cornea 25, 960–965 (2006).
    [CrossRef]
  107. B. J. Kaluzny, W. Fojt, A. Szkulmowska, T. Bajraszewski, M. Wojtkowski, and A. Kowalczyk, “Spectral optical coherence tomography in video-rate and three-dimensional imaging of contact lens wear,” Optom. Vis. Sci. 84, 1104–1109 (2007).
  108. B. J. Kaluzny, A. Szkulmowska, M. Szkulmowski, T. Bajraszewski, A. Kowalczyk, and M. Wcjtkowski, “Fuchs’ endothelial dystrophy in 830 nm spectral domain optical coherence tomography,” Ophthalmic Surg. Lasers Imaging 39, S83–S85 (2008).
  109. B. J. Kaluzny, A. Szkulmowska, M. Szkulmowski, T. Bajraszewski, A. Kowalczyk, and M. Wojtkowski, “Fuchs’ endothelial dystrophy in 830 nm spectral domain optical coherence tomography,” Ophthalmic Surg. Lasers Imaging 40, 198–200 (2009).
  110. V. Christopoulos, L. Kagemann, G. Wollstein, H. Ishikawa, M. L. Gabriele, M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, J. S. Duker, D. K. Dhaliwal, and J. S. Schuman, “In vivo corneal high-speed, ultra high-resolution optical coherence tomography,” Arch. Ophthalmol. 125, 1027–1035 (2007).
  111. A. C. Cheng, S. K. Rao, S. Lau, C. K. Leung, and D. S. Lam, “Central corneal thickness measurements by ultrasound, Orbscan II, and Visante OCT after LASIK for myopia,” J. Refract. Surg. 24, 361–365 (2008).
  112. R. Navarro, L. Gonzalez, and J. L. Hernandez, “Optics of the average normal cornea from general and canonical representations of its surface topography,” J. Opt. Soc. Am. A 23, 219–232 (2006).
    [CrossRef]
  113. M. V. Sarunic, S. Asrani, and J. A. Izatt, “Imaging the ocular anterior segment with real-time, full-range Fourier-domain optical coherence tomography,” Arch. Ophthalmol. 126, 537–542 (2008).
  114. L. Plesea and A. G. Podoleanu, “Direct corneal elevation measurements using multiple delay en face optical coherence tomography,” J. Biomed. Opt. 13, 054054 (2008).
  115. D. C. Adler, C. Zhou, T. H. Tsai, J. Schmitt, Q. Huang, H. Mashimo, and J. G. Fujimoto, “Three-dimensional endomicroscopy of the human colon using optical coherence tomography,” Opt Express 17, 784–796 (2009).
  116. D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, “Three-dimensional endomicroscopy using optical coherence tomography,” Nat. Photon. 1, 709–716 (2007).
    [CrossRef]
  117. B. J. Vakoc, M. Shishko, S. H. Yun, W. Y. Oh, M. J. Suter, A. E. Desjardins, J. A. Evans, N. S. Nishioka, G. J. Tearney, and B. E. Bouma, “Comprehensive esophageal microscopy by using optical frequency-domain imaging (with video),” Gastroint. Endosc. 65, 898–905 (2007).
    [CrossRef]
  118. I. V. Larina, N. Sudheendran, M. Ghosn, J. Jiang, A. Cable, K. V. Larin, and M. E. Dickinson, “Live imaging of blood flow in mammalian embryos using Doppler swept-source optical coherence tomography,” J. Biomed. Opt. 13, 060506(2008).
  119. I. V. Larina, S. Ivers, S. Syed, M. E. Dickinson, and K. V. Larin, “Hemodynamic measurements from individual blood cells in early mammalian embryos with Doppler swept source OCT,” Opt. Lett. 34, 986–988 (2009).
    [CrossRef]
  120. M. W. Jenkins, D. C. Adler, M. Gargesha, R. Huber, F. Rothenberg, J. Belding, M. Watanabe, D. L. Wilson, J. G. Fujimoto, and A. M. Rollins, “Ultrahigh-speed optical coherence tomography imaging and visualization of the embryonic avian heart using a buffered Fourier domain mode locked laser,” Opt. Express 15, 6251–6267 (2007).
    [CrossRef]
  121. M. W. Jenkins, O. Q. Chughtai, A. N. Basavanhally, M. Watanabe, and A. M. Rollins, “In vivo gated 4D imaging of the embryonic heart using optical coherence tomography,” J. Biomed. Opt. 12, 030505 (2007).
  122. X. Wang, T. E. Milner, Z. Chen, and J. S. Nelson, “Measurement of fluid-flow-velocity profile in turbid media by the use of optical Doppler tomography,” Appl Optics 36, 144–149(1997).
  123. M. D. Kulkarni, T. G. van Leeuwen, S. Yazdanfar, and J. A. Izatt, “Velocity-estimation accuracy and frame-rate limitations in color Doppler optical coherence tomography,” Opt. Lett. 23, 1057–1059 (1998).
    [CrossRef]
  124. Z. Chen, T. E. Milner, S. Srinivas, X. Wang, A. Malekafzali, M. J. C. van Gemert, and J. S. Nelson, “Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography,” Opt. Lett. 22, 1119–1121 (1997).
    [CrossRef]
  125. J. A. Izatt, M. D. Kulkami, S. Yazdanfar, J. K. Barton, and A. J. Welch, “In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography,” Opt. Lett. 22, 1439–1441 (1997).
    [CrossRef]
  126. Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, and J. S. Nelson, “Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity,” Opt. Lett. 25, 114–116 (2000).
    [CrossRef]
  127. Y. Zhao, Z. Chen, C. Saxer, Q. Shen, S. Xiang, J. F. de Boer, and J. S. Nelson, “Doppler standard deviation imaging for clinical monitoring of in vivo human skin blood flow,” Opt. Lett. 25, 1358–1360 (2000).
    [CrossRef]
  128. R. A. Leitgeb, L. Schmetterer, W. Drexler, A. F. Fercher, R. J. Zawadzki, and T. Bajraszewski, “Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier-domain optical coherence tomography,” Opt. Express 11, 3116–3121 (2003).
  129. B. H. Park, M. C. Pierce, B. Cense, and J. F. de Boer, “Real-time multi-functional optical coherence tomography,” Opt. Express 11, 782–793 (2003).
    [CrossRef]
  130. B. R. White, M. C. Pierce, N. Nassif, B. Cense, B. H. Park, G. J. Tearney, B. E. Bouma, T. C. Chen, and J. F. de Boer, “In vivo dynamic human retinal blood flow imaging using ultrahigh-speed spectral domain optical Doppler tomography,” Opt. Express 11, 3490–3497 (2003).
  131. A. Szkulmowska, M. Szkulmowski, A. Kowalczyk, and M. Wojtkowski, “Phase-resolved Doppler optical coherence tomography—limitations and improvements,” Opt. Lett. 33, 1425–1427 (2008).
    [CrossRef]
  132. B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15, 1219–1223 (2009).
  133. T. Schmoll, C. Kolbitsch, and R. A. Leitgeb, “Ultra-high-speed volumetric tomography of human retinal blood flow,” Opt Express 17, 4166–4176 (2009).
  134. S. Yazdanfar, M. D. Kulkarni, and J. A. Izatt, “High resolution imaging of in vivo cardiac dynamics using color Doppler optical coherence tomography,” Opt. Express 1, 424–431(1997).
    [CrossRef]
  135. S. H. Yun, G. J. Tearney, J. F. de Boer, and B. E. Bouma, “Motion artifacts in optical coherence tomography with frequency-domain ranging,” Opt. Express 12, 2977–2998 (2004).
    [CrossRef]
  136. A. H. Bachmann, M. L. Villiger, C. Blatter, T. Lasser, and R. A. Leitgeb, “Resonant Doppler flow imaging and optical vivisection of retinal blood vessels,” Opt. Express 15, 408–422 (2007).
    [CrossRef]
  137. L. An and R. K. Wang, “In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography,” Opt. Express 16, 11438–11452 (2008).
    [CrossRef]
  138. Y. Jia, P. O. Bagnaninchi, Y. Yang, A. E. Haj, M. T. Hinds, S. J. Kirkpatrick, and R. K. Wang, “Doppler optical coherence tomography imaging of local fluid flow and shear stress within microporous scaffolds,” J. Biomed. Opt. 14, 034014 (2009).
  139. R. K. Wang and L. An, “Doppler optical micro-angiography for volumetric imaging of vascular perfusion in vivo,” Opt. Express 17, 8926–8940 (2009).
    [CrossRef]
  140. Y. Yasuno, S. Makita, T. Endo, G. Aoki, M. Itoh, and T. Yatagai, “Simultaneous B-M-mode scanning method for real-time full-range Fourier-domain optical coherence tomography,” Appl. Opt. 45, 1861–1865 (2006).
    [CrossRef]
  141. S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Express 14, 7821–7840 (2006).
    [CrossRef]
  142. S. Makita, T. Fabritius, and Y. Yasuno, “Quantitative retinal-blood flow measurement with three-dimensional vessel geometry determination using ultrahigh-resolution Doppler optical coherence angiography,” Opt. Lett. 33, 836–838(2008).
    [CrossRef]
  143. Y. K. Tao, K. M. Kennedy, and J. A. Izatt, “Velocity-resolved three-dimensional retinal microvessel imaging using single-pass flow imaging spectral domain optical coherence tomography,” Opt. Express 17, 4177–4188 (2009).
    [CrossRef]
  144. Y. K. Tao, M. Zhao, and J. A. Izatt, “High-speed complex conjugate resolved retinal spectral domain optical coherence tomography using sinusoidal phase modulation,” Opt. Lett. 32, 2918–2920 (2007).
    [CrossRef]
  145. M. Szkulmowski, A. Szkulmowska, T. Bajraszewski, A. Kowalczyk, and M. Wojtkowski, “Flow velocity estimation using joint spectral and time-domain optical coherence tomography,” Opt. Express 16, 6008–6025 (2008).
    [CrossRef]
  146. M. Szkulmowski, I. Grulkowski, D. Szlag, A. Szkulmowska, A. Kowalczyk, and M. Wojtkowski, “Flow velocity estimation by complex ambiguity free joint spectral and time-domain optical coherence tomography,” Opt. Express 17, 14281–14297 (2009).
    [CrossRef]
  147. T. Akkin, D. P. Dave, T. E. Milner, and H. G. Rylander, “Detection of neural activity using phase-sensitive optical low-coherence reflectometry,” Opt. Express 12, 2377–2386(2004).
    [CrossRef]
  148. T. Akkin, D. P. Dave, H. G. Rylander, and T. E. Milner, “Non-contact sub-nanometer measurement of transient surface displacement during action potential propagation,” presented at SPIE Photonics West Conference, San Jose, California, USA, 22–27 January 2005.
  149. C. Fang-Yen, M. C. Chu, H. S. Seung, R. R. Dasari, and M. S. Feld, “Noncontact measurement of nerve displacement during action potential with a dual-beam low-coherence interferometer,” Opt. Lett. 29, 2028–2030 (2004).
    [CrossRef]
  150. D. K. Hill, “The volume change resulting from stimulation of a giant nerve fibre,” J. Physiol. 111, 304–327 (1950).
  151. T. Akkin, C. Joo, and J. F. de Boer, “Depth-resolved measurement of transient structural changes during action potential propagation,” Biophys. J. 93, 1347–1353 (2007).
    [CrossRef]
  152. A. Grinvald, R. D. Frostig, E. Lieke, and R. Hildesheim, “Optical imaging of neuronal-activity,” Physiol. Rev. 68, 1285–1366 (1988).
  153. A. Villringer and B. Chance, “Non-invasive optical spectroscopy and imaging of human brain function,” Trends Neurosci. 20, 435–442 (1997).
    [CrossRef]
  154. R. U. Maheswari, H. Takaoka, R. Homma, H. Kadono, and M. Tanifuji, “Implementation of optical coherence tomography (OCT) in visualization of functional structures of cat visual cortex,” Opt. Commun. 202, 47–54 (2002).
    [CrossRef]
  155. R. U. Maheswari, H. Takaoka, H. Kadono, R. Homma, and M. Tanifuji, “Novel functional imaging technique from brain surface with optical coherence tomography enabling visualization of depth resolved functional structure in vivo,” J. Neurosci. Meth. 124, 83–92 (2003).
  156. M. Lazebnik, D. L. Marks, K. Potgieter, R. Gillette, and S. A. Boppart, “Functional optical coherence tomography for detecting neural activity through scattering changes,” Opt. Lett. 28, 1218–1220 (2003).
    [CrossRef]
  157. K. Tsunoda, Y. Oguchi, G. Hanazono, and M. Tanifuji, “Mapping cone- and rod-induced retinal responsiveness in macaque retina by optical imaging,” Investig. Ophthalmol. Vis.. Sci. 45, 3820–3826 (2004).
  158. G. Hanazono, K. Tsunoda, K. Shinoda, K. Tsubota, Y. Miyake, and M. Tanifuji, “Intrinsic signal imaging in macaque retina reveals different types of flash-induced light reflectance changes of different origins,” Investig. Ophthalmol. Vis. Sci. 48, 2903–2912 (2007).
  159. G. Hanazono, K. Tsunoda, Y. Kazato, K. Tsubota, and M. Tanifuji, “Evaluating neural activity of retinal ganglion cells by flash-evoked intrinsic signal imaging in macaque retina,” Investig. Ophthalmol. Vis. Sci. 49, 4655–4663 (2008).
  160. D. A. Nelson, S. Krupsky, A. Pollack, E. Aloni, M. Belkin, I. Vanzetta, M. Rosner, and A. Grinvald, “Special report: Noninvasive multi-parameter functional optical imaging of the eye,” Ophthalmic Surg. Lasers Imaging 36, 57–66(2005).
  161. M. D. Abramoff, Y. H. Kwon, D. Ts’o, P. Soliz, B. Zimmerman, J. Pokorny, and R. Kardon, “Visual stimulus-induced changes in human near-infrared fundus reflectance,” Investig. Ophthalmic Vis Sci. 47, 715–721. (2006).
  162. K. Tsunoda, G. Hanazono, K. Inomata, Y. Kazato, W. Suzuki, and M. Tanifuji, “Origins of retinal intrinsic signals: a series of experiments on retinas of macaque monkeys,” Jpn. J. Ophthalmol. 53, 297–314 (2009).
  163. K. Bizheva, R. Pflug, B. Hermann, B. Povazay, H. Sattmann, P. Qiu, E. Anger, H. Reitsamer, S. Popov, J. R. Taylor, A. Unterhuber, P. Ahnelt, and W. Drexler, “Optophysiology: depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography,” Proc. Natl. Acad. Sci. U.S.A. 103, 5066–5071 (2006).
  164. V. J. Srinivasan, M. Wojtkowski, J. G. Fujimoto, and J. S. Duker, “In vivo measurement of retinal physiology with high-speed ultrahigh-resolution optical coherence tomography,” Opt. Lett. 31, 2308–2310 (2006).
    [CrossRef]
  165. K. Grieve and A. Roorda, “Intrinsic signals from human cone photoreceptors,” Investig. Ophthalmol. Vis. Sci. 49, 713–719(2008).
  166. R. S. Jonnal, J. Rha, Y. Zhang, B. Cense, W. Gao, and D. T. Miller, “In vivo functional imaging of human cone photoreceptors,” Opt. Express 15, 16141–16160 (2007).
    [CrossRef]
  167. V. J. Srinivasan, Y. Chen, J. S. Duker, and J. G. Fujimoto, “In vivo functional imaging of intrinsic scattering changes in the human retina with high-speed ultrahigh resolution OCT,” Opt. Express 17, 3861–3877 (2009).
    [CrossRef]
  168. A. R. Tumlinson, B. Hermann, B. Hofer, B. Povazay, T. H. Margrain, A. M. Binns, and W. Drexler, “Techniques for extraction of depth-resolved in vivo human retinal intrinsic optical signals with optical coherence tomography,” Jpn. J. Ophthalmol. 53, 315–326 (2009).
  169. J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Differential absorption imaging with optical coherence tomography,” J. Opt. Soc. Am. A 15, 2288–2296 (1998).
    [CrossRef]
  170. U. S. Sathyam, B. W. Colston, Jr., L. B. Da Silva, and M. J. Everett, “Evaluation of optical coherence quantitation of analytes in turbid media by use of two wavelengths,” Appl. Opt. 38, 2097–2104 (1999).
    [CrossRef]
  171. U. Morgner, W. Drexler, F. X. Kartner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto, “Spectroscopic optical coherence tomography,” Opt. Lett. 25, 111–113 (2000).
    [CrossRef]
  172. D. L. Faber, E. G. Mik, M. C. G. Aalders, and T. G. van Leeuwen, “Light absorption of (oxy-)hemoglobin assessed by spectroscopic optical coherence tomography,” Opt. Lett. 28, 1436–1438 (2003).
    [CrossRef]
  173. D. J. Faber, F. J. van der Meer, and M. C. G. Aalders, “Quantitative measurement of attenuation coefficients of weakly scattering media using optical coherence tomography,” Opt. Express 12, 4353–4365 (2004).
    [CrossRef]
  174. B. Hermann, K. Bizheva, A. Unterhuber, B. Povazay, H. Sattmann, L. Schmetterer, A. F. Fercher, and W. Drexler, “Precision of extracting absorption profiles from weakly scattering media with spectroscopic time-domain optical coherence tomography,” Opt. Express 12, 1677–1688 (2004).
    [CrossRef]
  175. R. Leitgeb, M. Wojtkowski, A. Kowalczyk, C. K. Hitzenberger, M. Sticker, and A. F. Fercher, “Spectral measurement of absorption by spectroscopic frequency-domain optical coherence tomography,” Opt. Lett. 25, 820–822 (2000).
    [CrossRef]
  176. S. Kray, F. Spoler, M. Forst, and H. Kurz, “High-resolution simultaneous dual-band spectral domain optical coherence tomography,” Opt. Lett. 34, 1970–1972 (2009).
    [CrossRef]
  177. S. Tamborski, D. Bukowska, M. Szkulmowski, A. Szkulmowska, A. Kowalczyk, and M. Wojtkowski, “Simultaneous analysis of flow velocity and spectroscopic properties of scattering media with the use of joint spectral and time-domain OCT,” Photon. Lett. Poland 1, 49–51 (2009).
  178. E. Goetzinger, M. Pircher, W. Geitzenauer, C. Ahlers, B. Baumann, S. Michels, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Retinal pigment epithelium segmentation by polarization sensitive optical coherence tomography,” Opt. Express 16, 16410–16422 (2008).
    [CrossRef]
  179. C. Ahlers, E. Goetzinger, M. Pircher, I. Golbaz, F. Prager, C. Schutze, B. Baumann, C. Hitzenberger, and U. Schmidt-Erfurth, “Imaging of the retinal pigment epithelium in age-related macular degeneration using polarization sensitive optical coherence tomography,” Investig. Ophthalmol. Vis. Sci. doi:10.1167/iovs.09-3817 (2009).
  180. E. Gotzinger, M. Pircher, B. Baumann, C. Ahlers, W. Geitzenauer, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Three-dimensional polarization sensitive OCT imaging and interactive display of the human retina,” Opt. Express 17, 4151–4165 (2009).
    [CrossRef]
  181. M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, “Imaging polarimetry in age-related macular degeneration,” Investig. Ophthalmol. Vis. Sci. 49, 2661–2667 (2008).
  182. M. Yamanari, S. Makita, and Y. Yasuno, “Polarization-sensitive swept-source optical coherence tomography with continuous source polarization modulation,” Opt. Express 16, 5892–5906 (2008).
    [CrossRef]
  183. M. Yamanari, Y. Lim, S. Makita, and Y. Yasuno, “Visualization of phase retardation of deep posterior eye by polarization-sensitive swept-source optical coherence tomography with 1 μm probe,” Opt. Express 17, 12385–12396(2009).
    [CrossRef]
  184. A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: a review of clinical development from bench to bedside,” J Biomed Opt 12, 051403 (2007).
  185. A. L. Oldenburg, M. N. Hansen, D. A. Zweifel, A. Wei, and S. A. Boppart, “Plasmon-resonant gold nanorods as low backscattering albedo contrast agents for optical coherence tomography,” Opt. Express 14, 6724–6738 (2006).
    [CrossRef]
  186. W. Tan, A. L. Oldenburg, J. J. Norman, T. A. Desai, and S. A. Boppart, “Optical coherence tomography of cell dynamics in three-dimensional tissue models,” Opt. Express 14, 7159–7171 (2006).
    [CrossRef]
  187. X. Liang, A. L. Oldenburg, V. Crecea, E. J. Chaney, and S. A. Boppart, “Optical micro-scale mapping of dynamic biomechanical tissue properties,” Opt. Express 16, 11052–11065 (2008).
    [CrossRef]
  188. B. E. Applegate and J. A. Izatt, “Molecular imaging of endogenous and exogenous chromophores using ground state recovery pump-probe optical coherence tomography,” Opt. Express 14, 9142–9155 (2006).
    [CrossRef]
  189. M. V. Sarunic, B. E. Applegate, and J. A. Izatt, “Spectral domain second-harmonic optical coherence tomography,” Opt. Lett. 30, 2391–2393 (2005).
    [CrossRef]
  190. Y. Jiang, I. V. Tomov, Y. Wang, and Z. Chen, “High-resolution second-harmonic optical coherence tomography of collagen in rat-tail tendon,” Appl. Phys. Lett. 86, 133901–133901(2005).
    [CrossRef]
  191. U. H. P. Haberland, V. Blazek, and H. J. Schrnitt, “Chirp optical coherence tomography of layered scattering media,” J. Biomed. Opt. 3, 259–266 (1998).
  192. M. A. Choma, A. K. Ellerbee, C. Yang, T. L. Creazzo, and J. A. Izatt, “Spectral-domain phase microscopy,” Opt. Lett. 30, 1162–1164 (2005).
    [CrossRef]
  193. P. Targowski, B. Rouba, M. Góra, L. Tymińska-Widmer, J. Marczak, and A. Kowalczyk, “Optical coherence tomography in art diagnostic and restoration,” Appl. Phys. A 92, 1–9 (2008).
    [CrossRef]
  194. P. Targowski, B. Rouba, M. Wojtkowski, and A. Kowalczyk, “The application of optical coherence tomography to non-destructive examination of museum objects,” Stud. Conserv. 49, 107–114 (2004).
  195. D. Stifter, P. Burgholzer, O. Hoglinger, E. Gotzinger, and C. K. Hitzenberger, “Polarisation-sensitive optical coherence tomography for material characterisation and strain-field mapping,” Appl. Phys. A 76, 947–951 (2003).
    [CrossRef]

2009

B. E. Bouma, S. H. Yun, B. J. Vakoc, M. J. Suter, and G. J. Tearney, “Fourier-domain optical coherence tomography: recent advances toward clinical utility,” Curr. Opin. Biotechnol. 20, 111–118 (2009).
[CrossRef]

B. Povazay, B. Hermann, B. Hofer, V. Kajic, E. Simpson, T. Bridgford, and W. Drexler, “Wide-field optical coherence tomography of the choroid in vivo,” Invest. Ophthalmol. Vis. Sci. 50, 1856–1863 (2009).

R. B. Rosen, M. Hathaway, J. Rogers, J. Pedro, P. Garcia, G. M. Dobre, and A. G. Podoleanu, “Simultaneous OCT/SLO/ICG imaging,” Invest. Ophthalmol. Vis. Sci. 50, 851–860(2009).

A. Szkulmowska, M. Szkulmowski, D. Szlag, A. Kowalczyk, and M. Wojtkowski, “Three-dimensional quantitative imaging of retinal and choroidal blood flow velocity using joint spectral and time-domain optical coherence tomography,” Opt Express 17, 10584–10598 (2009).

I. V. Larina, K. Furushima, M. E. Dickinson, R. R. Behringer, and K. V. Larin, “Live imaging of rat embryos with Doppler swept-source optical coherence tomography,” J. Biomed. Opt. 14, 050506 (2009).

B. R. Biedermann, W. Wieser, C. M. Eigenwillig, T. Klein, and R. Huber, “Dispersion, coherence and noise of Fourier-domain mode locked lasers,” Opt Express 17, 9947–9961 (2009).

I. Gorczynska, V. J. Srinivasan, L. N. Vuong, R. W. Chen, J. J. Liu, E. Reichel, M. Wojtkowski, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Projection OCT fundus imaging for visualising outer retinal pathology in non-exudative age-related macular degeneration,” Br. J. Ophthalmol. 93, 603–609 (2009).

J. J. Kaluzny, M. Wojtkowski, B. L. Sikorski, M. Szkulmowski, A. Szkulmowska, T. Bajraszewski, J. G. Fujimoto, J. S. Duker, J. S. Schuman, and A. Kowalczyk, “Analysis of the outer retina reconstructed by high-resolution, three-dimensional spectral domain optical coherence tomography,” Ophthalmic Surg. Lasers Imaging 40, 102–108 (2009).

T. Fabritius, S. Makita, M. Miura, R. Myllyla, and Y. Yasuno, “Automated segmentation of the macula by optical coherence tomography,” Opt Express 17, 15659–15669 (2009).

B. J. Kaluzny, A. Szkulmowska, M. Szkulmowski, T. Bajraszewski, A. Kowalczyk, and M. Wojtkowski, “Fuchs’ endothelial dystrophy in 830 nm spectral domain optical coherence tomography,” Ophthalmic Surg. Lasers Imaging 40, 198–200 (2009).

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15, 1219–1223 (2009).

T. Schmoll, C. Kolbitsch, and R. A. Leitgeb, “Ultra-high-speed volumetric tomography of human retinal blood flow,” Opt Express 17, 4166–4176 (2009).

Y. Jia, P. O. Bagnaninchi, Y. Yang, A. E. Haj, M. T. Hinds, S. J. Kirkpatrick, and R. K. Wang, “Doppler optical coherence tomography imaging of local fluid flow and shear stress within microporous scaffolds,” J. Biomed. Opt. 14, 034014 (2009).

D. C. Adler, C. Zhou, T. H. Tsai, J. Schmitt, Q. Huang, H. Mashimo, and J. G. Fujimoto, “Three-dimensional endomicroscopy of the human colon using optical coherence tomography,” Opt Express 17, 784–796 (2009).

K. Tsunoda, G. Hanazono, K. Inomata, Y. Kazato, W. Suzuki, and M. Tanifuji, “Origins of retinal intrinsic signals: a series of experiments on retinas of macaque monkeys,” Jpn. J. Ophthalmol. 53, 297–314 (2009).

A. R. Tumlinson, B. Hermann, B. Hofer, B. Povazay, T. H. Margrain, A. M. Binns, and W. Drexler, “Techniques for extraction of depth-resolved in vivo human retinal intrinsic optical signals with optical coherence tomography,” Jpn. J. Ophthalmol. 53, 315–326 (2009).

S. Tamborski, D. Bukowska, M. Szkulmowski, A. Szkulmowska, A. Kowalczyk, and M. Wojtkowski, “Simultaneous analysis of flow velocity and spectroscopic properties of scattering media with the use of joint spectral and time-domain OCT,” Photon. Lett. Poland 1, 49–51 (2009).

C. Ahlers, E. Goetzinger, M. Pircher, I. Golbaz, F. Prager, C. Schutze, B. Baumann, C. Hitzenberger, and U. Schmidt-Erfurth, “Imaging of the retinal pigment epithelium in age-related macular degeneration using polarization sensitive optical coherence tomography,” Investig. Ophthalmol. Vis. Sci. doi:10.1167/iovs.09-3817 (2009).

V. J. Srinivasan, Y. Chen, J. S. Duker, and J. G. Fujimoto, “In vivo functional imaging of intrinsic scattering changes in the human retina with high-speed ultrahigh resolution OCT,” Opt. Express 17, 3861–3877 (2009).
[CrossRef]

E. Gotzinger, M. Pircher, B. Baumann, C. Ahlers, W. Geitzenauer, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Three-dimensional polarization sensitive OCT imaging and interactive display of the human retina,” Opt. Express 17, 4151–4165 (2009).
[CrossRef]

Y. K. Tao, K. M. Kennedy, and J. A. Izatt, “Velocity-resolved three-dimensional retinal microvessel imaging using single-pass flow imaging spectral domain optical coherence tomography,” Opt. Express 17, 4177–4188 (2009).
[CrossRef]

M. Wojtkowski, B. Sikorski, I. Gorczynska, M. Gora, M. Szkulmowski, D. Bukowska, J. J. Kaluzny, J. G. Fujimoto, and A. Kowalczyk, “Comparison of reflectivity maps and outer retinal topography in retinal disease by three-dimensional Fourier-domain optical coherence tomography,” Opt. Express 17, 4189–4207 (2009).
[CrossRef]

I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski, “Anterior segment imaging with spectral OCT system using a high-speed CMOS camera,” Opt. Express 17, 4842–4858 (2009).
[CrossRef]

I. V. Larina, S. Ivers, S. Syed, M. E. Dickinson, and K. V. Larin, “Hemodynamic measurements from individual blood cells in early mammalian embryos with Doppler swept source OCT,” Opt. Lett. 34, 986–988 (2009).
[CrossRef]

R. K. Wang and L. An, “Doppler optical micro-angiography for volumetric imaging of vascular perfusion in vivo,” Opt. Express 17, 8926–8940 (2009).
[CrossRef]

S. Kray, F. Spoler, M. Forst, and H. Kurz, “High-resolution simultaneous dual-band spectral domain optical coherence tomography,” Opt. Lett. 34, 1970–1972 (2009).
[CrossRef]

M. Yamanari, Y. Lim, S. Makita, and Y. Yasuno, “Visualization of phase retardation of deep posterior eye by polarization-sensitive swept-source optical coherence tomography with 1 μm probe,” Opt. Express 17, 12385–12396(2009).
[CrossRef]

M. Szkulmowski, I. Grulkowski, D. Szlag, A. Szkulmowska, A. Kowalczyk, and M. Wojtkowski, “Flow velocity estimation by complex ambiguity free joint spectral and time-domain optical coherence tomography,” Opt. Express 17, 14281–14297 (2009).
[CrossRef]

M. Gora, K. Karnowski, M. Szkulmowski, B. J. Kaluzny, R. Huber, A. Kowalczyk, and M. Wojtkowski, “Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range,” Opt. Express 17, 14880–14894 (2009).
[CrossRef]

2008

T. Bajraszewski, M. Wojtkowski, M. Szkulmowski, A. Szkulmowska, R. Huber, and A. Kowalczyk, “Improved spectral optical coherence tomography using optical frequency comb,” Opt. Express 16, 4163–4176 (2008).
[CrossRef]

S. Makita, T. Fabritius, and Y. Yasuno, “Quantitative retinal-blood flow measurement with three-dimensional vessel geometry determination using ultrahigh-resolution Doppler optical coherence angiography,” Opt. Lett. 33, 836–838(2008).
[CrossRef]

M. Yamanari, S. Makita, and Y. Yasuno, “Polarization-sensitive swept-source optical coherence tomography with continuous source polarization modulation,” Opt. Express 16, 5892–5906 (2008).
[CrossRef]

M. Szkulmowski, A. Szkulmowska, T. Bajraszewski, A. Kowalczyk, and M. Wojtkowski, “Flow velocity estimation using joint spectral and time-domain optical coherence tomography,” Opt. Express 16, 6008–6025 (2008).
[CrossRef]

S. Makita, T. Fabritius, and Y. Yasuno, “Full-range, high-speed, high-resolution 1 μm spectral-domain optical coherence tomography using BM-scan for volumetric imaging of the human posterior eye,” Opt. Express 16, 8406–8420(2008).
[CrossRef]

C. M. Eigenwillig, B. R. Biedermann, G. Palte, and R. Huber, “K-space linear Fourier-domain mode locked laser and applications for optical coherence tomography,” Opt. Express 16, 8916–8937 (2008).
[CrossRef]

D. Choi, H. Hiro-Oka, H. Furukawa, R. Yoshimura, M. Nakanishi, K. Shimizu, and K. Ohbayashi, “Fourier-domain optical coherence tomography using optical demultiplexers imaging at 60,000,000 lines/s,” Opt. Lett. 33, 1318–1320(2008).
[CrossRef]

A. Szkulmowska, M. Szkulmowski, A. Kowalczyk, and M. Wojtkowski, “Phase-resolved Doppler optical coherence tomography—limitations and improvements,” Opt. Lett. 33, 1425–1427 (2008).
[CrossRef]

X. Liang, A. L. Oldenburg, V. Crecea, E. J. Chaney, and S. A. Boppart, “Optical micro-scale mapping of dynamic biomechanical tissue properties,” Opt. Express 16, 11052–11065 (2008).
[CrossRef]

L. An and R. K. Wang, “In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography,” Opt. Express 16, 11438–11452 (2008).
[CrossRef]

B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral / Fourier-domain OCT ophthalmic imaging at 70,000 to 312,500 A-scans/s,” Opt. Express 16, 15149–15169 (2008).
[CrossRef]

E. Goetzinger, M. Pircher, W. Geitzenauer, C. Ahlers, B. Baumann, S. Michels, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Retinal pigment epithelium segmentation by polarization sensitive optical coherence tomography,” Opt. Express 16, 16410–16422 (2008).
[CrossRef]

A. Dubois, J. Moreau, and C. Boccara, “Spectroscopic ultrahigh-resolution full-field optical coherence microscopy,” Opt. Express 16, 17082–17091 (2008).
[CrossRef]

B. R. Biedermann, W. Wieser, C. M. Eigenwillig, G. Palte, D. C. Adler, V. J. Srinivasan, J. G. Fujimoto, and R. Huber, “Real time en face Fourier-domain optical coherence tomography with direct hardware frequency demodulation,” Opt. Lett. 33, 2556–2558 (2008).
[CrossRef]

M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, “Imaging polarimetry in age-related macular degeneration,” Investig. Ophthalmol. Vis. Sci. 49, 2661–2667 (2008).

G. Hanazono, K. Tsunoda, Y. Kazato, K. Tsubota, and M. Tanifuji, “Evaluating neural activity of retinal ganglion cells by flash-evoked intrinsic signal imaging in macaque retina,” Investig. Ophthalmol. Vis. Sci. 49, 4655–4663 (2008).

I. V. Larina, N. Sudheendran, M. Ghosn, J. Jiang, A. Cable, K. V. Larin, and M. E. Dickinson, “Live imaging of blood flow in mammalian embryos using Doppler swept-source optical coherence tomography,” J. Biomed. Opt. 13, 060506(2008).

B. L. Sikorski, M. Wojtkowski, J. J. Kaluzny, M. Szkulmowski, and A. Kowalczyk, “Correlation of spectral optical coherence tomography with fluorescein and indocyanine green angiography in multiple evanescent white dot syndrome,” Br. J. Ophthalmol. 92, 1552–1557 (2008).
[CrossRef]

B. J. Kaluzny, A. Szkulmowska, M. Szkulmowski, T. Bajraszewski, A. Kowalczyk, and M. Wcjtkowski, “Fuchs’ endothelial dystrophy in 830 nm spectral domain optical coherence tomography,” Ophthalmic Surg. Lasers Imaging 39, S83–S85 (2008).

A. C. Cheng, S. K. Rao, S. Lau, C. K. Leung, and D. S. Lam, “Central corneal thickness measurements by ultrasound, Orbscan II, and Visante OCT after LASIK for myopia,” J. Refract. Surg. 24, 361–365 (2008).

M. V. Sarunic, S. Asrani, and J. A. Izatt, “Imaging the ocular anterior segment with real-time, full-range Fourier-domain optical coherence tomography,” Arch. Ophthalmol. 126, 537–542 (2008).

L. Plesea and A. G. Podoleanu, “Direct corneal elevation measurements using multiple delay en face optical coherence tomography,” J. Biomed. Opt. 13, 054054 (2008).

M. Miura, K. Kawana, T. Iwasaki, T. Kiuchi, T. Oshika, H. Mori, M. Yamanari, S. Makita, T. Yatagai, and Y. Yasuno, “Three-dimensional anterior segment optical coherence tomography of filtering blebs after trabeculectomy,” J. Glaucoma 17, 193–196 (2008).

G. J. Tearney, S. Waxman, M. Shishkov, B. J. Vakoc, M. J. Suter, M. I. Freilich, A. E. Desjardins, W. Y. Oh, L. A. Bartlett, M. Rosenberg, and B. E. Bouma, “Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging,” JACC Cardiovasc. Imaging 1, 752–761 (2008).

P. Targowski, B. Rouba, M. Góra, L. Tymińska-Widmer, J. Marczak, and A. Kowalczyk, “Optical coherence tomography in art diagnostic and restoration,” Appl. Phys. A 92, 1–9 (2008).
[CrossRef]

K. Grieve and A. Roorda, “Intrinsic signals from human cone photoreceptors,” Investig. Ophthalmol. Vis. Sci. 49, 713–719(2008).

2007

A. H. Bachmann, M. L. Villiger, C. Blatter, T. Lasser, and R. A. Leitgeb, “Resonant Doppler flow imaging and optical vivisection of retinal blood vessels,” Opt. Express 15, 408–422 (2007).
[CrossRef]

A. Mariampillai, B. A. Standish, N. R. Munce, C. Randall, G. Liu, J. Y. Jiang, A. E. Cable, I. A. Vitkin, and V. X. D. Yang, “Doppler optical cardiogram gated 2D color flow imaging at 1000 fps and 4D in vivo visualization of embryonic heart at 45 fps on a swept source OCT system,” Opt. Express 15, 1627–1638 (2007).
[CrossRef]

S. W. Huang, A. D. Aguirre, R. A. Huber, D. C. Adler, and J. G. Fujimoto, “Swept source optical coherence microscopy using a Fourier-domain mode-locked laser,” Opt. Express 15, 6210–6217 (2007).
[CrossRef]

M. W. Jenkins, D. C. Adler, M. Gargesha, R. Huber, F. Rothenberg, J. Belding, M. Watanabe, D. L. Wilson, J. G. Fujimoto, and A. M. Rollins, “Ultrahigh-speed optical coherence tomography imaging and visualization of the embryonic avian heart using a buffered Fourier domain mode locked laser,” Opt. Express 15, 6251–6267 (2007).
[CrossRef]

R. Huber, D. C. Adler, V. J. Srinivasan, and J. G. Fujimoto, “Fourier-domain mode locking at 1050 nm for ultrahigh-speed optical coherence tomography of the human retina at 236,000 axial scans per second,” Opt. Lett. 32, 2049–2051 (2007).
[CrossRef]

Y. K. Tao, M. Zhao, and J. A. Izatt, “High-speed complex conjugate resolved retinal spectral domain optical coherence tomography using sinusoidal phase modulation,” Opt. Lett. 32, 2918–2920 (2007).
[CrossRef]

R. S. Jonnal, J. Rha, Y. Zhang, B. Cense, W. Gao, and D. T. Miller, “In vivo functional imaging of human cone photoreceptors,” Opt. Express 15, 16141–16160 (2007).
[CrossRef]

T. Bajraszewski, M. Wojtkowski, A. Szkulmowska, W. Fojt, M. Szkulmowski, and A. Kowalczyk, “Fourier-domain optical coherence tomography using optical frequency comb,” Proc. SPIE 6429, 64291F (2007).

R. J. Zawadzki, A. R. Fuller, D. F. Wiley, B. Hamann, S. S. Choi, and J. S. Werner, “Adaptation of a support vector machine algorithm for segmentation and visualization of retinal structures in volumetric optical coherence tomography data sets,” J. Biomed. Opt. 12, 041206 (2007).

S. W. Huang, A. D. Aguirre, R. A. Huber, D. C. Adler, and J. G. Fujimoto, “Swept source optical coherence microscopy using a Fourier-domain mode-locked laser,” Opt Express 15, 6210–6217 (2007).

B. J. Kaluzny, W. Fojt, A. Szkulmowska, T. Bajraszewski, M. Wojtkowski, and A. Kowalczyk, “Spectral optical coherence tomography in video-rate and three-dimensional imaging of contact lens wear,” Optom. Vis. Sci. 84, 1104–1109 (2007).

V. Christopoulos, L. Kagemann, G. Wollstein, H. Ishikawa, M. L. Gabriele, M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, J. S. Duker, D. K. Dhaliwal, and J. S. Schuman, “In vivo corneal high-speed, ultra high-resolution optical coherence tomography,” Arch. Ophthalmol. 125, 1027–1035 (2007).

M. W. Jenkins, O. Q. Chughtai, A. N. Basavanhally, M. Watanabe, and A. M. Rollins, “In vivo gated 4D imaging of the embryonic heart using optical coherence tomography,” J. Biomed. Opt. 12, 030505 (2007).

D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, “Three-dimensional endomicroscopy using optical coherence tomography,” Nat. Photon. 1, 709–716 (2007).
[CrossRef]

B. J. Vakoc, M. Shishko, S. H. Yun, W. Y. Oh, M. J. Suter, A. E. Desjardins, J. A. Evans, N. S. Nishioka, G. J. Tearney, and B. E. Bouma, “Comprehensive esophageal microscopy by using optical frequency-domain imaging (with video),” Gastroint. Endosc. 65, 898–905 (2007).
[CrossRef]

G. Hanazono, K. Tsunoda, K. Shinoda, K. Tsubota, Y. Miyake, and M. Tanifuji, “Intrinsic signal imaging in macaque retina reveals different types of flash-induced light reflectance changes of different origins,” Investig. Ophthalmol. Vis. Sci. 48, 2903–2912 (2007).

A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: a review of clinical development from bench to bedside,” J Biomed Opt 12, 051403 (2007).

T. Akkin, C. Joo, and J. F. de Boer, “Depth-resolved measurement of transient structural changes during action potential propagation,” Biophys. J. 93, 1347–1353 (2007).
[CrossRef]

2006

M. D. Abramoff, Y. H. Kwon, D. Ts’o, P. Soliz, B. Zimmerman, J. Pokorny, and R. Kardon, “Visual stimulus-induced changes in human near-infrared fundus reflectance,” Investig. Ophthalmic Vis Sci. 47, 715–721. (2006).

K. Bizheva, R. Pflug, B. Hermann, B. Povazay, H. Sattmann, P. Qiu, E. Anger, H. Reitsamer, S. Popov, J. R. Taylor, A. Unterhuber, P. Ahnelt, and W. Drexler, “Optophysiology: depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography,” Proc. Natl. Acad. Sci. U.S.A. 103, 5066–5071 (2006).

V. J. Srinivasan, M. Wojtkowski, A. J. Witkin, J. S. Duker, T. H. Ko, M. Carvalho, J. S. Schuman, A. Kowalczyk, and J. G. Fujimoto, “High-definition and 3-dimensional imaging of macular pathologies with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmology annual 113, 2054–2065 (2006).
[CrossRef]

W. Y. Oh, S. H. Yun, B. J. Vakoc, G. J. Tearney, and B. E. Bouma, “Ultrahigh-speed optical frequency domain imaging and application to laser ablation monitoring,” Appl. Phys. Lett. 88, (2006).

B. J. Kaluzny, J. J. Kaluzny, A. Szkulmowska, I. Gorczynska, M. Szkulmowski, T. Bajraszewski, M. Wojtkowski, and P. Targowski, “Spectral optical coherence tomography: a novel technique for cornea imaging,” Cornea 25, 960–965 (2006).
[CrossRef]

J. Zhang, Q. Wang, B. Rao, Z. P. Chen, and K. Hsu, “Swept laser source at 1 μm for Fourier-domain optical coherence tomography,” Appl. Phys. Lett. 89, 073901 (2006).
[CrossRef]

R. A. Costa, M. Skaf, L. A. Melo, Jr., D. Calucci, J. A. Cardillo, J. C. Castro, D. Huang, and M. Wojtkowski, “Retinal assessment using optical coherence tomography,” Prog. Retin. Eye Res. 25, 325–353 (2006).

W. Y. Oh, B. E. Bouma, N. Iftimia, S. H. Yun, R. Yelin, and G. J. Tearney, “Ultrahigh-resolution full-field optical coherence microscopy using InGaAs camera,” Opt. Express 14, 726–735(2006).
[CrossRef]

R. Navarro, L. Gonzalez, and J. L. Hernandez, “Optics of the average normal cornea from general and canonical representations of its surface topography,” J. Opt. Soc. Am. A 23, 219–232 (2006).
[CrossRef]

Y. Yasuno, S. Makita, T. Endo, G. Aoki, M. Itoh, and T. Yatagai, “Simultaneous B-M-mode scanning method for real-time full-range Fourier-domain optical coherence tomography,” Appl. Opt. 45, 1861–1865 (2006).
[CrossRef]

R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier domain mode locking (FDML): a new laser operating regime and applications for optical coherence tomography,” Opt. Express 14, 3225–3237 (2006).
[CrossRef]

M. V. Sarunic, S. Weinberg, and J. A. Izatt, “Full-field swept-source phase microscopy,” Opt. Lett. 31, 1462–1464(2006).
[CrossRef]

V. J. Srinivasan, M. Wojtkowski, J. G. Fujimoto, and J. S. Duker, “In vivo measurement of retinal physiology with high-speed ultrahigh-resolution optical coherence tomography,” Opt. Lett. 31, 2308–2310 (2006).
[CrossRef]

A. L. Oldenburg, M. N. Hansen, D. A. Zweifel, A. Wei, and S. A. Boppart, “Plasmon-resonant gold nanorods as low backscattering albedo contrast agents for optical coherence tomography,” Opt. Express 14, 6724–6738 (2006).
[CrossRef]

W. Tan, A. L. Oldenburg, J. J. Norman, T. A. Desai, and S. A. Boppart, “Optical coherence tomography of cell dynamics in three-dimensional tissue models,” Opt. Express 14, 7159–7171 (2006).
[CrossRef]

S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Express 14, 7821–7840 (2006).
[CrossRef]

R. Huber, D. C. Adler, and J. G. Fujimoto, “Buffered Fourier-domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s,” Opt. Lett. 31, 2975–2977 (2006).
[CrossRef]

B. E. Applegate and J. A. Izatt, “Molecular imaging of endogenous and exogenous chromophores using ground state recovery pump-probe optical coherence tomography,” Opt. Express 14, 9142–9155 (2006).
[CrossRef]

S. Moon and D. Y. Kim, “Ultra-high-speed optical coherence tomography with a stretched pulse supercontinuum source,” Opt. Express 14, 11575–11584 (2006).
[CrossRef]

2005

G. M. Dobre, A. G. Podoleanu, and R. B. Rosen, “Simultaneous optical coherence tomography—Indocyanine Green dye fluorescence imaging system for investigations of the eye’s fundus,” Opt. Lett. 30, 58–60 (2005).
[CrossRef]

S. L. Jiao, R. Knighton, X. R. Huang, G. Gregori, and C. A. Puliafito, “Simultaneous acquisition of sectional and fundus ophthalmic images with spectral-domain optical coherence tomography,” Opt. Express 13, 444–452 (2005).
[CrossRef]

B. Grajciar, M. Pircher, A. Fercher, and R. Leitgeb, “Parallel Fourier-domain optical coherence tomography for in vivo measurement of the human eye,” Opt. Express 13, 1131–1137(2005).
[CrossRef]

A. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, A. Chavez-Pirson, and W. Drexler, “In vivo retinal optical coherence tomography at 1040 nm-enhanced penetration into the choroid,” Opt. Express 13, 3252–3258 (2005).
[CrossRef]

R. Huber, M. Wojtkowski, K. Taira, J. Fujimoto, and K. Hsu, “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles,” Opt. Express 13, 3513–3528 (2005).
[CrossRef]

M. A. Choma, A. K. Ellerbee, C. Yang, T. L. Creazzo, and J. A. Izatt, “Spectral-domain phase microscopy,” Opt. Lett. 30, 1162–1164 (2005).
[CrossRef]

M. V. Sarunic, B. E. Applegate, and J. A. Izatt, “Spectral domain second-harmonic optical coherence tomography,” Opt. Lett. 30, 2391–2393 (2005).
[CrossRef]

W. Y. Oh, S. H. Yun, G. J. Tearney, and B. E. Bouma, “115 kHz tuning repetition rate ultrahigh-speed wavelength-swept semiconductor laser,” Opt. Lett. 30, 3159–3161 (2005).
[CrossRef]

R. Huber, M. Wojtkowski, J. G. Fujimoto, J. Y. Jiang, and A. E. Cable, “Three-dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300 nm,” Opt. Express 13, 10523–10538 (2005).
[CrossRef]

M. A. Choma, K. Hsu, and J. A. Izatt, “Swept source optical coherence tomography using an all-fiber 1300 nm ring laser source,” J. Biomed. Opt. 10, 044009 (2005).

K. Grieve, G. Moneron, A. Dubois, J.-F. Le Gargasson, and C. Boccara, “Ultrahigh resolution ex vivo ocular imaging using ultrashort acquisition time en face optical coherence tomography,” J. Opt. A Pure Appl. Opt. 7, 368–373 (2005).
[CrossRef]

M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, “Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmology annual 112, 1734–1746 (2005).
[CrossRef]

A. Szkulmowska, M. Wojtkowski, I. Gorczynska, T. Bajraszewski, M. Szkulmowski, P. Targowski, A. Kowalczyk, and J. J. Kaluzny, “Coherent noise-free ophthalmic imaging by spectral optical coherence tomography,” J. Phys. D 38, 2606–2611 (2005).
[CrossRef]

D. A. Nelson, S. Krupsky, A. Pollack, E. Aloni, M. Belkin, I. Vanzetta, M. Rosner, and A. Grinvald, “Special report: Noninvasive multi-parameter functional optical imaging of the eye,” Ophthalmic Surg. Lasers Imaging 36, 57–66(2005).

Y. Jiang, I. V. Tomov, Y. Wang, and Z. Chen, “High-resolution second-harmonic optical coherence tomography of collagen in rat-tail tendon,” Appl. Phys. Lett. 86, 133901–133901(2005).
[CrossRef]

2004

K. Tsunoda, Y. Oguchi, G. Hanazono, and M. Tanifuji, “Mapping cone- and rod-induced retinal responsiveness in macaque retina by optical imaging,” Investig. Ophthalmol. Vis.. Sci. 45, 3820–3826 (2004).

M. Wojtkowski, T. Bajraszewski, I. Gorczynska, P. Targowski, A. Kowalczyk, W. Wasilewski, and C. Radzewicz, “Ophthalmic imaging by spectral optical coherence tomography,” Am. J. Ophthalmol. 138, 412–419 (2004).
[CrossRef]

N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography,” Opt. Lett. 29, 480–482 (2004).
[CrossRef]

B. Hermann, K. Bizheva, A. Unterhuber, B. Povazay, H. Sattmann, L. Schmetterer, A. F. Fercher, and W. Drexler, “Precision of extracting absorption profiles from weakly scattering media with spectroscopic time-domain optical coherence tomography,” Opt. Express 12, 1677–1688 (2004).
[CrossRef]

A. Dubois, K. Grieve, G. Moneron, R. Lecaque, L. Vabre, and C. Boccara, “Ultrahigh-resolution full-field optical coherence tomography,” Appl. Opt. 43, 2874–2883 (2004).
[CrossRef]

R. A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. F. Fercher, “Ultrahigh resolution Fourier-domain optical coherence tomography,” Opt. Express 12, 2156–2165 (2004).
[CrossRef]

T. Akkin, D. P. Dave, T. E. Milner, and H. G. Rylander, “Detection of neural activity using phase-sensitive optical low-coherence reflectometry,” Opt. Express 12, 2377–2386(2004).
[CrossRef]

M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution high-speed Fourier-domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12, 2404–2422 (2004).
[CrossRef]

B. Cense, N. A. Nassif, T. C. Chen, M. C. Pierce, S.-H. Yun, B. H. Park, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography,” Opt. Express 12, 2435–2447 (2004).
[CrossRef]

S. H. Yun, G. J. Tearney, J. F. de Boer, and B. E. Bouma, “Motion artifacts in optical coherence tomography with frequency-domain ranging,” Opt. Express 12, 2977–2998 (2004).
[CrossRef]

P. Koch, G. Huttmann, H. Schleiermacher, J. Eichholz, and E. Koch, “Linear optical coherence tomography system with a downconverted fringe pattern,” Opt. Lett. 29, 1644–1646(2004).
[CrossRef]

C. Fang-Yen, M. C. Chu, H. S. Seung, R. R. Dasari, and M. S. Feld, “Noncontact measurement of nerve displacement during action potential with a dual-beam low-coherence interferometer,” Opt. Lett. 29, 2028–2030 (2004).
[CrossRef]

D. J. Faber, F. J. van der Meer, and M. C. G. Aalders, “Quantitative measurement of attenuation coefficients of weakly scattering media using optical coherence tomography,” Opt. Express 12, 4353–4365 (2004).
[CrossRef]

P. Targowski, B. Rouba, M. Wojtkowski, and A. Kowalczyk, “The application of optical coherence tomography to non-destructive examination of museum objects,” Stud. Conserv. 49, 107–114 (2004).

N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, and J. F. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Express 12, 367–376 (2004).
[CrossRef]

2003

M. A. Choma, M. V. Sarunic, C. H. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier-domain optical coherence tomography,” Opt. Express 11, 2183–2189(2003).

D. Stifter, P. Burgholzer, O. Hoglinger, E. Gotzinger, and C. K. Hitzenberger, “Polarisation-sensitive optical coherence tomography for material characterisation and strain-field mapping,” Appl. Phys. A 76, 947–951 (2003).
[CrossRef]

R. U. Maheswari, H. Takaoka, H. Kadono, R. Homma, and M. Tanifuji, “Novel functional imaging technique from brain surface with optical coherence tomography enabling visualization of depth resolved functional structure in vivo,” J. Neurosci. Meth. 124, 83–92 (2003).

B. H. Park, M. C. Pierce, B. Cense, and J. F. de Boer, “Real-time multi-functional optical coherence tomography,” Opt. Express 11, 782–793 (2003).
[CrossRef]

R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of Fourier-domain vs. time domain optical coherence tomography,” Opt. Express 11, 889–894 (2003).

M. Akiba, K. P. Chan, and N. Tanno, “Full-field optical coherence tomography by 2D heterodyne detection with a pair of CCD cameras,” Opt. Lett. 28, 816–818 (2003).
[CrossRef]

M. Lazebnik, D. L. Marks, K. Potgieter, R. Gillette, and S. A. Boppart, “Functional optical coherence tomography for detecting neural activity through scattering changes,” Opt. Lett. 28, 1218–1220 (2003).
[CrossRef]

D. L. Faber, E. G. Mik, M. C. G. Aalders, and T. G. van Leeuwen, “Light absorption of (oxy-)hemoglobin assessed by spectroscopic optical coherence tomography,” Opt. Lett. 28, 1436–1438 (2003).
[CrossRef]

B. Povazay, K. Bizheva, B. Hermann, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, C. Schubert, P. K. Ahnelt, M. Mei, R. Holzwarth, W. J. Wadsworth, J. C. Knight, and P. S. Russel, “Enhanced visualization of choroidal vessels using ultrahigh resolution ophthalmic OCT at 1050 nm,” Opt. Express 11, 1980–1986 (2003).

M. Wojtkowski, T. Bajraszewski, P. Targowski, and A. Kowalczyk, “Real-time in vivo imaging by high-speed spectral optical coherence tomography,” Opt. Lett. 28, 1745–1747(2003).
[CrossRef]

S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, “High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter,” Opt. Lett. 28, 1981–1983 (2003).
[CrossRef]

C. K. Hitzenberger, P. Trost, P. W. Lo, and Q. Y. Zhou, “Three-dimensional imaging of the human retina by high-speed optical coherence tomography,” Opt. Express 11, 2753–2761(2003).

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28, 2067–2069 (2003).
[CrossRef]

S. Yun, G. Tearney, J. de Boer, N. Iftimia, and B. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express 11, 2953–2963 (2003).
[CrossRef]

S. H. Yun, G. J. Tearney, B. E. Bouma, B. H. Park, and J. F. de Boer, “High-speed spectral-domain optical coherence tomography at 1.3 μm wavelength,” Opt. Express 11, 2953–2963 (2003).
[CrossRef]

R. A. Leitgeb, L. Schmetterer, W. Drexler, A. F. Fercher, R. J. Zawadzki, and T. Bajraszewski, “Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier-domain optical coherence tomography,” Opt. Express 11, 3116–3121 (2003).

B. R. White, M. C. Pierce, N. Nassif, B. Cense, B. H. Park, G. J. Tearney, B. E. Bouma, T. C. Chen, and J. F. de Boer, “In vivo dynamic human retinal blood flow imaging using ultrahigh-speed spectral domain optical Doppler tomography,” Opt. Express 11, 3490–3497 (2003).

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[CrossRef]

2002

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier-domain optical coherence tomography,” J. Biomed. Opt. 7, 457–463 (2002).

R. U. Maheswari, H. Takaoka, R. Homma, H. Kadono, and M. Tanifuji, “Implementation of optical coherence tomography (OCT) in visualization of functional structures of cat visual cortex,” Opt. Commun. 202, 47–54 (2002).
[CrossRef]

S. Sanders, D. Mattison, L. Ma, J. Jeffries, and R. Hanson, “Wavelength-agile diode-laser sensing strategies for monitoring gas properties in optically harsh flows: application in cesium-seeded pulse detonation,” Opt. Express 10, 505–514(2002).

M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. F. Fercher, “Full range complex spectral optical coherence tomography technique in eye imaging,” Opt. Lett. 27, 1415–1417 (2002).
[CrossRef]

2000

1999

1998

1997

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitvis, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037–2039 (1997).
[CrossRef]

A. Villringer and B. Chance, “Non-invasive optical spectroscopy and imaging of human brain function,” Trends Neurosci. 20, 435–442 (1997).
[CrossRef]

X. Wang, T. E. Milner, Z. Chen, and J. S. Nelson, “Measurement of fluid-flow-velocity profile in turbid media by the use of optical Doppler tomography,” Appl Optics 36, 144–149(1997).

S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22, 340–342 (1997).
[CrossRef]

J. Ballif, R. Gianotti, P. Chavanne, R. Walti, and R. P. Salathe, “Rapid and scalable scans at 21 m/s in optical low-coherence reflectometry,” Opt. Lett. 22, 757–759 (1997).
[CrossRef]

Z. Chen, T. E. Milner, S. Srinivas, X. Wang, A. Malekafzali, M. J. C. van Gemert, and J. S. Nelson, “Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography,” Opt. Lett. 22, 1119–1121 (1997).
[CrossRef]

J. A. Izatt, M. D. Kulkami, S. Yazdanfar, J. K. Barton, and A. J. Welch, “In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography,” Opt. Lett. 22, 1439–1441 (1997).
[CrossRef]

B. Golubovic, B. Bouma, G. Tearney, and J. Fujimoto, “Optical frequency-domain reflectometry using rapid wavelength tuning of a Cr4+ forsterite laser,” Opt. Lett. 22, 1704–1706 (1997).
[CrossRef]

G. J. Tearney, B. E. Bouma, and J. G. Fujimoto, “High-speed phase- and group-delay scanning with a grating-based phase control delay line,” Opt. Lett. 22, 1811–1813 (1997).
[CrossRef]

F. Lexer, C. K. Hitzenberger, A. F. Fercher, and M. Kulhavy, “Wavelength-tuning interferometry of intraocular distances,” Appl. Opt. 36, 6548–6553 (1997).
[CrossRef]

S. Yazdanfar, M. D. Kulkarni, and J. A. Izatt, “High resolution imaging of in vivo cardiac dynamics using color Doppler optical coherence tomography,” Opt. Express 1, 424–431(1997).
[CrossRef]

1996

G. J. Tearney, B. E. Bouma, S. A. Boppart, B. Golubovic, E. A. Swanson, and J. G. Fujimoto, “Rapid acquisition of in vivo biological images by use of optical coherence tomography,” Opt. Lett. 21, 1408–1410 (1996).
[CrossRef]

A. Fercher, “Optical coherence tomography,” J. Biomed. Opt. 1, 157–173 (1996).

M. R. Hee, C. R. Baumal, C. A. Puliafito, J. S. Duker, E. Reichel, J. R. Wilkins, J. G. Coker, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography of age-related macular degeneration and choroidal neovascularization,” Ophthalmology annual 103, 1260–1270 (1996).

J. S. Schuman, T. PedutKloizman, L. Pieroth, E. Hertzmark, M. R. Hee, J. R. Wilkins, J. G. Coker, C. A. Puliafito, J. G. Fujimoto, and E. A. Swanson, “Quantitation of nerve fiber layer thickness loss over time in the glaucomatous monkey model using optical coherence tomography,” Investig. Ophthal. Vis. Sci. 37, 5255–5255 (1996).

1995

J. S. Schuman, M. R. Hee, A. V. Arya, T. Pedut-Kloizman, C. A. Puliafito, J. G. Fujimoto, and E. A. Swanson, “Optical coherence tomography: a new tool for glaucoma diagnosis,” Curr. Opin. Ophthalmol. 6, 89–95 (1995).

J. S. Schuman, M. R. Hee, C. A. Puliafito, C. Wong, T. Pedut-Kloizman, C. P. Lin, E. Hertzmark, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, “Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography,” Arch. Ophthalmol. 113, 586–596 (1995).

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nature Med. 1, 970–972 (1995).

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
[CrossRef]

M. R. Hee, C. A. Puliafito, C. Wong, J. S. Duker, E. Reichel, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography of macular holes,” Ophthalmology annual 102, 748–756 (1995).

1994

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Arch. Ophthalmol. 112, 1584–1589 (1994).

1993

1991

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

1990

1988

A. Grinvald, R. D. Frostig, E. Lieke, and R. Hildesheim, “Optical imaging of neuronal-activity,” Physiol. Rev. 68, 1285–1366 (1988).

1950

D. K. Hill, “The volume change resulting from stimulation of a giant nerve fibre,” J. Physiol. 111, 304–327 (1950).

Aalders, M. C. G.

Abramoff, M. D.

M. D. Abramoff, Y. H. Kwon, D. Ts’o, P. Soliz, B. Zimmerman, J. Pokorny, and R. Kardon, “Visual stimulus-induced changes in human near-infrared fundus reflectance,” Investig. Ophthalmic Vis Sci. 47, 715–721. (2006).

Adler, D. C.

D. C. Adler, C. Zhou, T. H. Tsai, J. Schmitt, Q. Huang, H. Mashimo, and J. G. Fujimoto, “Three-dimensional endomicroscopy of the human colon using optical coherence tomography,” Opt Express 17, 784–796 (2009).

B. R. Biedermann, W. Wieser, C. M. Eigenwillig, G. Palte, D. C. Adler, V. J. Srinivasan, J. G. Fujimoto, and R. Huber, “Real time en face Fourier-domain optical coherence tomography with direct hardware frequency demodulation,” Opt. Lett. 33, 2556–2558 (2008).
[CrossRef]

R. Huber, D. C. Adler, V. J. Srinivasan, and J. G. Fujimoto, “Fourier-domain mode locking at 1050 nm for ultrahigh-speed optical coherence tomography of the human retina at 236,000 axial scans per second,” Opt. Lett. 32, 2049–2051 (2007).
[CrossRef]

S. W. Huang, A. D. Aguirre, R. A. Huber, D. C. Adler, and J. G. Fujimoto, “Swept source optical coherence microscopy using a Fourier-domain mode-locked laser,” Opt Express 15, 6210–6217 (2007).

D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, “Three-dimensional endomicroscopy using optical coherence tomography,” Nat. Photon. 1, 709–716 (2007).
[CrossRef]

S. W. Huang, A. D. Aguirre, R. A. Huber, D. C. Adler, and J. G. Fujimoto, “Swept source optical coherence microscopy using a Fourier-domain mode-locked laser,” Opt. Express 15, 6210–6217 (2007).
[CrossRef]

M. W. Jenkins, D. C. Adler, M. Gargesha, R. Huber, F. Rothenberg, J. Belding, M. Watanabe, D. L. Wilson, J. G. Fujimoto, and A. M. Rollins, “Ultrahigh-speed optical coherence tomography imaging and visualization of the embryonic avian heart using a buffered Fourier domain mode locked laser,” Opt. Express 15, 6251–6267 (2007).
[CrossRef]

R. Huber, D. C. Adler, and J. G. Fujimoto, “Buffered Fourier-domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s,” Opt. Lett. 31, 2975–2977 (2006).
[CrossRef]

Aguirre, A. D.

S. W. Huang, A. D. Aguirre, R. A. Huber, D. C. Adler, and J. G. Fujimoto, “Swept source optical coherence microscopy using a Fourier-domain mode-locked laser,” Opt. Express 15, 6210–6217 (2007).
[CrossRef]

S. W. Huang, A. D. Aguirre, R. A. Huber, D. C. Adler, and J. G. Fujimoto, “Swept source optical coherence microscopy using a Fourier-domain mode-locked laser,” Opt Express 15, 6210–6217 (2007).

Ahlers, C.

Ahnelt, P.

K. Bizheva, R. Pflug, B. Hermann, B. Povazay, H. Sattmann, P. Qiu, E. Anger, H. Reitsamer, S. Popov, J. R. Taylor, A. Unterhuber, P. Ahnelt, and W. Drexler, “Optophysiology: depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography,” Proc. Natl. Acad. Sci. U.S.A. 103, 5066–5071 (2006).

Ahnelt, P. K.

Akiba, M.

Akkin, T.

T. Akkin, C. Joo, and J. F. de Boer, “Depth-resolved measurement of transient structural changes during action potential propagation,” Biophys. J. 93, 1347–1353 (2007).
[CrossRef]

T. Akkin, D. P. Dave, T. E. Milner, and H. G. Rylander, “Detection of neural activity using phase-sensitive optical low-coherence reflectometry,” Opt. Express 12, 2377–2386(2004).
[CrossRef]

T. Akkin, D. P. Dave, H. G. Rylander, and T. E. Milner, “Non-contact sub-nanometer measurement of transient surface displacement during action potential propagation,” presented at SPIE Photonics West Conference, San Jose, California, USA, 22–27 January 2005.

Aloni, E.

D. A. Nelson, S. Krupsky, A. Pollack, E. Aloni, M. Belkin, I. Vanzetta, M. Rosner, and A. Grinvald, “Special report: Noninvasive multi-parameter functional optical imaging of the eye,” Ophthalmic Surg. Lasers Imaging 36, 57–66(2005).

An, L.

Anger, E.

K. Bizheva, R. Pflug, B. Hermann, B. Povazay, H. Sattmann, P. Qiu, E. Anger, H. Reitsamer, S. Popov, J. R. Taylor, A. Unterhuber, P. Ahnelt, and W. Drexler, “Optophysiology: depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography,” Proc. Natl. Acad. Sci. U.S.A. 103, 5066–5071 (2006).

Aoki, G.

Applegate, B. E.

Arya, A. V.

J. S. Schuman, M. R. Hee, A. V. Arya, T. Pedut-Kloizman, C. A. Puliafito, J. G. Fujimoto, and E. A. Swanson, “Optical coherence tomography: a new tool for glaucoma diagnosis,” Curr. Opin. Ophthalmol. 6, 89–95 (1995).

Asrani, S.

M. V. Sarunic, S. Asrani, and J. A. Izatt, “Imaging the ocular anterior segment with real-time, full-range Fourier-domain optical coherence tomography,” Arch. Ophthalmol. 126, 537–542 (2008).

Bachmann, A. H.

Bagnaninchi, P. O.

Y. Jia, P. O. Bagnaninchi, Y. Yang, A. E. Haj, M. T. Hinds, S. J. Kirkpatrick, and R. K. Wang, “Doppler optical coherence tomography imaging of local fluid flow and shear stress within microporous scaffolds,” J. Biomed. Opt. 14, 034014 (2009).

Bajraszewski, T.

J. J. Kaluzny, M. Wojtkowski, B. L. Sikorski, M. Szkulmowski, A. Szkulmowska, T. Bajraszewski, J. G. Fujimoto, J. S. Duker, J. S. Schuman, and A. Kowalczyk, “Analysis of the outer retina reconstructed by high-resolution, three-dimensional spectral domain optical coherence tomography,” Ophthalmic Surg. Lasers Imaging 40, 102–108 (2009).

B. J. Kaluzny, A. Szkulmowska, M. Szkulmowski, T. Bajraszewski, A. Kowalczyk, and M. Wojtkowski, “Fuchs’ endothelial dystrophy in 830 nm spectral domain optical coherence tomography,” Ophthalmic Surg. Lasers Imaging 40, 198–200 (2009).

M. Szkulmowski, A. Szkulmowska, T. Bajraszewski, A. Kowalczyk, and M. Wojtkowski, “Flow velocity estimation using joint spectral and time-domain optical coherence tomography,” Opt. Express 16, 6008–6025 (2008).
[CrossRef]

T. Bajraszewski, M. Wojtkowski, M. Szkulmowski, A. Szkulmowska, R. Huber, and A. Kowalczyk, “Improved spectral optical coherence tomography using optical frequency comb,” Opt. Express 16, 4163–4176 (2008).
[CrossRef]

B. J. Kaluzny, A. Szkulmowska, M. Szkulmowski, T. Bajraszewski, A. Kowalczyk, and M. Wcjtkowski, “Fuchs’ endothelial dystrophy in 830 nm spectral domain optical coherence tomography,” Ophthalmic Surg. Lasers Imaging 39, S83–S85 (2008).

T. Bajraszewski, M. Wojtkowski, A. Szkulmowska, W. Fojt, M. Szkulmowski, and A. Kowalczyk, “Fourier-domain optical coherence tomography using optical frequency comb,” Proc. SPIE 6429, 64291F (2007).

B. J. Kaluzny, W. Fojt, A. Szkulmowska, T. Bajraszewski, M. Wojtkowski, and A. Kowalczyk, “Spectral optical coherence tomography in video-rate and three-dimensional imaging of contact lens wear,” Optom. Vis. Sci. 84, 1104–1109 (2007).

B. J. Kaluzny, J. J. Kaluzny, A. Szkulmowska, I. Gorczynska, M. Szkulmowski, T. Bajraszewski, M. Wojtkowski, and P. Targowski, “Spectral optical coherence tomography: a novel technique for cornea imaging,” Cornea 25, 960–965 (2006).
[CrossRef]

A. Szkulmowska, M. Wojtkowski, I. Gorczynska, T. Bajraszewski, M. Szkulmowski, P. Targowski, A. Kowalczyk, and J. J. Kaluzny, “Coherent noise-free ophthalmic imaging by spectral optical coherence tomography,” J. Phys. D 38, 2606–2611 (2005).
[CrossRef]

M. Wojtkowski, T. Bajraszewski, I. Gorczynska, P. Targowski, A. Kowalczyk, W. Wasilewski, and C. Radzewicz, “Ophthalmic imaging by spectral optical coherence tomography,” Am. J. Ophthalmol. 138, 412–419 (2004).
[CrossRef]

R. A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. F. Fercher, “Ultrahigh resolution Fourier-domain optical coherence tomography,” Opt. Express 12, 2156–2165 (2004).
[CrossRef]

R. A. Leitgeb, L. Schmetterer, W. Drexler, A. F. Fercher, R. J. Zawadzki, and T. Bajraszewski, “Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier-domain optical coherence tomography,” Opt. Express 11, 3116–3121 (2003).

M. Wojtkowski, T. Bajraszewski, P. Targowski, and A. Kowalczyk, “Real-time in vivo imaging by high-speed spectral optical coherence tomography,” Opt. Lett. 28, 1745–1747(2003).
[CrossRef]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier-domain optical coherence tomography,” J. Biomed. Opt. 7, 457–463 (2002).

Ballif, J.

Bartlett, L. A.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15, 1219–1223 (2009).

G. J. Tearney, S. Waxman, M. Shishkov, B. J. Vakoc, M. J. Suter, M. I. Freilich, A. E. Desjardins, W. Y. Oh, L. A. Bartlett, M. Rosenberg, and B. E. Bouma, “Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging,” JACC Cardiovasc. Imaging 1, 752–761 (2008).

Barton, J. K.

Basavanhally, A. N.

M. W. Jenkins, O. Q. Chughtai, A. N. Basavanhally, M. Watanabe, and A. M. Rollins, “In vivo gated 4D imaging of the embryonic heart using optical coherence tomography,” J. Biomed. Opt. 12, 030505 (2007).

Baumal, C. R.

M. R. Hee, C. R. Baumal, C. A. Puliafito, J. S. Duker, E. Reichel, J. R. Wilkins, J. G. Coker, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography of age-related macular degeneration and choroidal neovascularization,” Ophthalmology annual 103, 1260–1270 (1996).

Baumann, B.

Behringer, R. R.

I. V. Larina, K. Furushima, M. E. Dickinson, R. R. Behringer, and K. V. Larin, “Live imaging of rat embryos with Doppler swept-source optical coherence tomography,” J. Biomed. Opt. 14, 050506 (2009).

Belding, J.

Belkin, M.

D. A. Nelson, S. Krupsky, A. Pollack, E. Aloni, M. Belkin, I. Vanzetta, M. Rosner, and A. Grinvald, “Special report: Noninvasive multi-parameter functional optical imaging of the eye,” Ophthalmic Surg. Lasers Imaging 36, 57–66(2005).

Biedermann, B. R.

Binns, A. M.

A. R. Tumlinson, B. Hermann, B. Hofer, B. Povazay, T. H. Margrain, A. M. Binns, and W. Drexler, “Techniques for extraction of depth-resolved in vivo human retinal intrinsic optical signals with optical coherence tomography,” Jpn. J. Ophthalmol. 53, 315–326 (2009).

Bizheva, K.

Blatter, C.

Blazek, V.

U. H. P. Haberland, V. Blazek, and H. J. Schrnitt, “Chirp optical coherence tomography of layered scattering media,” J. Biomed. Opt. 3, 259–266 (1998).

Boccara, C.

Boppart, S. A.

X. Liang, A. L. Oldenburg, V. Crecea, E. J. Chaney, and S. A. Boppart, “Optical micro-scale mapping of dynamic biomechanical tissue properties,” Opt. Express 16, 11052–11065 (2008).
[CrossRef]

A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: a review of clinical development from bench to bedside,” J Biomed Opt 12, 051403 (2007).

W. Tan, A. L. Oldenburg, J. J. Norman, T. A. Desai, and S. A. Boppart, “Optical coherence tomography of cell dynamics in three-dimensional tissue models,” Opt. Express 14, 7159–7171 (2006).
[CrossRef]

A. L. Oldenburg, M. N. Hansen, D. A. Zweifel, A. Wei, and S. A. Boppart, “Plasmon-resonant gold nanorods as low backscattering albedo contrast agents for optical coherence tomography,” Opt. Express 14, 6724–6738 (2006).
[CrossRef]

M. Lazebnik, D. L. Marks, K. Potgieter, R. Gillette, and S. A. Boppart, “Functional optical coherence tomography for detecting neural activity through scattering changes,” Opt. Lett. 28, 1218–1220 (2003).
[CrossRef]

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitvis, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037–2039 (1997).
[CrossRef]

G. J. Tearney, B. E. Bouma, S. A. Boppart, B. Golubovic, E. A. Swanson, and J. G. Fujimoto, “Rapid acquisition of in vivo biological images by use of optical coherence tomography,” Opt. Lett. 21, 1408–1410 (1996).
[CrossRef]

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nature Med. 1, 970–972 (1995).

Boudoux, C.

Bouma, B.

Bouma, B. E.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15, 1219–1223 (2009).

B. E. Bouma, S. H. Yun, B. J. Vakoc, M. J. Suter, and G. J. Tearney, “Fourier-domain optical coherence tomography: recent advances toward clinical utility,” Curr. Opin. Biotechnol. 20, 111–118 (2009).
[CrossRef]

G. J. Tearney, S. Waxman, M. Shishkov, B. J. Vakoc, M. J. Suter, M. I. Freilich, A. E. Desjardins, W. Y. Oh, L. A. Bartlett, M. Rosenberg, and B. E. Bouma, “Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging,” JACC Cardiovasc. Imaging 1, 752–761 (2008).

B. J. Vakoc, M. Shishko, S. H. Yun, W. Y. Oh, M. J. Suter, A. E. Desjardins, J. A. Evans, N. S. Nishioka, G. J. Tearney, and B. E. Bouma, “Comprehensive esophageal microscopy by using optical frequency-domain imaging (with video),” Gastroint. Endosc. 65, 898–905 (2007).
[CrossRef]

W. Y. Oh, S. H. Yun, B. J. Vakoc, G. J. Tearney, and B. E. Bouma, “Ultrahigh-speed optical frequency domain imaging and application to laser ablation monitoring,” Appl. Phys. Lett. 88, (2006).

W. Y. Oh, B. E. Bouma, N. Iftimia, S. H. Yun, R. Yelin, and G. J. Tearney, “Ultrahigh-resolution full-field optical coherence microscopy using InGaAs camera,” Opt. Express 14, 726–735(2006).
[CrossRef]

W. Y. Oh, S. H. Yun, G. J. Tearney, and B. E. Bouma, “115 kHz tuning repetition rate ultrahigh-speed wavelength-swept semiconductor laser,” Opt. Lett. 30, 3159–3161 (2005).
[CrossRef]

N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography,” Opt. Lett. 29, 480–482 (2004).
[CrossRef]

S. H. Yun, G. J. Tearney, J. F. de Boer, and B. E. Bouma, “Motion artifacts in optical coherence tomography with frequency-domain ranging,” Opt. Express 12, 2977–2998 (2004).
[CrossRef]

B. Cense, N. A. Nassif, T. C. Chen, M. C. Pierce, S.-H. Yun, B. H. Park, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography,” Opt. Express 12, 2435–2447 (2004).
[CrossRef]

N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, and J. F. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Express 12, 367–376 (2004).
[CrossRef]

B. R. White, M. C. Pierce, N. Nassif, B. Cense, B. H. Park, G. J. Tearney, B. E. Bouma, T. C. Chen, and J. F. de Boer, “In vivo dynamic human retinal blood flow imaging using ultrahigh-speed spectral domain optical Doppler tomography,” Opt. Express 11, 3490–3497 (2003).

S. H. Yun, G. J. Tearney, B. E. Bouma, B. H. Park, and J. F. de Boer, “High-speed spectral-domain optical coherence tomography at 1.3 μm wavelength,” Opt. Express 11, 2953–2963 (2003).
[CrossRef]

S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, “High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter,” Opt. Lett. 28, 1981–1983 (2003).
[CrossRef]

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28, 2067–2069 (2003).
[CrossRef]

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitvis, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037–2039 (1997).
[CrossRef]

G. J. Tearney, B. E. Bouma, and J. G. Fujimoto, “High-speed phase- and group-delay scanning with a grating-based phase control delay line,” Opt. Lett. 22, 1811–1813 (1997).
[CrossRef]

G. J. Tearney, B. E. Bouma, S. A. Boppart, B. Golubovic, E. A. Swanson, and J. G. Fujimoto, “Rapid acquisition of in vivo biological images by use of optical coherence tomography,” Opt. Lett. 21, 1408–1410 (1996).
[CrossRef]

Brezinski, M. E.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitvis, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037–2039 (1997).
[CrossRef]

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nature Med. 1, 970–972 (1995).

Bridgford, T.

B. Povazay, B. Hermann, B. Hofer, V. Kajic, E. Simpson, T. Bridgford, and W. Drexler, “Wide-field optical coherence tomography of the choroid in vivo,” Invest. Ophthalmol. Vis. Sci. 50, 1856–1863 (2009).

Bukowska, D.

M. Wojtkowski, B. Sikorski, I. Gorczynska, M. Gora, M. Szkulmowski, D. Bukowska, J. J. Kaluzny, J. G. Fujimoto, and A. Kowalczyk, “Comparison of reflectivity maps and outer retinal topography in retinal disease by three-dimensional Fourier-domain optical coherence tomography,” Opt. Express 17, 4189–4207 (2009).
[CrossRef]

S. Tamborski, D. Bukowska, M. Szkulmowski, A. Szkulmowska, A. Kowalczyk, and M. Wojtkowski, “Simultaneous analysis of flow velocity and spectroscopic properties of scattering media with the use of joint spectral and time-domain OCT,” Photon. Lett. Poland 1, 49–51 (2009).

Burgholzer, P.

D. Stifter, P. Burgholzer, O. Hoglinger, E. Gotzinger, and C. K. Hitzenberger, “Polarisation-sensitive optical coherence tomography for material characterisation and strain-field mapping,” Appl. Phys. A 76, 947–951 (2003).
[CrossRef]

Cable, A.

I. V. Larina, N. Sudheendran, M. Ghosn, J. Jiang, A. Cable, K. V. Larin, and M. E. Dickinson, “Live imaging of blood flow in mammalian embryos using Doppler swept-source optical coherence tomography,” J. Biomed. Opt. 13, 060506(2008).

B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral / Fourier-domain OCT ophthalmic imaging at 70,000 to 312,500 A-scans/s,” Opt. Express 16, 15149–15169 (2008).
[CrossRef]

Cable, A. E.

Calucci, D.

R. A. Costa, M. Skaf, L. A. Melo, Jr., D. Calucci, J. A. Cardillo, J. C. Castro, D. Huang, and M. Wojtkowski, “Retinal assessment using optical coherence tomography,” Prog. Retin. Eye Res. 25, 325–353 (2006).

Cardillo, J. A.

R. A. Costa, M. Skaf, L. A. Melo, Jr., D. Calucci, J. A. Cardillo, J. C. Castro, D. Huang, and M. Wojtkowski, “Retinal assessment using optical coherence tomography,” Prog. Retin. Eye Res. 25, 325–353 (2006).

Carvalho, M.

V. J. Srinivasan, M. Wojtkowski, A. J. Witkin, J. S. Duker, T. H. Ko, M. Carvalho, J. S. Schuman, A. Kowalczyk, and J. G. Fujimoto, “High-definition and 3-dimensional imaging of macular pathologies with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmology annual 113, 2054–2065 (2006).
[CrossRef]

Castro, J. C.

R. A. Costa, M. Skaf, L. A. Melo, Jr., D. Calucci, J. A. Cardillo, J. C. Castro, D. Huang, and M. Wojtkowski, “Retinal assessment using optical coherence tomography,” Prog. Retin. Eye Res. 25, 325–353 (2006).

Cense, B.

R. S. Jonnal, J. Rha, Y. Zhang, B. Cense, W. Gao, and D. T. Miller, “In vivo functional imaging of human cone photoreceptors,” Opt. Express 15, 16141–16160 (2007).
[CrossRef]

N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, and J. F. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Express 12, 367–376 (2004).
[CrossRef]

B. Cense, N. A. Nassif, T. C. Chen, M. C. Pierce, S.-H. Yun, B. H. Park, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography,” Opt. Express 12, 2435–2447 (2004).
[CrossRef]

N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography,” Opt. Lett. 29, 480–482 (2004).
[CrossRef]

B. H. Park, M. C. Pierce, B. Cense, and J. F. de Boer, “Real-time multi-functional optical coherence tomography,” Opt. Express 11, 782–793 (2003).
[CrossRef]

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28, 2067–2069 (2003).
[CrossRef]

B. R. White, M. C. Pierce, N. Nassif, B. Cense, B. H. Park, G. J. Tearney, B. E. Bouma, T. C. Chen, and J. F. de Boer, “In vivo dynamic human retinal blood flow imaging using ultrahigh-speed spectral domain optical Doppler tomography,” Opt. Express 11, 3490–3497 (2003).

Chan, K. P.

Chance, B.

A. Villringer and B. Chance, “Non-invasive optical spectroscopy and imaging of human brain function,” Trends Neurosci. 20, 435–442 (1997).
[CrossRef]

Chaney, E. J.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Chavanne, P.

Chavez-Pirson, A.

Chen, R. W.

I. Gorczynska, V. J. Srinivasan, L. N. Vuong, R. W. Chen, J. J. Liu, E. Reichel, M. Wojtkowski, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Projection OCT fundus imaging for visualising outer retinal pathology in non-exudative age-related macular degeneration,” Br. J. Ophthalmol. 93, 603–609 (2009).

Chen, T. C.

Chen, Y.

Chen, Z.

Chen, Z. P.

J. Zhang, Q. Wang, B. Rao, Z. P. Chen, and K. Hsu, “Swept laser source at 1 μm for Fourier-domain optical coherence tomography,” Appl. Phys. Lett. 89, 073901 (2006).
[CrossRef]

Cheng, A. C.

A. C. Cheng, S. K. Rao, S. Lau, C. K. Leung, and D. S. Lam, “Central corneal thickness measurements by ultrasound, Orbscan II, and Visante OCT after LASIK for myopia,” J. Refract. Surg. 24, 361–365 (2008).

Chinn, S. R.

Choi, D.

Choi, S. S.

R. J. Zawadzki, A. R. Fuller, D. F. Wiley, B. Hamann, S. S. Choi, and J. S. Werner, “Adaptation of a support vector machine algorithm for segmentation and visualization of retinal structures in volumetric optical coherence tomography data sets,” J. Biomed. Opt. 12, 041206 (2007).

Choma, M. A.

Christopoulos, V.

V. Christopoulos, L. Kagemann, G. Wollstein, H. Ishikawa, M. L. Gabriele, M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, J. S. Duker, D. K. Dhaliwal, and J. S. Schuman, “In vivo corneal high-speed, ultra high-resolution optical coherence tomography,” Arch. Ophthalmol. 125, 1027–1035 (2007).

Chu, K. C.

Chu, M. C.

Chughtai, O. Q.

M. W. Jenkins, O. Q. Chughtai, A. N. Basavanhally, M. Watanabe, and A. M. Rollins, “In vivo gated 4D imaging of the embryonic heart using optical coherence tomography,” J. Biomed. Opt. 12, 030505 (2007).

Coker, J. G.

J. S. Schuman, T. PedutKloizman, L. Pieroth, E. Hertzmark, M. R. Hee, J. R. Wilkins, J. G. Coker, C. A. Puliafito, J. G. Fujimoto, and E. A. Swanson, “Quantitation of nerve fiber layer thickness loss over time in the glaucomatous monkey model using optical coherence tomography,” Investig. Ophthal. Vis. Sci. 37, 5255–5255 (1996).

M. R. Hee, C. R. Baumal, C. A. Puliafito, J. S. Duker, E. Reichel, J. R. Wilkins, J. G. Coker, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography of age-related macular degeneration and choroidal neovascularization,” Ophthalmology annual 103, 1260–1270 (1996).

Colston, B. W.

Connolly, J.

D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, “Three-dimensional endomicroscopy using optical coherence tomography,” Nat. Photon. 1, 709–716 (2007).
[CrossRef]

Costa, R. A.

R. A. Costa, M. Skaf, L. A. Melo, Jr., D. Calucci, J. A. Cardillo, J. C. Castro, D. Huang, and M. Wojtkowski, “Retinal assessment using optical coherence tomography,” Prog. Retin. Eye Res. 25, 325–353 (2006).

Creazzo, T. L.

Crecea, V.

Da Silva, L. B.

Dasari, R. R.

Dave, D. P.

T. Akkin, D. P. Dave, T. E. Milner, and H. G. Rylander, “Detection of neural activity using phase-sensitive optical low-coherence reflectometry,” Opt. Express 12, 2377–2386(2004).
[CrossRef]

T. Akkin, D. P. Dave, H. G. Rylander, and T. E. Milner, “Non-contact sub-nanometer measurement of transient surface displacement during action potential propagation,” presented at SPIE Photonics West Conference, San Jose, California, USA, 22–27 January 2005.

de Boer, J.

de Boer, J. F.

T. Akkin, C. Joo, and J. F. de Boer, “Depth-resolved measurement of transient structural changes during action potential propagation,” Biophys. J. 93, 1347–1353 (2007).
[CrossRef]

N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, and J. F. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Express 12, 367–376 (2004).
[CrossRef]

B. Cense, N. A. Nassif, T. C. Chen, M. C. Pierce, S.-H. Yun, B. H. Park, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography,” Opt. Express 12, 2435–2447 (2004).
[CrossRef]

N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography,” Opt. Lett. 29, 480–482 (2004).
[CrossRef]

S. H. Yun, G. J. Tearney, J. F. de Boer, and B. E. Bouma, “Motion artifacts in optical coherence tomography with frequency-domain ranging,” Opt. Express 12, 2977–2998 (2004).
[CrossRef]

B. H. Park, M. C. Pierce, B. Cense, and J. F. de Boer, “Real-time multi-functional optical coherence tomography,” Opt. Express 11, 782–793 (2003).
[CrossRef]

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28, 2067–2069 (2003).
[CrossRef]

S. H. Yun, G. J. Tearney, B. E. Bouma, B. H. Park, and J. F. de Boer, “High-speed spectral-domain optical coherence tomography at 1.3 μm wavelength,” Opt. Express 11, 2953–2963 (2003).
[CrossRef]

B. R. White, M. C. Pierce, N. Nassif, B. Cense, B. H. Park, G. J. Tearney, B. E. Bouma, T. C. Chen, and J. F. de Boer, “In vivo dynamic human retinal blood flow imaging using ultrahigh-speed spectral domain optical Doppler tomography,” Opt. Express 11, 3490–3497 (2003).

Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, and J. S. Nelson, “Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity,” Opt. Lett. 25, 114–116 (2000).
[CrossRef]

Y. Zhao, Z. Chen, C. Saxer, Q. Shen, S. Xiang, J. F. de Boer, and J. S. Nelson, “Doppler standard deviation imaging for clinical monitoring of in vivo human skin blood flow,” Opt. Lett. 25, 1358–1360 (2000).
[CrossRef]

Desai, T. A.

Desjardins, A. E.

G. J. Tearney, S. Waxman, M. Shishkov, B. J. Vakoc, M. J. Suter, M. I. Freilich, A. E. Desjardins, W. Y. Oh, L. A. Bartlett, M. Rosenberg, and B. E. Bouma, “Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging,” JACC Cardiovasc. Imaging 1, 752–761 (2008).

B. J. Vakoc, M. Shishko, S. H. Yun, W. Y. Oh, M. J. Suter, A. E. Desjardins, J. A. Evans, N. S. Nishioka, G. J. Tearney, and B. E. Bouma, “Comprehensive esophageal microscopy by using optical frequency-domain imaging (with video),” Gastroint. Endosc. 65, 898–905 (2007).
[CrossRef]

Dhaliwal, D. K.

V. Christopoulos, L. Kagemann, G. Wollstein, H. Ishikawa, M. L. Gabriele, M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, J. S. Duker, D. K. Dhaliwal, and J. S. Schuman, “In vivo corneal high-speed, ultra high-resolution optical coherence tomography,” Arch. Ophthalmol. 125, 1027–1035 (2007).

Dickinson, M. E.

I. V. Larina, K. Furushima, M. E. Dickinson, R. R. Behringer, and K. V. Larin, “Live imaging of rat embryos with Doppler swept-source optical coherence tomography,” J. Biomed. Opt. 14, 050506 (2009).

I. V. Larina, S. Ivers, S. Syed, M. E. Dickinson, and K. V. Larin, “Hemodynamic measurements from individual blood cells in early mammalian embryos with Doppler swept source OCT,” Opt. Lett. 34, 986–988 (2009).
[CrossRef]

I. V. Larina, N. Sudheendran, M. Ghosn, J. Jiang, A. Cable, K. V. Larin, and M. E. Dickinson, “Live imaging of blood flow in mammalian embryos using Doppler swept-source optical coherence tomography,” J. Biomed. Opt. 13, 060506(2008).

Dienes, A.

Dobre, G. M.

Drexler, W.

A. R. Tumlinson, B. Hermann, B. Hofer, B. Povazay, T. H. Margrain, A. M. Binns, and W. Drexler, “Techniques for extraction of depth-resolved in vivo human retinal intrinsic optical signals with optical coherence tomography,” Jpn. J. Ophthalmol. 53, 315–326 (2009).

B. Povazay, B. Hermann, B. Hofer, V. Kajic, E. Simpson, T. Bridgford, and W. Drexler, “Wide-field optical coherence tomography of the choroid in vivo,” Invest. Ophthalmol. Vis. Sci. 50, 1856–1863 (2009).

K. Bizheva, R. Pflug, B. Hermann, B. Povazay, H. Sattmann, P. Qiu, E. Anger, H. Reitsamer, S. Popov, J. R. Taylor, A. Unterhuber, P. Ahnelt, and W. Drexler, “Optophysiology: depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography,” Proc. Natl. Acad. Sci. U.S.A. 103, 5066–5071 (2006).

A. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, A. Chavez-Pirson, and W. Drexler, “In vivo retinal optical coherence tomography at 1040 nm-enhanced penetration into the choroid,” Opt. Express 13, 3252–3258 (2005).
[CrossRef]

R. A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. F. Fercher, “Ultrahigh resolution Fourier-domain optical coherence tomography,” Opt. Express 12, 2156–2165 (2004).
[CrossRef]

B. Hermann, K. Bizheva, A. Unterhuber, B. Povazay, H. Sattmann, L. Schmetterer, A. F. Fercher, and W. Drexler, “Precision of extracting absorption profiles from weakly scattering media with spectroscopic time-domain optical coherence tomography,” Opt. Express 12, 1677–1688 (2004).
[CrossRef]

B. Povazay, K. Bizheva, B. Hermann, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, C. Schubert, P. K. Ahnelt, M. Mei, R. Holzwarth, W. J. Wadsworth, J. C. Knight, and P. S. Russel, “Enhanced visualization of choroidal vessels using ultrahigh resolution ophthalmic OCT at 1050 nm,” Opt. Express 11, 1980–1986 (2003).

R. A. Leitgeb, L. Schmetterer, W. Drexler, A. F. Fercher, R. J. Zawadzki, and T. Bajraszewski, “Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier-domain optical coherence tomography,” Opt. Express 11, 3116–3121 (2003).

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[CrossRef]

U. Morgner, W. Drexler, F. X. Kartner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto, “Spectroscopic optical coherence tomography,” Opt. Lett. 25, 111–113 (2000).
[CrossRef]

Dubois, A.

Duker, J. S.

V. J. Srinivasan, Y. Chen, J. S. Duker, and J. G. Fujimoto, “In vivo functional imaging of intrinsic scattering changes in the human retina with high-speed ultrahigh resolution OCT,” Opt. Express 17, 3861–3877 (2009).
[CrossRef]

I. Gorczynska, V. J. Srinivasan, L. N. Vuong, R. W. Chen, J. J. Liu, E. Reichel, M. Wojtkowski, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Projection OCT fundus imaging for visualising outer retinal pathology in non-exudative age-related macular degeneration,” Br. J. Ophthalmol. 93, 603–609 (2009).

J. J. Kaluzny, M. Wojtkowski, B. L. Sikorski, M. Szkulmowski, A. Szkulmowska, T. Bajraszewski, J. G. Fujimoto, J. S. Duker, J. S. Schuman, and A. Kowalczyk, “Analysis of the outer retina reconstructed by high-resolution, three-dimensional spectral domain optical coherence tomography,” Ophthalmic Surg. Lasers Imaging 40, 102–108 (2009).

V. Christopoulos, L. Kagemann, G. Wollstein, H. Ishikawa, M. L. Gabriele, M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, J. S. Duker, D. K. Dhaliwal, and J. S. Schuman, “In vivo corneal high-speed, ultra high-resolution optical coherence tomography,” Arch. Ophthalmol. 125, 1027–1035 (2007).

V. J. Srinivasan, M. Wojtkowski, J. G. Fujimoto, and J. S. Duker, “In vivo measurement of retinal physiology with high-speed ultrahigh-resolution optical coherence tomography,” Opt. Lett. 31, 2308–2310 (2006).
[CrossRef]

V. J. Srinivasan, M. Wojtkowski, A. J. Witkin, J. S. Duker, T. H. Ko, M. Carvalho, J. S. Schuman, A. Kowalczyk, and J. G. Fujimoto, “High-definition and 3-dimensional imaging of macular pathologies with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmology annual 113, 2054–2065 (2006).
[CrossRef]

M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, “Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmology annual 112, 1734–1746 (2005).
[CrossRef]

M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution high-speed Fourier-domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12, 2404–2422 (2004).
[CrossRef]

M. R. Hee, C. R. Baumal, C. A. Puliafito, J. S. Duker, E. Reichel, J. R. Wilkins, J. G. Coker, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography of age-related macular degeneration and choroidal neovascularization,” Ophthalmology annual 103, 1260–1270 (1996).

M. R. Hee, C. A. Puliafito, C. Wong, J. S. Duker, E. Reichel, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography of macular holes,” Ophthalmology annual 102, 748–756 (1995).

Dunne, S.

Eichholz, J.

Eigenwillig, C. M.

Ellerbee, A. K.

Elsner, A. E.

M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, “Imaging polarimetry in age-related macular degeneration,” Investig. Ophthalmol. Vis. Sci. 49, 2661–2667 (2008).

Elzaiat, S. Y.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
[CrossRef]

Endo, T.

Evans, J. A.

B. J. Vakoc, M. Shishko, S. H. Yun, W. Y. Oh, M. J. Suter, A. E. Desjardins, J. A. Evans, N. S. Nishioka, G. J. Tearney, and B. E. Bouma, “Comprehensive esophageal microscopy by using optical frequency-domain imaging (with video),” Gastroint. Endosc. 65, 898–905 (2007).
[CrossRef]

Everett, M. J.

Faber, D. J.

Faber, D. L.

Fabritius, T.

Fang-Yen, C.

Feld, M. S.

Fercher, A.

B. Grajciar, M. Pircher, A. Fercher, and R. Leitgeb, “Parallel Fourier-domain optical coherence tomography for in vivo measurement of the human eye,” Opt. Express 13, 1131–1137(2005).
[CrossRef]

A. Fercher, “Optical coherence tomography,” J. Biomed. Opt. 1, 157–173 (1996).

A. Fercher, Optics in Medicine, Biology and Environmental Research: Selected Contributions to the First International Conference on Optics Within Life Sciences (Manufacturing Research and Technology) (Elsevier, 1990), pp. 221–228.

Fercher, A. F.

B. Hermann, K. Bizheva, A. Unterhuber, B. Povazay, H. Sattmann, L. Schmetterer, A. F. Fercher, and W. Drexler, “Precision of extracting absorption profiles from weakly scattering media with spectroscopic time-domain optical coherence tomography,” Opt. Express 12, 1677–1688 (2004).
[CrossRef]

R. A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. F. Fercher, “Ultrahigh resolution Fourier-domain optical coherence tomography,” Opt. Express 12, 2156–2165 (2004).
[CrossRef]

R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of Fourier-domain vs. time domain optical coherence tomography,” Opt. Express 11, 889–894 (2003).

B. Povazay, K. Bizheva, B. Hermann, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, C. Schubert, P. K. Ahnelt, M. Mei, R. Holzwarth, W. J. Wadsworth, J. C. Knight, and P. S. Russel, “Enhanced visualization of choroidal vessels using ultrahigh resolution ophthalmic OCT at 1050 nm,” Opt. Express 11, 1980–1986 (2003).

R. A. Leitgeb, L. Schmetterer, W. Drexler, A. F. Fercher, R. J. Zawadzki, and T. Bajraszewski, “Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier-domain optical coherence tomography,” Opt. Express 11, 3116–3121 (2003).

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[CrossRef]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier-domain optical coherence tomography,” J. Biomed. Opt. 7, 457–463 (2002).

M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. F. Fercher, “Full range complex spectral optical coherence tomography technique in eye imaging,” Opt. Lett. 27, 1415–1417 (2002).
[CrossRef]

R. Leitgeb, M. Wojtkowski, A. Kowalczyk, C. K. Hitzenberger, M. Sticker, and A. F. Fercher, “Spectral measurement of absorption by spectroscopic frequency-domain optical coherence tomography,” Opt. Lett. 25, 820–822 (2000).
[CrossRef]

F. Lexer, C. K. Hitzenberger, A. F. Fercher, and M. Kulhavy, “Wavelength-tuning interferometry of intraocular distances,” Appl. Opt. 36, 6548–6553 (1997).
[CrossRef]

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
[CrossRef]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Fojt, W.

T. Bajraszewski, M. Wojtkowski, A. Szkulmowska, W. Fojt, M. Szkulmowski, and A. Kowalczyk, “Fourier-domain optical coherence tomography using optical frequency comb,” Proc. SPIE 6429, 64291F (2007).

B. J. Kaluzny, W. Fojt, A. Szkulmowska, T. Bajraszewski, M. Wojtkowski, and A. Kowalczyk, “Spectral optical coherence tomography in video-rate and three-dimensional imaging of contact lens wear,” Optom. Vis. Sci. 84, 1104–1109 (2007).

Forst, M.

Freilich, M. I.

G. J. Tearney, S. Waxman, M. Shishkov, B. J. Vakoc, M. J. Suter, M. I. Freilich, A. E. Desjardins, W. Y. Oh, L. A. Bartlett, M. Rosenberg, and B. E. Bouma, “Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging,” JACC Cardiovasc. Imaging 1, 752–761 (2008).

Frostig, R. D.

A. Grinvald, R. D. Frostig, E. Lieke, and R. Hildesheim, “Optical imaging of neuronal-activity,” Physiol. Rev. 68, 1285–1366 (1988).

Fujimoto, J.

Fujimoto, J. G.

V. J. Srinivasan, Y. Chen, J. S. Duker, and J. G. Fujimoto, “In vivo functional imaging of intrinsic scattering changes in the human retina with high-speed ultrahigh resolution OCT,” Opt. Express 17, 3861–3877 (2009).
[CrossRef]

J. J. Kaluzny, M. Wojtkowski, B. L. Sikorski, M. Szkulmowski, A. Szkulmowska, T. Bajraszewski, J. G. Fujimoto, J. S. Duker, J. S. Schuman, and A. Kowalczyk, “Analysis of the outer retina reconstructed by high-resolution, three-dimensional spectral domain optical coherence tomography,” Ophthalmic Surg. Lasers Imaging 40, 102–108 (2009).

I. Gorczynska, V. J. Srinivasan, L. N. Vuong, R. W. Chen, J. J. Liu, E. Reichel, M. Wojtkowski, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Projection OCT fundus imaging for visualising outer retinal pathology in non-exudative age-related macular degeneration,” Br. J. Ophthalmol. 93, 603–609 (2009).

M. Wojtkowski, B. Sikorski, I. Gorczynska, M. Gora, M. Szkulmowski, D. Bukowska, J. J. Kaluzny, J. G. Fujimoto, and A. Kowalczyk, “Comparison of reflectivity maps and outer retinal topography in retinal disease by three-dimensional Fourier-domain optical coherence tomography,” Opt. Express 17, 4189–4207 (2009).
[CrossRef]

D. C. Adler, C. Zhou, T. H. Tsai, J. Schmitt, Q. Huang, H. Mashimo, and J. G. Fujimoto, “Three-dimensional endomicroscopy of the human colon using optical coherence tomography,” Opt Express 17, 784–796 (2009).

B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral / Fourier-domain OCT ophthalmic imaging at 70,000 to 312,500 A-scans/s,” Opt. Express 16, 15149–15169 (2008).
[CrossRef]

B. R. Biedermann, W. Wieser, C. M. Eigenwillig, G. Palte, D. C. Adler, V. J. Srinivasan, J. G. Fujimoto, and R. Huber, “Real time en face Fourier-domain optical coherence tomography with direct hardware frequency demodulation,” Opt. Lett. 33, 2556–2558 (2008).
[CrossRef]

R. Huber, D. C. Adler, V. J. Srinivasan, and J. G. Fujimoto, “Fourier-domain mode locking at 1050 nm for ultrahigh-speed optical coherence tomography of the human retina at 236,000 axial scans per second,” Opt. Lett. 32, 2049–2051 (2007).
[CrossRef]

S. W. Huang, A. D. Aguirre, R. A. Huber, D. C. Adler, and J. G. Fujimoto, “Swept source optical coherence microscopy using a Fourier-domain mode-locked laser,” Opt Express 15, 6210–6217 (2007).

V. Christopoulos, L. Kagemann, G. Wollstein, H. Ishikawa, M. L. Gabriele, M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, J. S. Duker, D. K. Dhaliwal, and J. S. Schuman, “In vivo corneal high-speed, ultra high-resolution optical coherence tomography,” Arch. Ophthalmol. 125, 1027–1035 (2007).

S. W. Huang, A. D. Aguirre, R. A. Huber, D. C. Adler, and J. G. Fujimoto, “Swept source optical coherence microscopy using a Fourier-domain mode-locked laser,” Opt. Express 15, 6210–6217 (2007).
[CrossRef]

D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, “Three-dimensional endomicroscopy using optical coherence tomography,” Nat. Photon. 1, 709–716 (2007).
[CrossRef]

M. W. Jenkins, D. C. Adler, M. Gargesha, R. Huber, F. Rothenberg, J. Belding, M. Watanabe, D. L. Wilson, J. G. Fujimoto, and A. M. Rollins, “Ultrahigh-speed optical coherence tomography imaging and visualization of the embryonic avian heart using a buffered Fourier domain mode locked laser,” Opt. Express 15, 6251–6267 (2007).
[CrossRef]

V. J. Srinivasan, M. Wojtkowski, A. J. Witkin, J. S. Duker, T. H. Ko, M. Carvalho, J. S. Schuman, A. Kowalczyk, and J. G. Fujimoto, “High-definition and 3-dimensional imaging of macular pathologies with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmology annual 113, 2054–2065 (2006).
[CrossRef]

R. Huber, D. C. Adler, and J. G. Fujimoto, “Buffered Fourier-domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s,” Opt. Lett. 31, 2975–2977 (2006).
[CrossRef]

R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier domain mode locking (FDML): a new laser operating regime and applications for optical coherence tomography,” Opt. Express 14, 3225–3237 (2006).
[CrossRef]

V. J. Srinivasan, M. Wojtkowski, J. G. Fujimoto, and J. S. Duker, “In vivo measurement of retinal physiology with high-speed ultrahigh-resolution optical coherence tomography,” Opt. Lett. 31, 2308–2310 (2006).
[CrossRef]

R. Huber, M. Wojtkowski, J. G. Fujimoto, J. Y. Jiang, and A. E. Cable, “Three-dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300 nm,” Opt. Express 13, 10523–10538 (2005).
[CrossRef]

M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, “Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmology annual 112, 1734–1746 (2005).
[CrossRef]

M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution high-speed Fourier-domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12, 2404–2422 (2004).
[CrossRef]

U. Morgner, W. Drexler, F. X. Kartner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto, “Spectroscopic optical coherence tomography,” Opt. Lett. 25, 111–113 (2000).
[CrossRef]

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitvis, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037–2039 (1997).
[CrossRef]

S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22, 340–342 (1997).
[CrossRef]

G. J. Tearney, B. E. Bouma, and J. G. Fujimoto, “High-speed phase- and group-delay scanning with a grating-based phase control delay line,” Opt. Lett. 22, 1811–1813 (1997).
[CrossRef]

M. R. Hee, C. R. Baumal, C. A. Puliafito, J. S. Duker, E. Reichel, J. R. Wilkins, J. G. Coker, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography of age-related macular degeneration and choroidal neovascularization,” Ophthalmology annual 103, 1260–1270 (1996).

G. J. Tearney, B. E. Bouma, S. A. Boppart, B. Golubovic, E. A. Swanson, and J. G. Fujimoto, “Rapid acquisition of in vivo biological images by use of optical coherence tomography,” Opt. Lett. 21, 1408–1410 (1996).
[CrossRef]

J. S. Schuman, T. PedutKloizman, L. Pieroth, E. Hertzmark, M. R. Hee, J. R. Wilkins, J. G. Coker, C. A. Puliafito, J. G. Fujimoto, and E. A. Swanson, “Quantitation of nerve fiber layer thickness loss over time in the glaucomatous monkey model using optical coherence tomography,” Investig. Ophthal. Vis. Sci. 37, 5255–5255 (1996).

M. R. Hee, C. A. Puliafito, C. Wong, J. S. Duker, E. Reichel, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography of macular holes,” Ophthalmology annual 102, 748–756 (1995).

J. S. Schuman, M. R. Hee, A. V. Arya, T. Pedut-Kloizman, C. A. Puliafito, J. G. Fujimoto, and E. A. Swanson, “Optical coherence tomography: a new tool for glaucoma diagnosis,” Curr. Opin. Ophthalmol. 6, 89–95 (1995).

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nature Med. 1, 970–972 (1995).

J. S. Schuman, M. R. Hee, C. A. Puliafito, C. Wong, T. Pedut-Kloizman, C. P. Lin, E. Hertzmark, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, “Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography,” Arch. Ophthalmol. 113, 586–596 (1995).

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Arch. Ophthalmol. 112, 1584–1589 (1994).

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “In vivo retinal imaging by optical coherence tomography,” Opt. Lett. 18, 1864–1866 (1993).
[CrossRef]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, Optical Coherence Tomography of Ocular Diseases, 2nd ed. (Slack, 2004).

Fukumura, D.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15, 1219–1223 (2009).

Fuller, A. R.

R. J. Zawadzki, A. R. Fuller, D. F. Wiley, B. Hamann, S. S. Choi, and J. S. Werner, “Adaptation of a support vector machine algorithm for segmentation and visualization of retinal structures in volumetric optical coherence tomography data sets,” J. Biomed. Opt. 12, 041206 (2007).

Furukawa, H.

Furushima, K.

I. V. Larina, K. Furushima, M. E. Dickinson, R. R. Behringer, and K. V. Larin, “Live imaging of rat embryos with Doppler swept-source optical coherence tomography,” J. Biomed. Opt. 14, 050506 (2009).

Gabriele, M. L.

V. Christopoulos, L. Kagemann, G. Wollstein, H. Ishikawa, M. L. Gabriele, M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, J. S. Duker, D. K. Dhaliwal, and J. S. Schuman, “In vivo corneal high-speed, ultra high-resolution optical coherence tomography,” Arch. Ophthalmol. 125, 1027–1035 (2007).

Gao, W.

Garcia, P.

R. B. Rosen, M. Hathaway, J. Rogers, J. Pedro, P. Garcia, G. M. Dobre, and A. G. Podoleanu, “Simultaneous OCT/SLO/ICG imaging,” Invest. Ophthalmol. Vis. Sci. 50, 851–860(2009).

Gargesha, M.

Geitzenauer, W.

Ghosn, M.

I. V. Larina, N. Sudheendran, M. Ghosn, J. Jiang, A. Cable, K. V. Larin, and M. E. Dickinson, “Live imaging of blood flow in mammalian embryos using Doppler swept-source optical coherence tomography,” J. Biomed. Opt. 13, 060506(2008).

Gianotti, R.

Gillette, R.

Goetzinger, E.

C. Ahlers, E. Goetzinger, M. Pircher, I. Golbaz, F. Prager, C. Schutze, B. Baumann, C. Hitzenberger, and U. Schmidt-Erfurth, “Imaging of the retinal pigment epithelium in age-related macular degeneration using polarization sensitive optical coherence tomography,” Investig. Ophthalmol. Vis. Sci. doi:10.1167/iovs.09-3817 (2009).

E. Goetzinger, M. Pircher, W. Geitzenauer, C. Ahlers, B. Baumann, S. Michels, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Retinal pigment epithelium segmentation by polarization sensitive optical coherence tomography,” Opt. Express 16, 16410–16422 (2008).
[CrossRef]

Golbaz, I.

C. Ahlers, E. Goetzinger, M. Pircher, I. Golbaz, F. Prager, C. Schutze, B. Baumann, C. Hitzenberger, and U. Schmidt-Erfurth, “Imaging of the retinal pigment epithelium in age-related macular degeneration using polarization sensitive optical coherence tomography,” Investig. Ophthalmol. Vis. Sci. doi:10.1167/iovs.09-3817 (2009).

Golubovic, B.

Gonzalez, L.

Goodman, J. W.

J. W. Goodman, Statistical Optics (Wiley, 1985).

Gora, M.

Góra, M.

P. Targowski, B. Rouba, M. Góra, L. Tymińska-Widmer, J. Marczak, and A. Kowalczyk, “Optical coherence tomography in art diagnostic and restoration,” Appl. Phys. A 92, 1–9 (2008).
[CrossRef]

Gorczynska, I.

I. Gorczynska, V. J. Srinivasan, L. N. Vuong, R. W. Chen, J. J. Liu, E. Reichel, M. Wojtkowski, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Projection OCT fundus imaging for visualising outer retinal pathology in non-exudative age-related macular degeneration,” Br. J. Ophthalmol. 93, 603–609 (2009).

I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski, “Anterior segment imaging with spectral OCT system using a high-speed CMOS camera,” Opt. Express 17, 4842–4858 (2009).
[CrossRef]

M. Wojtkowski, B. Sikorski, I. Gorczynska, M. Gora, M. Szkulmowski, D. Bukowska, J. J. Kaluzny, J. G. Fujimoto, and A. Kowalczyk, “Comparison of reflectivity maps and outer retinal topography in retinal disease by three-dimensional Fourier-domain optical coherence tomography,” Opt. Express 17, 4189–4207 (2009).
[CrossRef]

B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral / Fourier-domain OCT ophthalmic imaging at 70,000 to 312,500 A-scans/s,” Opt. Express 16, 15149–15169 (2008).
[CrossRef]

B. J. Kaluzny, J. J. Kaluzny, A. Szkulmowska, I. Gorczynska, M. Szkulmowski, T. Bajraszewski, M. Wojtkowski, and P. Targowski, “Spectral optical coherence tomography: a novel technique for cornea imaging,” Cornea 25, 960–965 (2006).
[CrossRef]

A. Szkulmowska, M. Wojtkowski, I. Gorczynska, T. Bajraszewski, M. Szkulmowski, P. Targowski, A. Kowalczyk, and J. J. Kaluzny, “Coherent noise-free ophthalmic imaging by spectral optical coherence tomography,” J. Phys. D 38, 2606–2611 (2005).
[CrossRef]

M. Wojtkowski, T. Bajraszewski, I. Gorczynska, P. Targowski, A. Kowalczyk, W. Wasilewski, and C. Radzewicz, “Ophthalmic imaging by spectral optical coherence tomography,” Am. J. Ophthalmol. 138, 412–419 (2004).
[CrossRef]

Gotzinger, E.

E. Gotzinger, M. Pircher, B. Baumann, C. Ahlers, W. Geitzenauer, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Three-dimensional polarization sensitive OCT imaging and interactive display of the human retina,” Opt. Express 17, 4151–4165 (2009).
[CrossRef]

D. Stifter, P. Burgholzer, O. Hoglinger, E. Gotzinger, and C. K. Hitzenberger, “Polarisation-sensitive optical coherence tomography for material characterisation and strain-field mapping,” Appl. Phys. A 76, 947–951 (2003).
[CrossRef]

Grajciar, B.

Gregori, G.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Grieve, K.

K. Grieve and A. Roorda, “Intrinsic signals from human cone photoreceptors,” Investig. Ophthalmol. Vis. Sci. 49, 713–719(2008).

K. Grieve, G. Moneron, A. Dubois, J.-F. Le Gargasson, and C. Boccara, “Ultrahigh resolution ex vivo ocular imaging using ultrashort acquisition time en face optical coherence tomography,” J. Opt. A Pure Appl. Opt. 7, 368–373 (2005).
[CrossRef]

A. Dubois, K. Grieve, G. Moneron, R. Lecaque, L. Vabre, and C. Boccara, “Ultrahigh-resolution full-field optical coherence tomography,” Appl. Opt. 43, 2874–2883 (2004).
[CrossRef]

Grinvald, A.

D. A. Nelson, S. Krupsky, A. Pollack, E. Aloni, M. Belkin, I. Vanzetta, M. Rosner, and A. Grinvald, “Special report: Noninvasive multi-parameter functional optical imaging of the eye,” Ophthalmic Surg. Lasers Imaging 36, 57–66(2005).

A. Grinvald, R. D. Frostig, E. Lieke, and R. Hildesheim, “Optical imaging of neuronal-activity,” Physiol. Rev. 68, 1285–1366 (1988).

Grulkowski, I.

Haberland, U. H. P.

U. H. P. Haberland, V. Blazek, and H. J. Schrnitt, “Chirp optical coherence tomography of layered scattering media,” J. Biomed. Opt. 3, 259–266 (1998).

Haj, A. E.

Y. Jia, P. O. Bagnaninchi, Y. Yang, A. E. Haj, M. T. Hinds, S. J. Kirkpatrick, and R. K. Wang, “Doppler optical coherence tomography imaging of local fluid flow and shear stress within microporous scaffolds,” J. Biomed. Opt. 14, 034014 (2009).

Hamann, B.

R. J. Zawadzki, A. R. Fuller, D. F. Wiley, B. Hamann, S. S. Choi, and J. S. Werner, “Adaptation of a support vector machine algorithm for segmentation and visualization of retinal structures in volumetric optical coherence tomography data sets,” J. Biomed. Opt. 12, 041206 (2007).

Hanazono, G.

K. Tsunoda, G. Hanazono, K. Inomata, Y. Kazato, W. Suzuki, and M. Tanifuji, “Origins of retinal intrinsic signals: a series of experiments on retinas of macaque monkeys,” Jpn. J. Ophthalmol. 53, 297–314 (2009).

G. Hanazono, K. Tsunoda, Y. Kazato, K. Tsubota, and M. Tanifuji, “Evaluating neural activity of retinal ganglion cells by flash-evoked intrinsic signal imaging in macaque retina,” Investig. Ophthalmol. Vis. Sci. 49, 4655–4663 (2008).

G. Hanazono, K. Tsunoda, K. Shinoda, K. Tsubota, Y. Miyake, and M. Tanifuji, “Intrinsic signal imaging in macaque retina reveals different types of flash-induced light reflectance changes of different origins,” Investig. Ophthalmol. Vis. Sci. 48, 2903–2912 (2007).

K. Tsunoda, Y. Oguchi, G. Hanazono, and M. Tanifuji, “Mapping cone- and rod-induced retinal responsiveness in macaque retina by optical imaging,” Investig. Ophthalmol. Vis.. Sci. 45, 3820–3826 (2004).

Hansen, M. N.

Hanson, R.

Hathaway, M.

R. B. Rosen, M. Hathaway, J. Rogers, J. Pedro, P. Garcia, G. M. Dobre, and A. G. Podoleanu, “Simultaneous OCT/SLO/ICG imaging,” Invest. Ophthalmol. Vis. Sci. 50, 851–860(2009).

Hausler, G.

G. Hausler and M. W. Linduer, ““Coherence radar” and “spectral radar”-new tools for dermatological diagnosis,” J. Biomed. Opt. 3, 21–31 (1998).

Hee, M. R.

J. S. Schuman, T. PedutKloizman, L. Pieroth, E. Hertzmark, M. R. Hee, J. R. Wilkins, J. G. Coker, C. A. Puliafito, J. G. Fujimoto, and E. A. Swanson, “Quantitation of nerve fiber layer thickness loss over time in the glaucomatous monkey model using optical coherence tomography,” Investig. Ophthal. Vis. Sci. 37, 5255–5255 (1996).

M. R. Hee, C. R. Baumal, C. A. Puliafito, J. S. Duker, E. Reichel, J. R. Wilkins, J. G. Coker, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography of age-related macular degeneration and choroidal neovascularization,” Ophthalmology annual 103, 1260–1270 (1996).

J. S. Schuman, M. R. Hee, C. A. Puliafito, C. Wong, T. Pedut-Kloizman, C. P. Lin, E. Hertzmark, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, “Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography,” Arch. Ophthalmol. 113, 586–596 (1995).

M. R. Hee, C. A. Puliafito, C. Wong, J. S. Duker, E. Reichel, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography of macular holes,” Ophthalmology annual 102, 748–756 (1995).

J. S. Schuman, M. R. Hee, A. V. Arya, T. Pedut-Kloizman, C. A. Puliafito, J. G. Fujimoto, and E. A. Swanson, “Optical coherence tomography: a new tool for glaucoma diagnosis,” Curr. Opin. Ophthalmol. 6, 89–95 (1995).

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nature Med. 1, 970–972 (1995).

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Arch. Ophthalmol. 112, 1584–1589 (1994).

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “In vivo retinal imaging by optical coherence tomography,” Opt. Lett. 18, 1864–1866 (1993).
[CrossRef]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Heritage, J. P.

Hermann, B.

B. Povazay, B. Hermann, B. Hofer, V. Kajic, E. Simpson, T. Bridgford, and W. Drexler, “Wide-field optical coherence tomography of the choroid in vivo,” Invest. Ophthalmol. Vis. Sci. 50, 1856–1863 (2009).

A. R. Tumlinson, B. Hermann, B. Hofer, B. Povazay, T. H. Margrain, A. M. Binns, and W. Drexler, “Techniques for extraction of depth-resolved in vivo human retinal intrinsic optical signals with optical coherence tomography,” Jpn. J. Ophthalmol. 53, 315–326 (2009).

K. Bizheva, R. Pflug, B. Hermann, B. Povazay, H. Sattmann, P. Qiu, E. Anger, H. Reitsamer, S. Popov, J. R. Taylor, A. Unterhuber, P. Ahnelt, and W. Drexler, “Optophysiology: depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography,” Proc. Natl. Acad. Sci. U.S.A. 103, 5066–5071 (2006).

A. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, A. Chavez-Pirson, and W. Drexler, “In vivo retinal optical coherence tomography at 1040 nm-enhanced penetration into the choroid,” Opt. Express 13, 3252–3258 (2005).
[CrossRef]

R. A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. F. Fercher, “Ultrahigh resolution Fourier-domain optical coherence tomography,” Opt. Express 12, 2156–2165 (2004).
[CrossRef]

B. Hermann, K. Bizheva, A. Unterhuber, B. Povazay, H. Sattmann, L. Schmetterer, A. F. Fercher, and W. Drexler, “Precision of extracting absorption profiles from weakly scattering media with spectroscopic time-domain optical coherence tomography,” Opt. Express 12, 1677–1688 (2004).
[CrossRef]

B. Povazay, K. Bizheva, B. Hermann, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, C. Schubert, P. K. Ahnelt, M. Mei, R. Holzwarth, W. J. Wadsworth, J. C. Knight, and P. S. Russel, “Enhanced visualization of choroidal vessels using ultrahigh resolution ophthalmic OCT at 1050 nm,” Opt. Express 11, 1980–1986 (2003).

Hernandez, J. L.

Hertzmark, E.

J. S. Schuman, T. PedutKloizman, L. Pieroth, E. Hertzmark, M. R. Hee, J. R. Wilkins, J. G. Coker, C. A. Puliafito, J. G. Fujimoto, and E. A. Swanson, “Quantitation of nerve fiber layer thickness loss over time in the glaucomatous monkey model using optical coherence tomography,” Investig. Ophthal. Vis. Sci. 37, 5255–5255 (1996).

J. S. Schuman, M. R. Hee, C. A. Puliafito, C. Wong, T. Pedut-Kloizman, C. P. Lin, E. Hertzmark, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, “Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography,” Arch. Ophthalmol. 113, 586–596 (1995).

Hildesheim, R.

A. Grinvald, R. D. Frostig, E. Lieke, and R. Hildesheim, “Optical imaging of neuronal-activity,” Physiol. Rev. 68, 1285–1366 (1988).

Hill, D. K.

D. K. Hill, “The volume change resulting from stimulation of a giant nerve fibre,” J. Physiol. 111, 304–327 (1950).

Hinds, M. T.

Y. Jia, P. O. Bagnaninchi, Y. Yang, A. E. Haj, M. T. Hinds, S. J. Kirkpatrick, and R. K. Wang, “Doppler optical coherence tomography imaging of local fluid flow and shear stress within microporous scaffolds,” J. Biomed. Opt. 14, 034014 (2009).

Hiro-Oka, H.

Hitzenberger, C.

C. Ahlers, E. Goetzinger, M. Pircher, I. Golbaz, F. Prager, C. Schutze, B. Baumann, C. Hitzenberger, and U. Schmidt-Erfurth, “Imaging of the retinal pigment epithelium in age-related macular degeneration using polarization sensitive optical coherence tomography,” Investig. Ophthalmol. Vis. Sci. doi:10.1167/iovs.09-3817 (2009).

Hitzenberger, C. K.

E. Gotzinger, M. Pircher, B. Baumann, C. Ahlers, W. Geitzenauer, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Three-dimensional polarization sensitive OCT imaging and interactive display of the human retina,” Opt. Express 17, 4151–4165 (2009).
[CrossRef]

E. Goetzinger, M. Pircher, W. Geitzenauer, C. Ahlers, B. Baumann, S. Michels, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Retinal pigment epithelium segmentation by polarization sensitive optical coherence tomography,” Opt. Express 16, 16410–16422 (2008).
[CrossRef]

D. Stifter, P. Burgholzer, O. Hoglinger, E. Gotzinger, and C. K. Hitzenberger, “Polarisation-sensitive optical coherence tomography for material characterisation and strain-field mapping,” Appl. Phys. A 76, 947–951 (2003).
[CrossRef]

R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of Fourier-domain vs. time domain optical coherence tomography,” Opt. Express 11, 889–894 (2003).

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[CrossRef]

C. K. Hitzenberger, P. Trost, P. W. Lo, and Q. Y. Zhou, “Three-dimensional imaging of the human retina by high-speed optical coherence tomography,” Opt. Express 11, 2753–2761(2003).

R. Leitgeb, M. Wojtkowski, A. Kowalczyk, C. K. Hitzenberger, M. Sticker, and A. F. Fercher, “Spectral measurement of absorption by spectroscopic frequency-domain optical coherence tomography,” Opt. Lett. 25, 820–822 (2000).
[CrossRef]

F. Lexer, C. K. Hitzenberger, A. F. Fercher, and M. Kulhavy, “Wavelength-tuning interferometry of intraocular distances,” Appl. Opt. 36, 6548–6553 (1997).
[CrossRef]

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
[CrossRef]

Hofer, B.

B. Povazay, B. Hermann, B. Hofer, V. Kajic, E. Simpson, T. Bridgford, and W. Drexler, “Wide-field optical coherence tomography of the choroid in vivo,” Invest. Ophthalmol. Vis. Sci. 50, 1856–1863 (2009).

A. R. Tumlinson, B. Hermann, B. Hofer, B. Povazay, T. H. Margrain, A. M. Binns, and W. Drexler, “Techniques for extraction of depth-resolved in vivo human retinal intrinsic optical signals with optical coherence tomography,” Jpn. J. Ophthalmol. 53, 315–326 (2009).

Hoglinger, O.

D. Stifter, P. Burgholzer, O. Hoglinger, E. Gotzinger, and C. K. Hitzenberger, “Polarisation-sensitive optical coherence tomography for material characterisation and strain-field mapping,” Appl. Phys. A 76, 947–951 (2003).
[CrossRef]

Holzwarth, R.

Homma, R.

R. U. Maheswari, H. Takaoka, H. Kadono, R. Homma, and M. Tanifuji, “Novel functional imaging technique from brain surface with optical coherence tomography enabling visualization of depth resolved functional structure in vivo,” J. Neurosci. Meth. 124, 83–92 (2003).

R. U. Maheswari, H. Takaoka, R. Homma, H. Kadono, and M. Tanifuji, “Implementation of optical coherence tomography (OCT) in visualization of functional structures of cat visual cortex,” Opt. Commun. 202, 47–54 (2002).
[CrossRef]

Hong, Y.

Hsu, K.

J. Zhang, Q. Wang, B. Rao, Z. P. Chen, and K. Hsu, “Swept laser source at 1 μm for Fourier-domain optical coherence tomography,” Appl. Phys. Lett. 89, 073901 (2006).
[CrossRef]

R. Huber, M. Wojtkowski, K. Taira, J. Fujimoto, and K. Hsu, “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles,” Opt. Express 13, 3513–3528 (2005).
[CrossRef]

M. A. Choma, K. Hsu, and J. A. Izatt, “Swept source optical coherence tomography using an all-fiber 1300 nm ring laser source,” J. Biomed. Opt. 10, 044009 (2005).

Huang, D.

R. A. Costa, M. Skaf, L. A. Melo, Jr., D. Calucci, J. A. Cardillo, J. C. Castro, D. Huang, and M. Wojtkowski, “Retinal assessment using optical coherence tomography,” Prog. Retin. Eye Res. 25, 325–353 (2006).

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Arch. Ophthalmol. 112, 1584–1589 (1994).

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “In vivo retinal imaging by optical coherence tomography,” Opt. Lett. 18, 1864–1866 (1993).
[CrossRef]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Huang, Q.

D. C. Adler, C. Zhou, T. H. Tsai, J. Schmitt, Q. Huang, H. Mashimo, and J. G. Fujimoto, “Three-dimensional endomicroscopy of the human colon using optical coherence tomography,” Opt Express 17, 784–796 (2009).

Huang, S. W.

S. W. Huang, A. D. Aguirre, R. A. Huber, D. C. Adler, and J. G. Fujimoto, “Swept source optical coherence microscopy using a Fourier-domain mode-locked laser,” Opt. Express 15, 6210–6217 (2007).
[CrossRef]

S. W. Huang, A. D. Aguirre, R. A. Huber, D. C. Adler, and J. G. Fujimoto, “Swept source optical coherence microscopy using a Fourier-domain mode-locked laser,” Opt Express 15, 6210–6217 (2007).

Huang, X. R.

Huber, R.

M. Gora, K. Karnowski, M. Szkulmowski, B. J. Kaluzny, R. Huber, A. Kowalczyk, and M. Wojtkowski, “Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range,” Opt. Express 17, 14880–14894 (2009).
[CrossRef]

B. R. Biedermann, W. Wieser, C. M. Eigenwillig, T. Klein, and R. Huber, “Dispersion, coherence and noise of Fourier-domain mode locked lasers,” Opt Express 17, 9947–9961 (2009).

T. Bajraszewski, M. Wojtkowski, M. Szkulmowski, A. Szkulmowska, R. Huber, and A. Kowalczyk, “Improved spectral optical coherence tomography using optical frequency comb,” Opt. Express 16, 4163–4176 (2008).
[CrossRef]

C. M. Eigenwillig, B. R. Biedermann, G. Palte, and R. Huber, “K-space linear Fourier-domain mode locked laser and applications for optical coherence tomography,” Opt. Express 16, 8916–8937 (2008).
[CrossRef]

B. R. Biedermann, W. Wieser, C. M. Eigenwillig, G. Palte, D. C. Adler, V. J. Srinivasan, J. G. Fujimoto, and R. Huber, “Real time en face Fourier-domain optical coherence tomography with direct hardware frequency demodulation,” Opt. Lett. 33, 2556–2558 (2008).
[CrossRef]

R. Huber, D. C. Adler, V. J. Srinivasan, and J. G. Fujimoto, “Fourier-domain mode locking at 1050 nm for ultrahigh-speed optical coherence tomography of the human retina at 236,000 axial scans per second,” Opt. Lett. 32, 2049–2051 (2007).
[CrossRef]

D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, “Three-dimensional endomicroscopy using optical coherence tomography,” Nat. Photon. 1, 709–716 (2007).
[CrossRef]

M. W. Jenkins, D. C. Adler, M. Gargesha, R. Huber, F. Rothenberg, J. Belding, M. Watanabe, D. L. Wilson, J. G. Fujimoto, and A. M. Rollins, “Ultrahigh-speed optical coherence tomography imaging and visualization of the embryonic avian heart using a buffered Fourier domain mode locked laser,” Opt. Express 15, 6251–6267 (2007).
[CrossRef]

R. Huber, D. C. Adler, and J. G. Fujimoto, “Buffered Fourier-domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s,” Opt. Lett. 31, 2975–2977 (2006).
[CrossRef]

R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier domain mode locking (FDML): a new laser operating regime and applications for optical coherence tomography,” Opt. Express 14, 3225–3237 (2006).
[CrossRef]

R. Huber, M. Wojtkowski, J. G. Fujimoto, J. Y. Jiang, and A. E. Cable, “Three-dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300 nm,” Opt. Express 13, 10523–10538 (2005).
[CrossRef]

R. Huber, M. Wojtkowski, K. Taira, J. Fujimoto, and K. Hsu, “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles,” Opt. Express 13, 3513–3528 (2005).
[CrossRef]

Huber, R. A.

S. W. Huang, A. D. Aguirre, R. A. Huber, D. C. Adler, and J. G. Fujimoto, “Swept source optical coherence microscopy using a Fourier-domain mode-locked laser,” Opt. Express 15, 6210–6217 (2007).
[CrossRef]

S. W. Huang, A. D. Aguirre, R. A. Huber, D. C. Adler, and J. G. Fujimoto, “Swept source optical coherence microscopy using a Fourier-domain mode-locked laser,” Opt Express 15, 6210–6217 (2007).

Huttmann, G.

Iftimia, N.

Inomata, K.

K. Tsunoda, G. Hanazono, K. Inomata, Y. Kazato, W. Suzuki, and M. Tanifuji, “Origins of retinal intrinsic signals: a series of experiments on retinas of macaque monkeys,” Jpn. J. Ophthalmol. 53, 297–314 (2009).

Ippen, E. P.

Ishikawa, H.

V. Christopoulos, L. Kagemann, G. Wollstein, H. Ishikawa, M. L. Gabriele, M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, J. S. Duker, D. K. Dhaliwal, and J. S. Schuman, “In vivo corneal high-speed, ultra high-resolution optical coherence tomography,” Arch. Ophthalmol. 125, 1027–1035 (2007).

Itoh, M.

Ivers, S.

Iwasaki, T.

M. Miura, K. Kawana, T. Iwasaki, T. Kiuchi, T. Oshika, H. Mori, M. Yamanari, S. Makita, T. Yatagai, and Y. Yasuno, “Three-dimensional anterior segment optical coherence tomography of filtering blebs after trabeculectomy,” J. Glaucoma 17, 193–196 (2008).

M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, “Imaging polarimetry in age-related macular degeneration,” Investig. Ophthalmol. Vis. Sci. 49, 2661–2667 (2008).

Izatt, J. A.

Y. K. Tao, K. M. Kennedy, and J. A. Izatt, “Velocity-resolved three-dimensional retinal microvessel imaging using single-pass flow imaging spectral domain optical coherence tomography,” Opt. Express 17, 4177–4188 (2009).
[CrossRef]

M. V. Sarunic, S. Asrani, and J. A. Izatt, “Imaging the ocular anterior segment with real-time, full-range Fourier-domain optical coherence tomography,” Arch. Ophthalmol. 126, 537–542 (2008).

Y. K. Tao, M. Zhao, and J. A. Izatt, “High-speed complex conjugate resolved retinal spectral domain optical coherence tomography using sinusoidal phase modulation,” Opt. Lett. 32, 2918–2920 (2007).
[CrossRef]

B. E. Applegate and J. A. Izatt, “Molecular imaging of endogenous and exogenous chromophores using ground state recovery pump-probe optical coherence tomography,” Opt. Express 14, 9142–9155 (2006).
[CrossRef]

M. V. Sarunic, S. Weinberg, and J. A. Izatt, “Full-field swept-source phase microscopy,” Opt. Lett. 31, 1462–1464(2006).
[CrossRef]

M. A. Choma, A. K. Ellerbee, C. Yang, T. L. Creazzo, and J. A. Izatt, “Spectral-domain phase microscopy,” Opt. Lett. 30, 1162–1164 (2005).
[CrossRef]

M. V. Sarunic, B. E. Applegate, and J. A. Izatt, “Spectral domain second-harmonic optical coherence tomography,” Opt. Lett. 30, 2391–2393 (2005).
[CrossRef]

M. A. Choma, K. Hsu, and J. A. Izatt, “Swept source optical coherence tomography using an all-fiber 1300 nm ring laser source,” J. Biomed. Opt. 10, 044009 (2005).

M. A. Choma, M. V. Sarunic, C. H. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier-domain optical coherence tomography,” Opt. Express 11, 2183–2189(2003).

A. M. Rollins and J. A. Izatt, “Optimal interferometer designs for optical coherence tomography,” Opt. Lett. 24, 1484–1486(1999).
[CrossRef]

A. M. Rollins, M. D. Kulkarni, S. Yazdanfar, R. Ung-arunyawee, and J. A. Izatt, “In vivo video rate optical coherence tomography,” Opt. Express 3, 219–229 (1998).
[CrossRef]

M. D. Kulkarni, T. G. van Leeuwen, S. Yazdanfar, and J. A. Izatt, “Velocity-estimation accuracy and frame-rate limitations in color Doppler optical coherence tomography,” Opt. Lett. 23, 1057–1059 (1998).
[CrossRef]

J. A. Izatt, M. D. Kulkami, S. Yazdanfar, J. K. Barton, and A. J. Welch, “In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography,” Opt. Lett. 22, 1439–1441 (1997).
[CrossRef]

S. Yazdanfar, M. D. Kulkarni, and J. A. Izatt, “High resolution imaging of in vivo cardiac dynamics using color Doppler optical coherence tomography,” Opt. Express 1, 424–431(1997).
[CrossRef]

J. S. Schuman, M. R. Hee, C. A. Puliafito, C. Wong, T. Pedut-Kloizman, C. P. Lin, E. Hertzmark, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, “Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography,” Arch. Ophthalmol. 113, 586–596 (1995).

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Arch. Ophthalmol. 112, 1584–1589 (1994).

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “In vivo retinal imaging by optical coherence tomography,” Opt. Lett. 18, 1864–1866 (1993).
[CrossRef]

Jackson, D. A.

Jain, R. K.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15, 1219–1223 (2009).

Jeffries, J.

Jenkins, M. W.

Jia, Y.

Y. Jia, P. O. Bagnaninchi, Y. Yang, A. E. Haj, M. T. Hinds, S. J. Kirkpatrick, and R. K. Wang, “Doppler optical coherence tomography imaging of local fluid flow and shear stress within microporous scaffolds,” J. Biomed. Opt. 14, 034014 (2009).

Jiang, J.

I. V. Larina, N. Sudheendran, M. Ghosn, J. Jiang, A. Cable, K. V. Larin, and M. E. Dickinson, “Live imaging of blood flow in mammalian embryos using Doppler swept-source optical coherence tomography,” J. Biomed. Opt. 13, 060506(2008).

B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral / Fourier-domain OCT ophthalmic imaging at 70,000 to 312,500 A-scans/s,” Opt. Express 16, 15149–15169 (2008).
[CrossRef]

Jiang, J. Y.

Jiang, Y.

Y. Jiang, I. V. Tomov, Y. Wang, and Z. Chen, “High-resolution second-harmonic optical coherence tomography of collagen in rat-tail tendon,” Appl. Phys. Lett. 86, 133901–133901(2005).
[CrossRef]

Jiao, S. L.

Jonnal, R. S.

Joo, C.

T. Akkin, C. Joo, and J. F. de Boer, “Depth-resolved measurement of transient structural changes during action potential propagation,” Biophys. J. 93, 1347–1353 (2007).
[CrossRef]

Kadono, H.

R. U. Maheswari, H. Takaoka, H. Kadono, R. Homma, and M. Tanifuji, “Novel functional imaging technique from brain surface with optical coherence tomography enabling visualization of depth resolved functional structure in vivo,” J. Neurosci. Meth. 124, 83–92 (2003).

R. U. Maheswari, H. Takaoka, R. Homma, H. Kadono, and M. Tanifuji, “Implementation of optical coherence tomography (OCT) in visualization of functional structures of cat visual cortex,” Opt. Commun. 202, 47–54 (2002).
[CrossRef]

Kagemann, L.

V. Christopoulos, L. Kagemann, G. Wollstein, H. Ishikawa, M. L. Gabriele, M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, J. S. Duker, D. K. Dhaliwal, and J. S. Schuman, “In vivo corneal high-speed, ultra high-resolution optical coherence tomography,” Arch. Ophthalmol. 125, 1027–1035 (2007).

Kajic, V.

B. Povazay, B. Hermann, B. Hofer, V. Kajic, E. Simpson, T. Bridgford, and W. Drexler, “Wide-field optical coherence tomography of the choroid in vivo,” Invest. Ophthalmol. Vis. Sci. 50, 1856–1863 (2009).

Kaluzny, B. J.

B. J. Kaluzny, A. Szkulmowska, M. Szkulmowski, T. Bajraszewski, A. Kowalczyk, and M. Wojtkowski, “Fuchs’ endothelial dystrophy in 830 nm spectral domain optical coherence tomography,” Ophthalmic Surg. Lasers Imaging 40, 198–200 (2009).

M. Gora, K. Karnowski, M. Szkulmowski, B. J. Kaluzny, R. Huber, A. Kowalczyk, and M. Wojtkowski, “Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range,” Opt. Express 17, 14880–14894 (2009).
[CrossRef]

B. J. Kaluzny, A. Szkulmowska, M. Szkulmowski, T. Bajraszewski, A. Kowalczyk, and M. Wcjtkowski, “Fuchs’ endothelial dystrophy in 830 nm spectral domain optical coherence tomography,” Ophthalmic Surg. Lasers Imaging 39, S83–S85 (2008).

B. J. Kaluzny, W. Fojt, A. Szkulmowska, T. Bajraszewski, M. Wojtkowski, and A. Kowalczyk, “Spectral optical coherence tomography in video-rate and three-dimensional imaging of contact lens wear,” Optom. Vis. Sci. 84, 1104–1109 (2007).

B. J. Kaluzny, J. J. Kaluzny, A. Szkulmowska, I. Gorczynska, M. Szkulmowski, T. Bajraszewski, M. Wojtkowski, and P. Targowski, “Spectral optical coherence tomography: a novel technique for cornea imaging,” Cornea 25, 960–965 (2006).
[CrossRef]

Kaluzny, J. J.

J. J. Kaluzny, M. Wojtkowski, B. L. Sikorski, M. Szkulmowski, A. Szkulmowska, T. Bajraszewski, J. G. Fujimoto, J. S. Duker, J. S. Schuman, and A. Kowalczyk, “Analysis of the outer retina reconstructed by high-resolution, three-dimensional spectral domain optical coherence tomography,” Ophthalmic Surg. Lasers Imaging 40, 102–108 (2009).

M. Wojtkowski, B. Sikorski, I. Gorczynska, M. Gora, M. Szkulmowski, D. Bukowska, J. J. Kaluzny, J. G. Fujimoto, and A. Kowalczyk, “Comparison of reflectivity maps and outer retinal topography in retinal disease by three-dimensional Fourier-domain optical coherence tomography,” Opt. Express 17, 4189–4207 (2009).
[CrossRef]

B. L. Sikorski, M. Wojtkowski, J. J. Kaluzny, M. Szkulmowski, and A. Kowalczyk, “Correlation of spectral optical coherence tomography with fluorescein and indocyanine green angiography in multiple evanescent white dot syndrome,” Br. J. Ophthalmol. 92, 1552–1557 (2008).
[CrossRef]

B. J. Kaluzny, J. J. Kaluzny, A. Szkulmowska, I. Gorczynska, M. Szkulmowski, T. Bajraszewski, M. Wojtkowski, and P. Targowski, “Spectral optical coherence tomography: a novel technique for cornea imaging,” Cornea 25, 960–965 (2006).
[CrossRef]

A. Szkulmowska, M. Wojtkowski, I. Gorczynska, T. Bajraszewski, M. Szkulmowski, P. Targowski, A. Kowalczyk, and J. J. Kaluzny, “Coherent noise-free ophthalmic imaging by spectral optical coherence tomography,” J. Phys. D 38, 2606–2611 (2005).
[CrossRef]

Kamp, G.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
[CrossRef]

Kardon, R.

M. D. Abramoff, Y. H. Kwon, D. Ts’o, P. Soliz, B. Zimmerman, J. Pokorny, and R. Kardon, “Visual stimulus-induced changes in human near-infrared fundus reflectance,” Investig. Ophthalmic Vis Sci. 47, 715–721. (2006).

Karnowski, K.

Kartner, F. X.

Kawana, K.

M. Miura, K. Kawana, T. Iwasaki, T. Kiuchi, T. Oshika, H. Mori, M. Yamanari, S. Makita, T. Yatagai, and Y. Yasuno, “Three-dimensional anterior segment optical coherence tomography of filtering blebs after trabeculectomy,” J. Glaucoma 17, 193–196 (2008).

Kazato, Y.

K. Tsunoda, G. Hanazono, K. Inomata, Y. Kazato, W. Suzuki, and M. Tanifuji, “Origins of retinal intrinsic signals: a series of experiments on retinas of macaque monkeys,” Jpn. J. Ophthalmol. 53, 297–314 (2009).

G. Hanazono, K. Tsunoda, Y. Kazato, K. Tsubota, and M. Tanifuji, “Evaluating neural activity of retinal ganglion cells by flash-evoked intrinsic signal imaging in macaque retina,” Investig. Ophthalmol. Vis. Sci. 49, 4655–4663 (2008).

Kennedy, K. M.

Kim, D. Y.

Kirkpatrick, S. J.

Y. Jia, P. O. Bagnaninchi, Y. Yang, A. E. Haj, M. T. Hinds, S. J. Kirkpatrick, and R. K. Wang, “Doppler optical coherence tomography imaging of local fluid flow and shear stress within microporous scaffolds,” J. Biomed. Opt. 14, 034014 (2009).

Kiuchi, T.

M. Miura, K. Kawana, T. Iwasaki, T. Kiuchi, T. Oshika, H. Mori, M. Yamanari, S. Makita, T. Yatagai, and Y. Yasuno, “Three-dimensional anterior segment optical coherence tomography of filtering blebs after trabeculectomy,” J. Glaucoma 17, 193–196 (2008).

Klein, T.

B. R. Biedermann, W. Wieser, C. M. Eigenwillig, T. Klein, and R. Huber, “Dispersion, coherence and noise of Fourier-domain mode locked lasers,” Opt Express 17, 9947–9961 (2009).

Knight, J. C.

Knighton, R.

Ko, T.

M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, “Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmology annual 112, 1734–1746 (2005).
[CrossRef]

Ko, T. H.

V. J. Srinivasan, M. Wojtkowski, A. J. Witkin, J. S. Duker, T. H. Ko, M. Carvalho, J. S. Schuman, A. Kowalczyk, and J. G. Fujimoto, “High-definition and 3-dimensional imaging of macular pathologies with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmology annual 113, 2054–2065 (2006).
[CrossRef]

M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution high-speed Fourier-domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12, 2404–2422 (2004).
[CrossRef]

Koch, E.

Koch, P.

Kolbitsch, C.

T. Schmoll, C. Kolbitsch, and R. A. Leitgeb, “Ultra-high-speed volumetric tomography of human retinal blood flow,” Opt Express 17, 4166–4176 (2009).

Kowalczyk, A.

M. Wojtkowski, B. Sikorski, I. Gorczynska, M. Gora, M. Szkulmowski, D. Bukowska, J. J. Kaluzny, J. G. Fujimoto, and A. Kowalczyk, “Comparison of reflectivity maps and outer retinal topography in retinal disease by three-dimensional Fourier-domain optical coherence tomography,” Opt. Express 17, 4189–4207 (2009).
[CrossRef]

I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski, “Anterior segment imaging with spectral OCT system using a high-speed CMOS camera,” Opt. Express 17, 4842–4858 (2009).
[CrossRef]

B. J. Kaluzny, A. Szkulmowska, M. Szkulmowski, T. Bajraszewski, A. Kowalczyk, and M. Wojtkowski, “Fuchs’ endothelial dystrophy in 830 nm spectral domain optical coherence tomography,” Ophthalmic Surg. Lasers Imaging 40, 198–200 (2009).

S. Tamborski, D. Bukowska, M. Szkulmowski, A. Szkulmowska, A. Kowalczyk, and M. Wojtkowski, “Simultaneous analysis of flow velocity and spectroscopic properties of scattering media with the use of joint spectral and time-domain OCT,” Photon. Lett. Poland 1, 49–51 (2009).

M. Szkulmowski, I. Grulkowski, D. Szlag, A. Szkulmowska, A. Kowalczyk, and M. Wojtkowski, “Flow velocity estimation by complex ambiguity free joint spectral and time-domain optical coherence tomography,” Opt. Express 17, 14281–14297 (2009).
[CrossRef]

M. Gora, K. Karnowski, M. Szkulmowski, B. J. Kaluzny, R. Huber, A. Kowalczyk, and M. Wojtkowski, “Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range,” Opt. Express 17, 14880–14894 (2009).
[CrossRef]

J. J. Kaluzny, M. Wojtkowski, B. L. Sikorski, M. Szkulmowski, A. Szkulmowska, T. Bajraszewski, J. G. Fujimoto, J. S. Duker, J. S. Schuman, and A. Kowalczyk, “Analysis of the outer retina reconstructed by high-resolution, three-dimensional spectral domain optical coherence tomography,” Ophthalmic Surg. Lasers Imaging 40, 102–108 (2009).

A. Szkulmowska, M. Szkulmowski, D. Szlag, A. Kowalczyk, and M. Wojtkowski, “Three-dimensional quantitative imaging of retinal and choroidal blood flow velocity using joint spectral and time-domain optical coherence tomography,” Opt Express 17, 10584–10598 (2009).

P. Targowski, B. Rouba, M. Góra, L. Tymińska-Widmer, J. Marczak, and A. Kowalczyk, “Optical coherence tomography in art diagnostic and restoration,” Appl. Phys. A 92, 1–9 (2008).
[CrossRef]

B. J. Kaluzny, A. Szkulmowska, M. Szkulmowski, T. Bajraszewski, A. Kowalczyk, and M. Wcjtkowski, “Fuchs’ endothelial dystrophy in 830 nm spectral domain optical coherence tomography,” Ophthalmic Surg. Lasers Imaging 39, S83–S85 (2008).

B. L. Sikorski, M. Wojtkowski, J. J. Kaluzny, M. Szkulmowski, and A. Kowalczyk, “Correlation of spectral optical coherence tomography with fluorescein and indocyanine green angiography in multiple evanescent white dot syndrome,” Br. J. Ophthalmol. 92, 1552–1557 (2008).
[CrossRef]

A. Szkulmowska, M. Szkulmowski, A. Kowalczyk, and M. Wojtkowski, “Phase-resolved Doppler optical coherence tomography—limitations and improvements,” Opt. Lett. 33, 1425–1427 (2008).
[CrossRef]

M. Szkulmowski, A. Szkulmowska, T. Bajraszewski, A. Kowalczyk, and M. Wojtkowski, “Flow velocity estimation using joint spectral and time-domain optical coherence tomography,” Opt. Express 16, 6008–6025 (2008).
[CrossRef]

T. Bajraszewski, M. Wojtkowski, M. Szkulmowski, A. Szkulmowska, R. Huber, and A. Kowalczyk, “Improved spectral optical coherence tomography using optical frequency comb,” Opt. Express 16, 4163–4176 (2008).
[CrossRef]

B. J. Kaluzny, W. Fojt, A. Szkulmowska, T. Bajraszewski, M. Wojtkowski, and A. Kowalczyk, “Spectral optical coherence tomography in video-rate and three-dimensional imaging of contact lens wear,” Optom. Vis. Sci. 84, 1104–1109 (2007).

T. Bajraszewski, M. Wojtkowski, A. Szkulmowska, W. Fojt, M. Szkulmowski, and A. Kowalczyk, “Fourier-domain optical coherence tomography using optical frequency comb,” Proc. SPIE 6429, 64291F (2007).

V. J. Srinivasan, M. Wojtkowski, A. J. Witkin, J. S. Duker, T. H. Ko, M. Carvalho, J. S. Schuman, A. Kowalczyk, and J. G. Fujimoto, “High-definition and 3-dimensional imaging of macular pathologies with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmology annual 113, 2054–2065 (2006).
[CrossRef]

M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, “Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmology annual 112, 1734–1746 (2005).
[CrossRef]

A. Szkulmowska, M. Wojtkowski, I. Gorczynska, T. Bajraszewski, M. Szkulmowski, P. Targowski, A. Kowalczyk, and J. J. Kaluzny, “Coherent noise-free ophthalmic imaging by spectral optical coherence tomography,” J. Phys. D 38, 2606–2611 (2005).
[CrossRef]

M. Wojtkowski, T. Bajraszewski, I. Gorczynska, P. Targowski, A. Kowalczyk, W. Wasilewski, and C. Radzewicz, “Ophthalmic imaging by spectral optical coherence tomography,” Am. J. Ophthalmol. 138, 412–419 (2004).
[CrossRef]

M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution high-speed Fourier-domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12, 2404–2422 (2004).
[CrossRef]

P. Targowski, B. Rouba, M. Wojtkowski, and A. Kowalczyk, “The application of optical coherence tomography to non-destructive examination of museum objects,” Stud. Conserv. 49, 107–114 (2004).

M. Wojtkowski, T. Bajraszewski, P. Targowski, and A. Kowalczyk, “Real-time in vivo imaging by high-speed spectral optical coherence tomography,” Opt. Lett. 28, 1745–1747(2003).
[CrossRef]

M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. F. Fercher, “Full range complex spectral optical coherence tomography technique in eye imaging,” Opt. Lett. 27, 1415–1417 (2002).
[CrossRef]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier-domain optical coherence tomography,” J. Biomed. Opt. 7, 457–463 (2002).

R. Leitgeb, M. Wojtkowski, A. Kowalczyk, C. K. Hitzenberger, M. Sticker, and A. F. Fercher, “Spectral measurement of absorption by spectroscopic frequency-domain optical coherence tomography,” Opt. Lett. 25, 820–822 (2000).
[CrossRef]

Kray, S.

Krupsky, S.

D. A. Nelson, S. Krupsky, A. Pollack, E. Aloni, M. Belkin, I. Vanzetta, M. Rosner, and A. Grinvald, “Special report: Noninvasive multi-parameter functional optical imaging of the eye,” Ophthalmic Surg. Lasers Imaging 36, 57–66(2005).

Kulhavy, M.

Kulkami, M. D.

Kulkarni, M. D.

Kurz, H.

Kwon, Y. H.

M. D. Abramoff, Y. H. Kwon, D. Ts’o, P. Soliz, B. Zimmerman, J. Pokorny, and R. Kardon, “Visual stimulus-induced changes in human near-infrared fundus reflectance,” Investig. Ophthalmic Vis Sci. 47, 715–721. (2006).

Kwong, K. F.

Lam, D. S.

A. C. Cheng, S. K. Rao, S. Lau, C. K. Leung, and D. S. Lam, “Central corneal thickness measurements by ultrasound, Orbscan II, and Visante OCT after LASIK for myopia,” J. Refract. Surg. 24, 361–365 (2008).

Lanning, R. M.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15, 1219–1223 (2009).

Larin, K. V.

I. V. Larina, K. Furushima, M. E. Dickinson, R. R. Behringer, and K. V. Larin, “Live imaging of rat embryos with Doppler swept-source optical coherence tomography,” J. Biomed. Opt. 14, 050506 (2009).

I. V. Larina, S. Ivers, S. Syed, M. E. Dickinson, and K. V. Larin, “Hemodynamic measurements from individual blood cells in early mammalian embryos with Doppler swept source OCT,” Opt. Lett. 34, 986–988 (2009).
[CrossRef]

I. V. Larina, N. Sudheendran, M. Ghosn, J. Jiang, A. Cable, K. V. Larin, and M. E. Dickinson, “Live imaging of blood flow in mammalian embryos using Doppler swept-source optical coherence tomography,” J. Biomed. Opt. 13, 060506(2008).

Larina, I. V.

I. V. Larina, K. Furushima, M. E. Dickinson, R. R. Behringer, and K. V. Larin, “Live imaging of rat embryos with Doppler swept-source optical coherence tomography,” J. Biomed. Opt. 14, 050506 (2009).

I. V. Larina, S. Ivers, S. Syed, M. E. Dickinson, and K. V. Larin, “Hemodynamic measurements from individual blood cells in early mammalian embryos with Doppler swept source OCT,” Opt. Lett. 34, 986–988 (2009).
[CrossRef]

I. V. Larina, N. Sudheendran, M. Ghosn, J. Jiang, A. Cable, K. V. Larin, and M. E. Dickinson, “Live imaging of blood flow in mammalian embryos using Doppler swept-source optical coherence tomography,” J. Biomed. Opt. 13, 060506(2008).

Lasser, T.

A. H. Bachmann, M. L. Villiger, C. Blatter, T. Lasser, and R. A. Leitgeb, “Resonant Doppler flow imaging and optical vivisection of retinal blood vessels,” Opt. Express 15, 408–422 (2007).
[CrossRef]

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[CrossRef]

Lau, S.

A. C. Cheng, S. K. Rao, S. Lau, C. K. Leung, and D. S. Lam, “Central corneal thickness measurements by ultrasound, Orbscan II, and Visante OCT after LASIK for myopia,” J. Refract. Surg. 24, 361–365 (2008).

Lazebnik, M.

Le, T.

Le Gargasson, J.-F.

K. Grieve, G. Moneron, A. Dubois, J.-F. Le Gargasson, and C. Boccara, “Ultrahigh resolution ex vivo ocular imaging using ultrashort acquisition time en face optical coherence tomography,” J. Opt. A Pure Appl. Opt. 7, 368–373 (2005).
[CrossRef]

Leaird, D. E.

Lecaque, R.

Leitgeb, R.

Leitgeb, R. A.

Leung, C. K.

A. C. Cheng, S. K. Rao, S. Lau, C. K. Leung, and D. S. Lam, “Central corneal thickness measurements by ultrasound, Orbscan II, and Visante OCT after LASIK for myopia,” J. Refract. Surg. 24, 361–365 (2008).

Lexer, F.

Li, X. D.

Liang, X.

Lieke, E.

A. Grinvald, R. D. Frostig, E. Lieke, and R. Hildesheim, “Optical imaging of neuronal-activity,” Physiol. Rev. 68, 1285–1366 (1988).

Lim, Y.

Lin, C. P.

J. S. Schuman, M. R. Hee, C. A. Puliafito, C. Wong, T. Pedut-Kloizman, C. P. Lin, E. Hertzmark, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, “Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography,” Arch. Ophthalmol. 113, 586–596 (1995).

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Arch. Ophthalmol. 112, 1584–1589 (1994).

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “In vivo retinal imaging by optical coherence tomography,” Opt. Lett. 18, 1864–1866 (1993).
[CrossRef]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Linduer, M. W.

G. Hausler and M. W. Linduer, ““Coherence radar” and “spectral radar”-new tools for dermatological diagnosis,” J. Biomed. Opt. 3, 21–31 (1998).

Liu, G.

Liu, J. J.

I. Gorczynska, V. J. Srinivasan, L. N. Vuong, R. W. Chen, J. J. Liu, E. Reichel, M. Wojtkowski, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Projection OCT fundus imaging for visualising outer retinal pathology in non-exudative age-related macular degeneration,” Br. J. Ophthalmol. 93, 603–609 (2009).

Lo, P. W.

Ma, L.

Maheswari, R. U.

R. U. Maheswari, H. Takaoka, H. Kadono, R. Homma, and M. Tanifuji, “Novel functional imaging technique from brain surface with optical coherence tomography enabling visualization of depth resolved functional structure in vivo,” J. Neurosci. Meth. 124, 83–92 (2003).

R. U. Maheswari, H. Takaoka, R. Homma, H. Kadono, and M. Tanifuji, “Implementation of optical coherence tomography (OCT) in visualization of functional structures of cat visual cortex,” Opt. Commun. 202, 47–54 (2002).
[CrossRef]

Makita, S.

T. Fabritius, S. Makita, M. Miura, R. Myllyla, and Y. Yasuno, “Automated segmentation of the macula by optical coherence tomography,” Opt Express 17, 15659–15669 (2009).

M. Yamanari, Y. Lim, S. Makita, and Y. Yasuno, “Visualization of phase retardation of deep posterior eye by polarization-sensitive swept-source optical coherence tomography with 1 μm probe,” Opt. Express 17, 12385–12396(2009).
[CrossRef]

S. Makita, T. Fabritius, and Y. Yasuno, “Full-range, high-speed, high-resolution 1 μm spectral-domain optical coherence tomography using BM-scan for volumetric imaging of the human posterior eye,” Opt. Express 16, 8406–8420(2008).
[CrossRef]

M. Miura, K. Kawana, T. Iwasaki, T. Kiuchi, T. Oshika, H. Mori, M. Yamanari, S. Makita, T. Yatagai, and Y. Yasuno, “Three-dimensional anterior segment optical coherence tomography of filtering blebs after trabeculectomy,” J. Glaucoma 17, 193–196 (2008).

M. Yamanari, S. Makita, and Y. Yasuno, “Polarization-sensitive swept-source optical coherence tomography with continuous source polarization modulation,” Opt. Express 16, 5892–5906 (2008).
[CrossRef]

M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, “Imaging polarimetry in age-related macular degeneration,” Investig. Ophthalmol. Vis. Sci. 49, 2661–2667 (2008).

S. Makita, T. Fabritius, and Y. Yasuno, “Quantitative retinal-blood flow measurement with three-dimensional vessel geometry determination using ultrahigh-resolution Doppler optical coherence angiography,” Opt. Lett. 33, 836–838(2008).
[CrossRef]

Y. Yasuno, S. Makita, T. Endo, G. Aoki, M. Itoh, and T. Yatagai, “Simultaneous B-M-mode scanning method for real-time full-range Fourier-domain optical coherence tomography,” Appl. Opt. 45, 1861–1865 (2006).
[CrossRef]

S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Express 14, 7821–7840 (2006).
[CrossRef]

Malekafzali, A.

Marcos, S.

Marczak, J.

P. Targowski, B. Rouba, M. Góra, L. Tymińska-Widmer, J. Marczak, and A. Kowalczyk, “Optical coherence tomography in art diagnostic and restoration,” Appl. Phys. A 92, 1–9 (2008).
[CrossRef]

Margrain, T. H.

A. R. Tumlinson, B. Hermann, B. Hofer, B. Povazay, T. H. Margrain, A. M. Binns, and W. Drexler, “Techniques for extraction of depth-resolved in vivo human retinal intrinsic optical signals with optical coherence tomography,” Jpn. J. Ophthalmol. 53, 315–326 (2009).

Mariampillai, A.

Marks, D. L.

A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: a review of clinical development from bench to bedside,” J Biomed Opt 12, 051403 (2007).

M. Lazebnik, D. L. Marks, K. Potgieter, R. Gillette, and S. A. Boppart, “Functional optical coherence tomography for detecting neural activity through scattering changes,” Opt. Lett. 28, 1218–1220 (2003).
[CrossRef]

Mashimo, H.

D. C. Adler, C. Zhou, T. H. Tsai, J. Schmitt, Q. Huang, H. Mashimo, and J. G. Fujimoto, “Three-dimensional endomicroscopy of the human colon using optical coherence tomography,” Opt Express 17, 784–796 (2009).

Mattison, D.

Mei, M.

Melo, L. A.

R. A. Costa, M. Skaf, L. A. Melo, Jr., D. Calucci, J. A. Cardillo, J. C. Castro, D. Huang, and M. Wojtkowski, “Retinal assessment using optical coherence tomography,” Prog. Retin. Eye Res. 25, 325–353 (2006).

Michels, S.

Mik, E. G.

Miller, D. T.

Milner, T. E.

T. Akkin, D. P. Dave, T. E. Milner, and H. G. Rylander, “Detection of neural activity using phase-sensitive optical low-coherence reflectometry,” Opt. Express 12, 2377–2386(2004).
[CrossRef]

X. Wang, T. E. Milner, Z. Chen, and J. S. Nelson, “Measurement of fluid-flow-velocity profile in turbid media by the use of optical Doppler tomography,” Appl Optics 36, 144–149(1997).

Z. Chen, T. E. Milner, S. Srinivas, X. Wang, A. Malekafzali, M. J. C. van Gemert, and J. S. Nelson, “Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography,” Opt. Lett. 22, 1119–1121 (1997).
[CrossRef]

T. Akkin, D. P. Dave, H. G. Rylander, and T. E. Milner, “Non-contact sub-nanometer measurement of transient surface displacement during action potential propagation,” presented at SPIE Photonics West Conference, San Jose, California, USA, 22–27 January 2005.

Miura, M.

T. Fabritius, S. Makita, M. Miura, R. Myllyla, and Y. Yasuno, “Automated segmentation of the macula by optical coherence tomography,” Opt Express 17, 15659–15669 (2009).

M. Miura, K. Kawana, T. Iwasaki, T. Kiuchi, T. Oshika, H. Mori, M. Yamanari, S. Makita, T. Yatagai, and Y. Yasuno, “Three-dimensional anterior segment optical coherence tomography of filtering blebs after trabeculectomy,” J. Glaucoma 17, 193–196 (2008).

M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, “Imaging polarimetry in age-related macular degeneration,” Investig. Ophthalmol. Vis. Sci. 49, 2661–2667 (2008).

Miyake, Y.

G. Hanazono, K. Tsunoda, K. Shinoda, K. Tsubota, Y. Miyake, and M. Tanifuji, “Intrinsic signal imaging in macaque retina reveals different types of flash-induced light reflectance changes of different origins,” Investig. Ophthalmol. Vis. Sci. 48, 2903–2912 (2007).

Moneron, G.

K. Grieve, G. Moneron, A. Dubois, J.-F. Le Gargasson, and C. Boccara, “Ultrahigh resolution ex vivo ocular imaging using ultrashort acquisition time en face optical coherence tomography,” J. Opt. A Pure Appl. Opt. 7, 368–373 (2005).
[CrossRef]

A. Dubois, K. Grieve, G. Moneron, R. Lecaque, L. Vabre, and C. Boccara, “Ultrahigh-resolution full-field optical coherence tomography,” Appl. Opt. 43, 2874–2883 (2004).
[CrossRef]

Moon, S.

Moreau, J.

Morgner, U.

Mori, H.

M. Miura, K. Kawana, T. Iwasaki, T. Kiuchi, T. Oshika, H. Mori, M. Yamanari, S. Makita, T. Yatagai, and Y. Yasuno, “Three-dimensional anterior segment optical coherence tomography of filtering blebs after trabeculectomy,” J. Glaucoma 17, 193–196 (2008).

Munce, N. R.

Munn, L. L.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15, 1219–1223 (2009).

Myllyla, R.

T. Fabritius, S. Makita, M. Miura, R. Myllyla, and Y. Yasuno, “Automated segmentation of the macula by optical coherence tomography,” Opt Express 17, 15659–15669 (2009).

Nakanishi, M.

Nassif, N.

Nassif, N. A.

Navarro, R.

Nelson, D. A.

D. A. Nelson, S. Krupsky, A. Pollack, E. Aloni, M. Belkin, I. Vanzetta, M. Rosner, and A. Grinvald, “Special report: Noninvasive multi-parameter functional optical imaging of the eye,” Ophthalmic Surg. Lasers Imaging 36, 57–66(2005).

Nelson, J. S.

Nguyen, F. T.

A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: a review of clinical development from bench to bedside,” J Biomed Opt 12, 051403 (2007).

Niemz, M. H.

M. H. Niemz, Laser-Tissue Interactions (Springer-Verlag, 1996).

Nishioka, N. S.

B. J. Vakoc, M. Shishko, S. H. Yun, W. Y. Oh, M. J. Suter, A. E. Desjardins, J. A. Evans, N. S. Nishioka, G. J. Tearney, and B. E. Bouma, “Comprehensive esophageal microscopy by using optical frequency-domain imaging (with video),” Gastroint. Endosc. 65, 898–905 (2007).
[CrossRef]

Norman, J. J.

Oguchi, Y.

K. Tsunoda, Y. Oguchi, G. Hanazono, and M. Tanifuji, “Mapping cone- and rod-induced retinal responsiveness in macaque retina by optical imaging,” Investig. Ophthalmol. Vis.. Sci. 45, 3820–3826 (2004).

Oh, W. Y.

G. J. Tearney, S. Waxman, M. Shishkov, B. J. Vakoc, M. J. Suter, M. I. Freilich, A. E. Desjardins, W. Y. Oh, L. A. Bartlett, M. Rosenberg, and B. E. Bouma, “Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging,” JACC Cardiovasc. Imaging 1, 752–761 (2008).

B. J. Vakoc, M. Shishko, S. H. Yun, W. Y. Oh, M. J. Suter, A. E. Desjardins, J. A. Evans, N. S. Nishioka, G. J. Tearney, and B. E. Bouma, “Comprehensive esophageal microscopy by using optical frequency-domain imaging (with video),” Gastroint. Endosc. 65, 898–905 (2007).
[CrossRef]

W. Y. Oh, B. E. Bouma, N. Iftimia, S. H. Yun, R. Yelin, and G. J. Tearney, “Ultrahigh-resolution full-field optical coherence microscopy using InGaAs camera,” Opt. Express 14, 726–735(2006).
[CrossRef]

W. Y. Oh, S. H. Yun, B. J. Vakoc, G. J. Tearney, and B. E. Bouma, “Ultrahigh-speed optical frequency domain imaging and application to laser ablation monitoring,” Appl. Phys. Lett. 88, (2006).

W. Y. Oh, S. H. Yun, G. J. Tearney, and B. E. Bouma, “115 kHz tuning repetition rate ultrahigh-speed wavelength-swept semiconductor laser,” Opt. Lett. 30, 3159–3161 (2005).
[CrossRef]

Ohbayashi, K.

Oldenburg, A. L.

Oshika, T.

M. Miura, K. Kawana, T. Iwasaki, T. Kiuchi, T. Oshika, H. Mori, M. Yamanari, S. Makita, T. Yatagai, and Y. Yasuno, “Three-dimensional anterior segment optical coherence tomography of filtering blebs after trabeculectomy,” J. Glaucoma 17, 193–196 (2008).

Padera, T. P.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15, 1219–1223 (2009).

Palte, G.

Park, B. H.

N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, and J. F. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Express 12, 367–376 (2004).
[CrossRef]

B. Cense, N. A. Nassif, T. C. Chen, M. C. Pierce, S.-H. Yun, B. H. Park, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography,” Opt. Express 12, 2435–2447 (2004).
[CrossRef]

N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography,” Opt. Lett. 29, 480–482 (2004).
[CrossRef]

B. H. Park, M. C. Pierce, B. Cense, and J. F. de Boer, “Real-time multi-functional optical coherence tomography,” Opt. Express 11, 782–793 (2003).
[CrossRef]

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28, 2067–2069 (2003).
[CrossRef]

S. H. Yun, G. J. Tearney, B. E. Bouma, B. H. Park, and J. F. de Boer, “High-speed spectral-domain optical coherence tomography at 1.3 μm wavelength,” Opt. Express 11, 2953–2963 (2003).
[CrossRef]

B. R. White, M. C. Pierce, N. Nassif, B. Cense, B. H. Park, G. J. Tearney, B. E. Bouma, T. C. Chen, and J. F. de Boer, “In vivo dynamic human retinal blood flow imaging using ultrahigh-speed spectral domain optical Doppler tomography,” Opt. Express 11, 3490–3497 (2003).

Parker, M. A.

M. A. Parker, Physics of Optoelectronics (Taylor & Francis, 2005).

Patel, J. S.

Pedro, J.

R. B. Rosen, M. Hathaway, J. Rogers, J. Pedro, P. Garcia, G. M. Dobre, and A. G. Podoleanu, “Simultaneous OCT/SLO/ICG imaging,” Invest. Ophthalmol. Vis. Sci. 50, 851–860(2009).

PedutKloizman, T.

J. S. Schuman, T. PedutKloizman, L. Pieroth, E. Hertzmark, M. R. Hee, J. R. Wilkins, J. G. Coker, C. A. Puliafito, J. G. Fujimoto, and E. A. Swanson, “Quantitation of nerve fiber layer thickness loss over time in the glaucomatous monkey model using optical coherence tomography,” Investig. Ophthal. Vis. Sci. 37, 5255–5255 (1996).

Pedut-Kloizman, T.

J. S. Schuman, M. R. Hee, A. V. Arya, T. Pedut-Kloizman, C. A. Puliafito, J. G. Fujimoto, and E. A. Swanson, “Optical coherence tomography: a new tool for glaucoma diagnosis,” Curr. Opin. Ophthalmol. 6, 89–95 (1995).

J. S. Schuman, M. R. Hee, C. A. Puliafito, C. Wong, T. Pedut-Kloizman, C. P. Lin, E. Hertzmark, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, “Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography,” Arch. Ophthalmol. 113, 586–596 (1995).

Pflug, R.

K. Bizheva, R. Pflug, B. Hermann, B. Povazay, H. Sattmann, P. Qiu, E. Anger, H. Reitsamer, S. Popov, J. R. Taylor, A. Unterhuber, P. Ahnelt, and W. Drexler, “Optophysiology: depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography,” Proc. Natl. Acad. Sci. U.S.A. 103, 5066–5071 (2006).

Pierce, M. C.

Pieroth, L.

J. S. Schuman, T. PedutKloizman, L. Pieroth, E. Hertzmark, M. R. Hee, J. R. Wilkins, J. G. Coker, C. A. Puliafito, J. G. Fujimoto, and E. A. Swanson, “Quantitation of nerve fiber layer thickness loss over time in the glaucomatous monkey model using optical coherence tomography,” Investig. Ophthal. Vis. Sci. 37, 5255–5255 (1996).

Pircher, M.

Pitris, C.

Pitvis, C.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitvis, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037–2039 (1997).
[CrossRef]

Plesea, L.

L. Plesea and A. G. Podoleanu, “Direct corneal elevation measurements using multiple delay en face optical coherence tomography,” J. Biomed. Opt. 13, 054054 (2008).

Podoleanu, A. G.

Pokorny, J.

M. D. Abramoff, Y. H. Kwon, D. Ts’o, P. Soliz, B. Zimmerman, J. Pokorny, and R. Kardon, “Visual stimulus-induced changes in human near-infrared fundus reflectance,” Investig. Ophthalmic Vis Sci. 47, 715–721. (2006).

Pollack, A.

D. A. Nelson, S. Krupsky, A. Pollack, E. Aloni, M. Belkin, I. Vanzetta, M. Rosner, and A. Grinvald, “Special report: Noninvasive multi-parameter functional optical imaging of the eye,” Ophthalmic Surg. Lasers Imaging 36, 57–66(2005).

Popov, S.

K. Bizheva, R. Pflug, B. Hermann, B. Povazay, H. Sattmann, P. Qiu, E. Anger, H. Reitsamer, S. Popov, J. R. Taylor, A. Unterhuber, P. Ahnelt, and W. Drexler, “Optophysiology: depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography,” Proc. Natl. Acad. Sci. U.S.A. 103, 5066–5071 (2006).

Potgieter, K.

Potsaid, B.

Povazay, B.

B. Povazay, B. Hermann, B. Hofer, V. Kajic, E. Simpson, T. Bridgford, and W. Drexler, “Wide-field optical coherence tomography of the choroid in vivo,” Invest. Ophthalmol. Vis. Sci. 50, 1856–1863 (2009).

A. R. Tumlinson, B. Hermann, B. Hofer, B. Povazay, T. H. Margrain, A. M. Binns, and W. Drexler, “Techniques for extraction of depth-resolved in vivo human retinal intrinsic optical signals with optical coherence tomography,” Jpn. J. Ophthalmol. 53, 315–326 (2009).

K. Bizheva, R. Pflug, B. Hermann, B. Povazay, H. Sattmann, P. Qiu, E. Anger, H. Reitsamer, S. Popov, J. R. Taylor, A. Unterhuber, P. Ahnelt, and W. Drexler, “Optophysiology: depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography,” Proc. Natl. Acad. Sci. U.S.A. 103, 5066–5071 (2006).

A. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, A. Chavez-Pirson, and W. Drexler, “In vivo retinal optical coherence tomography at 1040 nm-enhanced penetration into the choroid,” Opt. Express 13, 3252–3258 (2005).
[CrossRef]

B. Hermann, K. Bizheva, A. Unterhuber, B. Povazay, H. Sattmann, L. Schmetterer, A. F. Fercher, and W. Drexler, “Precision of extracting absorption profiles from weakly scattering media with spectroscopic time-domain optical coherence tomography,” Opt. Express 12, 1677–1688 (2004).
[CrossRef]

B. Povazay, K. Bizheva, B. Hermann, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, C. Schubert, P. K. Ahnelt, M. Mei, R. Holzwarth, W. J. Wadsworth, J. C. Knight, and P. S. Russel, “Enhanced visualization of choroidal vessels using ultrahigh resolution ophthalmic OCT at 1050 nm,” Opt. Express 11, 1980–1986 (2003).

Prager, F.

C. Ahlers, E. Goetzinger, M. Pircher, I. Golbaz, F. Prager, C. Schutze, B. Baumann, C. Hitzenberger, and U. Schmidt-Erfurth, “Imaging of the retinal pigment epithelium in age-related macular degeneration using polarization sensitive optical coherence tomography,” Investig. Ophthalmol. Vis. Sci. doi:10.1167/iovs.09-3817 (2009).

Puliafito, C. A.

S. L. Jiao, R. Knighton, X. R. Huang, G. Gregori, and C. A. Puliafito, “Simultaneous acquisition of sectional and fundus ophthalmic images with spectral-domain optical coherence tomography,” Opt. Express 13, 444–452 (2005).
[CrossRef]

J. S. Schuman, T. PedutKloizman, L. Pieroth, E. Hertzmark, M. R. Hee, J. R. Wilkins, J. G. Coker, C. A. Puliafito, J. G. Fujimoto, and E. A. Swanson, “Quantitation of nerve fiber layer thickness loss over time in the glaucomatous monkey model using optical coherence tomography,” Investig. Ophthal. Vis. Sci. 37, 5255–5255 (1996).

M. R. Hee, C. R. Baumal, C. A. Puliafito, J. S. Duker, E. Reichel, J. R. Wilkins, J. G. Coker, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography of age-related macular degeneration and choroidal neovascularization,” Ophthalmology annual 103, 1260–1270 (1996).

J. S. Schuman, M. R. Hee, C. A. Puliafito, C. Wong, T. Pedut-Kloizman, C. P. Lin, E. Hertzmark, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, “Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography,” Arch. Ophthalmol. 113, 586–596 (1995).

J. S. Schuman, M. R. Hee, A. V. Arya, T. Pedut-Kloizman, C. A. Puliafito, J. G. Fujimoto, and E. A. Swanson, “Optical coherence tomography: a new tool for glaucoma diagnosis,” Curr. Opin. Ophthalmol. 6, 89–95 (1995).

M. R. Hee, C. A. Puliafito, C. Wong, J. S. Duker, E. Reichel, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography of macular holes,” Ophthalmology annual 102, 748–756 (1995).

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Arch. Ophthalmol. 112, 1584–1589 (1994).

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “In vivo retinal imaging by optical coherence tomography,” Opt. Lett. 18, 1864–1866 (1993).
[CrossRef]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, Optical Coherence Tomography of Ocular Diseases, 2nd ed. (Slack, 2004).

Qiu, P.

K. Bizheva, R. Pflug, B. Hermann, B. Povazay, H. Sattmann, P. Qiu, E. Anger, H. Reitsamer, S. Popov, J. R. Taylor, A. Unterhuber, P. Ahnelt, and W. Drexler, “Optophysiology: depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography,” Proc. Natl. Acad. Sci. U.S.A. 103, 5066–5071 (2006).

Radzewicz, C.

M. Wojtkowski, T. Bajraszewski, I. Gorczynska, P. Targowski, A. Kowalczyk, W. Wasilewski, and C. Radzewicz, “Ophthalmic imaging by spectral optical coherence tomography,” Am. J. Ophthalmol. 138, 412–419 (2004).
[CrossRef]

Randall, C.

Rao, B.

J. Zhang, Q. Wang, B. Rao, Z. P. Chen, and K. Hsu, “Swept laser source at 1 μm for Fourier-domain optical coherence tomography,” Appl. Phys. Lett. 89, 073901 (2006).
[CrossRef]

Rao, S. K.

A. C. Cheng, S. K. Rao, S. Lau, C. K. Leung, and D. S. Lam, “Central corneal thickness measurements by ultrasound, Orbscan II, and Visante OCT after LASIK for myopia,” J. Refract. Surg. 24, 361–365 (2008).

Reichel, E.

I. Gorczynska, V. J. Srinivasan, L. N. Vuong, R. W. Chen, J. J. Liu, E. Reichel, M. Wojtkowski, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Projection OCT fundus imaging for visualising outer retinal pathology in non-exudative age-related macular degeneration,” Br. J. Ophthalmol. 93, 603–609 (2009).

M. R. Hee, C. R. Baumal, C. A. Puliafito, J. S. Duker, E. Reichel, J. R. Wilkins, J. G. Coker, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography of age-related macular degeneration and choroidal neovascularization,” Ophthalmology annual 103, 1260–1270 (1996).

M. R. Hee, C. A. Puliafito, C. Wong, J. S. Duker, E. Reichel, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography of macular holes,” Ophthalmology annual 102, 748–756 (1995).

Reitsamer, H.

K. Bizheva, R. Pflug, B. Hermann, B. Povazay, H. Sattmann, P. Qiu, E. Anger, H. Reitsamer, S. Popov, J. R. Taylor, A. Unterhuber, P. Ahnelt, and W. Drexler, “Optophysiology: depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography,” Proc. Natl. Acad. Sci. U.S.A. 103, 5066–5071 (2006).

Rha, J.

Rogers, J.

R. B. Rosen, M. Hathaway, J. Rogers, J. Pedro, P. Garcia, G. M. Dobre, and A. G. Podoleanu, “Simultaneous OCT/SLO/ICG imaging,” Invest. Ophthalmol. Vis. Sci. 50, 851–860(2009).

Rogers, J. A.

Rollins, A. M.

Roorda, A.

K. Grieve and A. Roorda, “Intrinsic signals from human cone photoreceptors,” Investig. Ophthalmol. Vis. Sci. 49, 713–719(2008).

Rosen, R. B.

R. B. Rosen, M. Hathaway, J. Rogers, J. Pedro, P. Garcia, G. M. Dobre, and A. G. Podoleanu, “Simultaneous OCT/SLO/ICG imaging,” Invest. Ophthalmol. Vis. Sci. 50, 851–860(2009).

G. M. Dobre, A. G. Podoleanu, and R. B. Rosen, “Simultaneous optical coherence tomography—Indocyanine Green dye fluorescence imaging system for investigations of the eye’s fundus,” Opt. Lett. 30, 58–60 (2005).
[CrossRef]

Rosenberg, M.

G. J. Tearney, S. Waxman, M. Shishkov, B. J. Vakoc, M. J. Suter, M. I. Freilich, A. E. Desjardins, W. Y. Oh, L. A. Bartlett, M. Rosenberg, and B. E. Bouma, “Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging,” JACC Cardiovasc. Imaging 1, 752–761 (2008).

Rosner, M.

D. A. Nelson, S. Krupsky, A. Pollack, E. Aloni, M. Belkin, I. Vanzetta, M. Rosner, and A. Grinvald, “Special report: Noninvasive multi-parameter functional optical imaging of the eye,” Ophthalmic Surg. Lasers Imaging 36, 57–66(2005).

Rothenberg, F.

Rouba, B.

P. Targowski, B. Rouba, M. Góra, L. Tymińska-Widmer, J. Marczak, and A. Kowalczyk, “Optical coherence tomography in art diagnostic and restoration,” Appl. Phys. A 92, 1–9 (2008).
[CrossRef]

P. Targowski, B. Rouba, M. Wojtkowski, and A. Kowalczyk, “The application of optical coherence tomography to non-destructive examination of museum objects,” Stud. Conserv. 49, 107–114 (2004).

Russel, P. S.

Rylander, H. G.

T. Akkin, D. P. Dave, T. E. Milner, and H. G. Rylander, “Detection of neural activity using phase-sensitive optical low-coherence reflectometry,” Opt. Express 12, 2377–2386(2004).
[CrossRef]

T. Akkin, D. P. Dave, H. G. Rylander, and T. E. Milner, “Non-contact sub-nanometer measurement of transient surface displacement during action potential propagation,” presented at SPIE Photonics West Conference, San Jose, California, USA, 22–27 January 2005.

Salathe, R. P.

Saleh, B. E.

B. E. Saleh and M. Teich, Fundamentals of Photonics(Wiley, 1991).

Sanders, S.

Sarunic, M. V.

Sathyam, U. S.

Sattmann, H.

Saxer, C.

Schleiermacher, H.

Schmetterer, L.

Schmidt-Erfurth, U.

Schmitt, J.

D. C. Adler, C. Zhou, T. H. Tsai, J. Schmitt, Q. Huang, H. Mashimo, and J. G. Fujimoto, “Three-dimensional endomicroscopy of the human colon using optical coherence tomography,” Opt Express 17, 784–796 (2009).

D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, “Three-dimensional endomicroscopy using optical coherence tomography,” Nat. Photon. 1, 709–716 (2007).
[CrossRef]

Schmitt, J. M.

Schmoll, T.

T. Schmoll, C. Kolbitsch, and R. A. Leitgeb, “Ultra-high-speed volumetric tomography of human retinal blood flow,” Opt Express 17, 4166–4176 (2009).

Schrnitt, H. J.

U. H. P. Haberland, V. Blazek, and H. J. Schrnitt, “Chirp optical coherence tomography of layered scattering media,” J. Biomed. Opt. 3, 259–266 (1998).

Schubert, C.

Schuman, J. S.

I. Gorczynska, V. J. Srinivasan, L. N. Vuong, R. W. Chen, J. J. Liu, E. Reichel, M. Wojtkowski, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Projection OCT fundus imaging for visualising outer retinal pathology in non-exudative age-related macular degeneration,” Br. J. Ophthalmol. 93, 603–609 (2009).

J. J. Kaluzny, M. Wojtkowski, B. L. Sikorski, M. Szkulmowski, A. Szkulmowska, T. Bajraszewski, J. G. Fujimoto, J. S. Duker, J. S. Schuman, and A. Kowalczyk, “Analysis of the outer retina reconstructed by high-resolution, three-dimensional spectral domain optical coherence tomography,” Ophthalmic Surg. Lasers Imaging 40, 102–108 (2009).

V. Christopoulos, L. Kagemann, G. Wollstein, H. Ishikawa, M. L. Gabriele, M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, J. S. Duker, D. K. Dhaliwal, and J. S. Schuman, “In vivo corneal high-speed, ultra high-resolution optical coherence tomography,” Arch. Ophthalmol. 125, 1027–1035 (2007).

V. J. Srinivasan, M. Wojtkowski, A. J. Witkin, J. S. Duker, T. H. Ko, M. Carvalho, J. S. Schuman, A. Kowalczyk, and J. G. Fujimoto, “High-definition and 3-dimensional imaging of macular pathologies with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmology annual 113, 2054–2065 (2006).
[CrossRef]

M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, “Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmology annual 112, 1734–1746 (2005).
[CrossRef]

M. R. Hee, C. R. Baumal, C. A. Puliafito, J. S. Duker, E. Reichel, J. R. Wilkins, J. G. Coker, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography of age-related macular degeneration and choroidal neovascularization,” Ophthalmology annual 103, 1260–1270 (1996).

J. S. Schuman, T. PedutKloizman, L. Pieroth, E. Hertzmark, M. R. Hee, J. R. Wilkins, J. G. Coker, C. A. Puliafito, J. G. Fujimoto, and E. A. Swanson, “Quantitation of nerve fiber layer thickness loss over time in the glaucomatous monkey model using optical coherence tomography,” Investig. Ophthal. Vis. Sci. 37, 5255–5255 (1996).

J. S. Schuman, M. R. Hee, A. V. Arya, T. Pedut-Kloizman, C. A. Puliafito, J. G. Fujimoto, and E. A. Swanson, “Optical coherence tomography: a new tool for glaucoma diagnosis,” Curr. Opin. Ophthalmol. 6, 89–95 (1995).

M. R. Hee, C. A. Puliafito, C. Wong, J. S. Duker, E. Reichel, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography of macular holes,” Ophthalmology annual 102, 748–756 (1995).

J. S. Schuman, M. R. Hee, C. A. Puliafito, C. Wong, T. Pedut-Kloizman, C. P. Lin, E. Hertzmark, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, “Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography,” Arch. Ophthalmol. 113, 586–596 (1995).

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Arch. Ophthalmol. 112, 1584–1589 (1994).

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “In vivo retinal imaging by optical coherence tomography,” Opt. Lett. 18, 1864–1866 (1993).
[CrossRef]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, Optical Coherence Tomography of Ocular Diseases, 2nd ed. (Slack, 2004).

Schutze, C.

C. Ahlers, E. Goetzinger, M. Pircher, I. Golbaz, F. Prager, C. Schutze, B. Baumann, C. Hitzenberger, and U. Schmidt-Erfurth, “Imaging of the retinal pigment epithelium in age-related macular degeneration using polarization sensitive optical coherence tomography,” Investig. Ophthalmol. Vis. Sci. doi:10.1167/iovs.09-3817 (2009).

Seung, H. S.

Shen, Q.

Shimizu, K.

Shinoda, K.

G. Hanazono, K. Tsunoda, K. Shinoda, K. Tsubota, Y. Miyake, and M. Tanifuji, “Intrinsic signal imaging in macaque retina reveals different types of flash-induced light reflectance changes of different origins,” Investig. Ophthalmol. Vis. Sci. 48, 2903–2912 (2007).

Shishko, M.

B. J. Vakoc, M. Shishko, S. H. Yun, W. Y. Oh, M. J. Suter, A. E. Desjardins, J. A. Evans, N. S. Nishioka, G. J. Tearney, and B. E. Bouma, “Comprehensive esophageal microscopy by using optical frequency-domain imaging (with video),” Gastroint. Endosc. 65, 898–905 (2007).
[CrossRef]

Shishkov, M.

G. J. Tearney, S. Waxman, M. Shishkov, B. J. Vakoc, M. J. Suter, M. I. Freilich, A. E. Desjardins, W. Y. Oh, L. A. Bartlett, M. Rosenberg, and B. E. Bouma, “Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging,” JACC Cardiovasc. Imaging 1, 752–761 (2008).

Sikorski, B.

Sikorski, B. L.

J. J. Kaluzny, M. Wojtkowski, B. L. Sikorski, M. Szkulmowski, A. Szkulmowska, T. Bajraszewski, J. G. Fujimoto, J. S. Duker, J. S. Schuman, and A. Kowalczyk, “Analysis of the outer retina reconstructed by high-resolution, three-dimensional spectral domain optical coherence tomography,” Ophthalmic Surg. Lasers Imaging 40, 102–108 (2009).

B. L. Sikorski, M. Wojtkowski, J. J. Kaluzny, M. Szkulmowski, and A. Kowalczyk, “Correlation of spectral optical coherence tomography with fluorescein and indocyanine green angiography in multiple evanescent white dot syndrome,” Br. J. Ophthalmol. 92, 1552–1557 (2008).
[CrossRef]

Simpson, E.

B. Povazay, B. Hermann, B. Hofer, V. Kajic, E. Simpson, T. Bridgford, and W. Drexler, “Wide-field optical coherence tomography of the choroid in vivo,” Invest. Ophthalmol. Vis. Sci. 50, 1856–1863 (2009).

Skaf, M.

R. A. Costa, M. Skaf, L. A. Melo, Jr., D. Calucci, J. A. Cardillo, J. C. Castro, D. Huang, and M. Wojtkowski, “Retinal assessment using optical coherence tomography,” Prog. Retin. Eye Res. 25, 325–353 (2006).

Soliz, P.

M. D. Abramoff, Y. H. Kwon, D. Ts’o, P. Soliz, B. Zimmerman, J. Pokorny, and R. Kardon, “Visual stimulus-induced changes in human near-infrared fundus reflectance,” Investig. Ophthalmic Vis Sci. 47, 715–721. (2006).

Southern, J. F.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitvis, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037–2039 (1997).
[CrossRef]

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nature Med. 1, 970–972 (1995).

Spoler, F.

Srinivas, S.

Srinivasan, V.

V. Christopoulos, L. Kagemann, G. Wollstein, H. Ishikawa, M. L. Gabriele, M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, J. S. Duker, D. K. Dhaliwal, and J. S. Schuman, “In vivo corneal high-speed, ultra high-resolution optical coherence tomography,” Arch. Ophthalmol. 125, 1027–1035 (2007).

M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, “Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmology annual 112, 1734–1746 (2005).
[CrossRef]

Srinivasan, V. J.

V. J. Srinivasan, Y. Chen, J. S. Duker, and J. G. Fujimoto, “In vivo functional imaging of intrinsic scattering changes in the human retina with high-speed ultrahigh resolution OCT,” Opt. Express 17, 3861–3877 (2009).
[CrossRef]

I. Gorczynska, V. J. Srinivasan, L. N. Vuong, R. W. Chen, J. J. Liu, E. Reichel, M. Wojtkowski, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Projection OCT fundus imaging for visualising outer retinal pathology in non-exudative age-related macular degeneration,” Br. J. Ophthalmol. 93, 603–609 (2009).

B. R. Biedermann, W. Wieser, C. M. Eigenwillig, G. Palte, D. C. Adler, V. J. Srinivasan, J. G. Fujimoto, and R. Huber, “Real time en face Fourier-domain optical coherence tomography with direct hardware frequency demodulation,” Opt. Lett. 33, 2556–2558 (2008).
[CrossRef]

B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral / Fourier-domain OCT ophthalmic imaging at 70,000 to 312,500 A-scans/s,” Opt. Express 16, 15149–15169 (2008).
[CrossRef]

R. Huber, D. C. Adler, V. J. Srinivasan, and J. G. Fujimoto, “Fourier-domain mode locking at 1050 nm for ultrahigh-speed optical coherence tomography of the human retina at 236,000 axial scans per second,” Opt. Lett. 32, 2049–2051 (2007).
[CrossRef]

V. J. Srinivasan, M. Wojtkowski, J. G. Fujimoto, and J. S. Duker, “In vivo measurement of retinal physiology with high-speed ultrahigh-resolution optical coherence tomography,” Opt. Lett. 31, 2308–2310 (2006).
[CrossRef]

V. J. Srinivasan, M. Wojtkowski, A. J. Witkin, J. S. Duker, T. H. Ko, M. Carvalho, J. S. Schuman, A. Kowalczyk, and J. G. Fujimoto, “High-definition and 3-dimensional imaging of macular pathologies with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmology annual 113, 2054–2065 (2006).
[CrossRef]

M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution high-speed Fourier-domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12, 2404–2422 (2004).
[CrossRef]

Standish, B. A.

Sticker, M.

Stifter, D.

D. Stifter, P. Burgholzer, O. Hoglinger, E. Gotzinger, and C. K. Hitzenberger, “Polarisation-sensitive optical coherence tomography for material characterisation and strain-field mapping,” Appl. Phys. A 76, 947–951 (2003).
[CrossRef]

Stingl, A.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Stylianopoulos, T.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15, 1219–1223 (2009).

Sudheendran, N.

I. V. Larina, N. Sudheendran, M. Ghosn, J. Jiang, A. Cable, K. V. Larin, and M. E. Dickinson, “Live imaging of blood flow in mammalian embryos using Doppler swept-source optical coherence tomography,” J. Biomed. Opt. 13, 060506(2008).

Suter, M. J.

B. E. Bouma, S. H. Yun, B. J. Vakoc, M. J. Suter, and G. J. Tearney, “Fourier-domain optical coherence tomography: recent advances toward clinical utility,” Curr. Opin. Biotechnol. 20, 111–118 (2009).
[CrossRef]

G. J. Tearney, S. Waxman, M. Shishkov, B. J. Vakoc, M. J. Suter, M. I. Freilich, A. E. Desjardins, W. Y. Oh, L. A. Bartlett, M. Rosenberg, and B. E. Bouma, “Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging,” JACC Cardiovasc. Imaging 1, 752–761 (2008).

B. J. Vakoc, M. Shishko, S. H. Yun, W. Y. Oh, M. J. Suter, A. E. Desjardins, J. A. Evans, N. S. Nishioka, G. J. Tearney, and B. E. Bouma, “Comprehensive esophageal microscopy by using optical frequency-domain imaging (with video),” Gastroint. Endosc. 65, 898–905 (2007).
[CrossRef]

Suzuki, W.

K. Tsunoda, G. Hanazono, K. Inomata, Y. Kazato, W. Suzuki, and M. Tanifuji, “Origins of retinal intrinsic signals: a series of experiments on retinas of macaque monkeys,” Jpn. J. Ophthalmol. 53, 297–314 (2009).

Swanson, E. A.

S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22, 340–342 (1997).
[CrossRef]

M. R. Hee, C. R. Baumal, C. A. Puliafito, J. S. Duker, E. Reichel, J. R. Wilkins, J. G. Coker, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography of age-related macular degeneration and choroidal neovascularization,” Ophthalmology annual 103, 1260–1270 (1996).

J. S. Schuman, T. PedutKloizman, L. Pieroth, E. Hertzmark, M. R. Hee, J. R. Wilkins, J. G. Coker, C. A. Puliafito, J. G. Fujimoto, and E. A. Swanson, “Quantitation of nerve fiber layer thickness loss over time in the glaucomatous monkey model using optical coherence tomography,” Investig. Ophthal. Vis. Sci. 37, 5255–5255 (1996).

G. J. Tearney, B. E. Bouma, S. A. Boppart, B. Golubovic, E. A. Swanson, and J. G. Fujimoto, “Rapid acquisition of in vivo biological images by use of optical coherence tomography,” Opt. Lett. 21, 1408–1410 (1996).
[CrossRef]

M. R. Hee, C. A. Puliafito, C. Wong, J. S. Duker, E. Reichel, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography of macular holes,” Ophthalmology annual 102, 748–756 (1995).

J. S. Schuman, M. R. Hee, A. V. Arya, T. Pedut-Kloizman, C. A. Puliafito, J. G. Fujimoto, and E. A. Swanson, “Optical coherence tomography: a new tool for glaucoma diagnosis,” Curr. Opin. Ophthalmol. 6, 89–95 (1995).

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nature Med. 1, 970–972 (1995).

J. S. Schuman, M. R. Hee, C. A. Puliafito, C. Wong, T. Pedut-Kloizman, C. P. Lin, E. Hertzmark, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, “Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography,” Arch. Ophthalmol. 113, 586–596 (1995).

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Arch. Ophthalmol. 112, 1584–1589 (1994).

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “In vivo retinal imaging by optical coherence tomography,” Opt. Lett. 18, 1864–1866 (1993).
[CrossRef]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Syed, S.

Szkulmowska, A.

B. J. Kaluzny, A. Szkulmowska, M. Szkulmowski, T. Bajraszewski, A. Kowalczyk, and M. Wojtkowski, “Fuchs’ endothelial dystrophy in 830 nm spectral domain optical coherence tomography,” Ophthalmic Surg. Lasers Imaging 40, 198–200 (2009).

S. Tamborski, D. Bukowska, M. Szkulmowski, A. Szkulmowska, A. Kowalczyk, and M. Wojtkowski, “Simultaneous analysis of flow velocity and spectroscopic properties of scattering media with the use of joint spectral and time-domain OCT,” Photon. Lett. Poland 1, 49–51 (2009).

A. Szkulmowska, M. Szkulmowski, D. Szlag, A. Kowalczyk, and M. Wojtkowski, “Three-dimensional quantitative imaging of retinal and choroidal blood flow velocity using joint spectral and time-domain optical coherence tomography,” Opt Express 17, 10584–10598 (2009).

J. J. Kaluzny, M. Wojtkowski, B. L. Sikorski, M. Szkulmowski, A. Szkulmowska, T. Bajraszewski, J. G. Fujimoto, J. S. Duker, J. S. Schuman, and A. Kowalczyk, “Analysis of the outer retina reconstructed by high-resolution, three-dimensional spectral domain optical coherence tomography,” Ophthalmic Surg. Lasers Imaging 40, 102–108 (2009).

M. Szkulmowski, I. Grulkowski, D. Szlag, A. Szkulmowska, A. Kowalczyk, and M. Wojtkowski, “Flow velocity estimation by complex ambiguity free joint spectral and time-domain optical coherence tomography,” Opt. Express 17, 14281–14297 (2009).
[CrossRef]

A. Szkulmowska, M. Szkulmowski, A. Kowalczyk, and M. Wojtkowski, “Phase-resolved Doppler optical coherence tomography—limitations and improvements,” Opt. Lett. 33, 1425–1427 (2008).
[CrossRef]

B. J. Kaluzny, A. Szkulmowska, M. Szkulmowski, T. Bajraszewski, A. Kowalczyk, and M. Wcjtkowski, “Fuchs’ endothelial dystrophy in 830 nm spectral domain optical coherence tomography,” Ophthalmic Surg. Lasers Imaging 39, S83–S85 (2008).

M. Szkulmowski, A. Szkulmowska, T. Bajraszewski, A. Kowalczyk, and M. Wojtkowski, “Flow velocity estimation using joint spectral and time-domain optical coherence tomography,” Opt. Express 16, 6008–6025 (2008).
[CrossRef]

T. Bajraszewski, M. Wojtkowski, M. Szkulmowski, A. Szkulmowska, R. Huber, and A. Kowalczyk, “Improved spectral optical coherence tomography using optical frequency comb,” Opt. Express 16, 4163–4176 (2008).
[CrossRef]

B. J. Kaluzny, W. Fojt, A. Szkulmowska, T. Bajraszewski, M. Wojtkowski, and A. Kowalczyk, “Spectral optical coherence tomography in video-rate and three-dimensional imaging of contact lens wear,” Optom. Vis. Sci. 84, 1104–1109 (2007).

T. Bajraszewski, M. Wojtkowski, A. Szkulmowska, W. Fojt, M. Szkulmowski, and A. Kowalczyk, “Fourier-domain optical coherence tomography using optical frequency comb,” Proc. SPIE 6429, 64291F (2007).

B. J. Kaluzny, J. J. Kaluzny, A. Szkulmowska, I. Gorczynska, M. Szkulmowski, T. Bajraszewski, M. Wojtkowski, and P. Targowski, “Spectral optical coherence tomography: a novel technique for cornea imaging,” Cornea 25, 960–965 (2006).
[CrossRef]

A. Szkulmowska, M. Wojtkowski, I. Gorczynska, T. Bajraszewski, M. Szkulmowski, P. Targowski, A. Kowalczyk, and J. J. Kaluzny, “Coherent noise-free ophthalmic imaging by spectral optical coherence tomography,” J. Phys. D 38, 2606–2611 (2005).
[CrossRef]

Szkulmowski, M.

M. Gora, K. Karnowski, M. Szkulmowski, B. J. Kaluzny, R. Huber, A. Kowalczyk, and M. Wojtkowski, “Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range,” Opt. Express 17, 14880–14894 (2009).
[CrossRef]

A. Szkulmowska, M. Szkulmowski, D. Szlag, A. Kowalczyk, and M. Wojtkowski, “Three-dimensional quantitative imaging of retinal and choroidal blood flow velocity using joint spectral and time-domain optical coherence tomography,” Opt Express 17, 10584–10598 (2009).

J. J. Kaluzny, M. Wojtkowski, B. L. Sikorski, M. Szkulmowski, A. Szkulmowska, T. Bajraszewski, J. G. Fujimoto, J. S. Duker, J. S. Schuman, and A. Kowalczyk, “Analysis of the outer retina reconstructed by high-resolution, three-dimensional spectral domain optical coherence tomography,” Ophthalmic Surg. Lasers Imaging 40, 102–108 (2009).

M. Szkulmowski, I. Grulkowski, D. Szlag, A. Szkulmowska, A. Kowalczyk, and M. Wojtkowski, “Flow velocity estimation by complex ambiguity free joint spectral and time-domain optical coherence tomography,” Opt. Express 17, 14281–14297 (2009).
[CrossRef]

B. J. Kaluzny, A. Szkulmowska, M. Szkulmowski, T. Bajraszewski, A. Kowalczyk, and M. Wojtkowski, “Fuchs’ endothelial dystrophy in 830 nm spectral domain optical coherence tomography,” Ophthalmic Surg. Lasers Imaging 40, 198–200 (2009).

I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski, “Anterior segment imaging with spectral OCT system using a high-speed CMOS camera,” Opt. Express 17, 4842–4858 (2009).
[CrossRef]

S. Tamborski, D. Bukowska, M. Szkulmowski, A. Szkulmowska, A. Kowalczyk, and M. Wojtkowski, “Simultaneous analysis of flow velocity and spectroscopic properties of scattering media with the use of joint spectral and time-domain OCT,” Photon. Lett. Poland 1, 49–51 (2009).

M. Wojtkowski, B. Sikorski, I. Gorczynska, M. Gora, M. Szkulmowski, D. Bukowska, J. J. Kaluzny, J. G. Fujimoto, and A. Kowalczyk, “Comparison of reflectivity maps and outer retinal topography in retinal disease by three-dimensional Fourier-domain optical coherence tomography,” Opt. Express 17, 4189–4207 (2009).
[CrossRef]

T. Bajraszewski, M. Wojtkowski, M. Szkulmowski, A. Szkulmowska, R. Huber, and A. Kowalczyk, “Improved spectral optical coherence tomography using optical frequency comb,” Opt. Express 16, 4163–4176 (2008).
[CrossRef]

M. Szkulmowski, A. Szkulmowska, T. Bajraszewski, A. Kowalczyk, and M. Wojtkowski, “Flow velocity estimation using joint spectral and time-domain optical coherence tomography,” Opt. Express 16, 6008–6025 (2008).
[CrossRef]

A. Szkulmowska, M. Szkulmowski, A. Kowalczyk, and M. Wojtkowski, “Phase-resolved Doppler optical coherence tomography—limitations and improvements,” Opt. Lett. 33, 1425–1427 (2008).
[CrossRef]

B. L. Sikorski, M. Wojtkowski, J. J. Kaluzny, M. Szkulmowski, and A. Kowalczyk, “Correlation of spectral optical coherence tomography with fluorescein and indocyanine green angiography in multiple evanescent white dot syndrome,” Br. J. Ophthalmol. 92, 1552–1557 (2008).
[CrossRef]

B. J. Kaluzny, A. Szkulmowska, M. Szkulmowski, T. Bajraszewski, A. Kowalczyk, and M. Wcjtkowski, “Fuchs’ endothelial dystrophy in 830 nm spectral domain optical coherence tomography,” Ophthalmic Surg. Lasers Imaging 39, S83–S85 (2008).

T. Bajraszewski, M. Wojtkowski, A. Szkulmowska, W. Fojt, M. Szkulmowski, and A. Kowalczyk, “Fourier-domain optical coherence tomography using optical frequency comb,” Proc. SPIE 6429, 64291F (2007).

B. J. Kaluzny, J. J. Kaluzny, A. Szkulmowska, I. Gorczynska, M. Szkulmowski, T. Bajraszewski, M. Wojtkowski, and P. Targowski, “Spectral optical coherence tomography: a novel technique for cornea imaging,” Cornea 25, 960–965 (2006).
[CrossRef]

A. Szkulmowska, M. Wojtkowski, I. Gorczynska, T. Bajraszewski, M. Szkulmowski, P. Targowski, A. Kowalczyk, and J. J. Kaluzny, “Coherent noise-free ophthalmic imaging by spectral optical coherence tomography,” J. Phys. D 38, 2606–2611 (2005).
[CrossRef]

Szlag, D.

Taira, K.

Takaoka, H.

R. U. Maheswari, H. Takaoka, H. Kadono, R. Homma, and M. Tanifuji, “Novel functional imaging technique from brain surface with optical coherence tomography enabling visualization of depth resolved functional structure in vivo,” J. Neurosci. Meth. 124, 83–92 (2003).

R. U. Maheswari, H. Takaoka, R. Homma, H. Kadono, and M. Tanifuji, “Implementation of optical coherence tomography (OCT) in visualization of functional structures of cat visual cortex,” Opt. Commun. 202, 47–54 (2002).
[CrossRef]

Tamborski, S.

S. Tamborski, D. Bukowska, M. Szkulmowski, A. Szkulmowska, A. Kowalczyk, and M. Wojtkowski, “Simultaneous analysis of flow velocity and spectroscopic properties of scattering media with the use of joint spectral and time-domain OCT,” Photon. Lett. Poland 1, 49–51 (2009).

Tan, W.

Tanifuji, M.

K. Tsunoda, G. Hanazono, K. Inomata, Y. Kazato, W. Suzuki, and M. Tanifuji, “Origins of retinal intrinsic signals: a series of experiments on retinas of macaque monkeys,” Jpn. J. Ophthalmol. 53, 297–314 (2009).

G. Hanazono, K. Tsunoda, Y. Kazato, K. Tsubota, and M. Tanifuji, “Evaluating neural activity of retinal ganglion cells by flash-evoked intrinsic signal imaging in macaque retina,” Investig. Ophthalmol. Vis. Sci. 49, 4655–4663 (2008).

G. Hanazono, K. Tsunoda, K. Shinoda, K. Tsubota, Y. Miyake, and M. Tanifuji, “Intrinsic signal imaging in macaque retina reveals different types of flash-induced light reflectance changes of different origins,” Investig. Ophthalmol. Vis. Sci. 48, 2903–2912 (2007).

K. Tsunoda, Y. Oguchi, G. Hanazono, and M. Tanifuji, “Mapping cone- and rod-induced retinal responsiveness in macaque retina by optical imaging,” Investig. Ophthalmol. Vis.. Sci. 45, 3820–3826 (2004).

R. U. Maheswari, H. Takaoka, H. Kadono, R. Homma, and M. Tanifuji, “Novel functional imaging technique from brain surface with optical coherence tomography enabling visualization of depth resolved functional structure in vivo,” J. Neurosci. Meth. 124, 83–92 (2003).

R. U. Maheswari, H. Takaoka, R. Homma, H. Kadono, and M. Tanifuji, “Implementation of optical coherence tomography (OCT) in visualization of functional structures of cat visual cortex,” Opt. Commun. 202, 47–54 (2002).
[CrossRef]

Tanno, N.

Tao, Y. K.

Targowski, P.

P. Targowski, B. Rouba, M. Góra, L. Tymińska-Widmer, J. Marczak, and A. Kowalczyk, “Optical coherence tomography in art diagnostic and restoration,” Appl. Phys. A 92, 1–9 (2008).
[CrossRef]

B. J. Kaluzny, J. J. Kaluzny, A. Szkulmowska, I. Gorczynska, M. Szkulmowski, T. Bajraszewski, M. Wojtkowski, and P. Targowski, “Spectral optical coherence tomography: a novel technique for cornea imaging,” Cornea 25, 960–965 (2006).
[CrossRef]

A. Szkulmowska, M. Wojtkowski, I. Gorczynska, T. Bajraszewski, M. Szkulmowski, P. Targowski, A. Kowalczyk, and J. J. Kaluzny, “Coherent noise-free ophthalmic imaging by spectral optical coherence tomography,” J. Phys. D 38, 2606–2611 (2005).
[CrossRef]

M. Wojtkowski, T. Bajraszewski, I. Gorczynska, P. Targowski, A. Kowalczyk, W. Wasilewski, and C. Radzewicz, “Ophthalmic imaging by spectral optical coherence tomography,” Am. J. Ophthalmol. 138, 412–419 (2004).
[CrossRef]

P. Targowski, B. Rouba, M. Wojtkowski, and A. Kowalczyk, “The application of optical coherence tomography to non-destructive examination of museum objects,” Stud. Conserv. 49, 107–114 (2004).

M. Wojtkowski, T. Bajraszewski, P. Targowski, and A. Kowalczyk, “Real-time in vivo imaging by high-speed spectral optical coherence tomography,” Opt. Lett. 28, 1745–1747(2003).
[CrossRef]

Taylor, J. R.

K. Bizheva, R. Pflug, B. Hermann, B. Povazay, H. Sattmann, P. Qiu, E. Anger, H. Reitsamer, S. Popov, J. R. Taylor, A. Unterhuber, P. Ahnelt, and W. Drexler, “Optophysiology: depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography,” Proc. Natl. Acad. Sci. U.S.A. 103, 5066–5071 (2006).

Tearney, G.

Tearney, G. J.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15, 1219–1223 (2009).

B. E. Bouma, S. H. Yun, B. J. Vakoc, M. J. Suter, and G. J. Tearney, “Fourier-domain optical coherence tomography: recent advances toward clinical utility,” Curr. Opin. Biotechnol. 20, 111–118 (2009).
[CrossRef]

G. J. Tearney, S. Waxman, M. Shishkov, B. J. Vakoc, M. J. Suter, M. I. Freilich, A. E. Desjardins, W. Y. Oh, L. A. Bartlett, M. Rosenberg, and B. E. Bouma, “Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging,” JACC Cardiovasc. Imaging 1, 752–761 (2008).

B. J. Vakoc, M. Shishko, S. H. Yun, W. Y. Oh, M. J. Suter, A. E. Desjardins, J. A. Evans, N. S. Nishioka, G. J. Tearney, and B. E. Bouma, “Comprehensive esophageal microscopy by using optical frequency-domain imaging (with video),” Gastroint. Endosc. 65, 898–905 (2007).
[CrossRef]

W. Y. Oh, S. H. Yun, B. J. Vakoc, G. J. Tearney, and B. E. Bouma, “Ultrahigh-speed optical frequency domain imaging and application to laser ablation monitoring,” Appl. Phys. Lett. 88, (2006).

W. Y. Oh, B. E. Bouma, N. Iftimia, S. H. Yun, R. Yelin, and G. J. Tearney, “Ultrahigh-resolution full-field optical coherence microscopy using InGaAs camera,” Opt. Express 14, 726–735(2006).
[CrossRef]

W. Y. Oh, S. H. Yun, G. J. Tearney, and B. E. Bouma, “115 kHz tuning repetition rate ultrahigh-speed wavelength-swept semiconductor laser,” Opt. Lett. 30, 3159–3161 (2005).
[CrossRef]

N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography,” Opt. Lett. 29, 480–482 (2004).
[CrossRef]

S. H. Yun, G. J. Tearney, J. F. de Boer, and B. E. Bouma, “Motion artifacts in optical coherence tomography with frequency-domain ranging,” Opt. Express 12, 2977–2998 (2004).
[CrossRef]

B. Cense, N. A. Nassif, T. C. Chen, M. C. Pierce, S.-H. Yun, B. H. Park, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography,” Opt. Express 12, 2435–2447 (2004).
[CrossRef]

N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, and J. F. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Express 12, 367–376 (2004).
[CrossRef]

B. R. White, M. C. Pierce, N. Nassif, B. Cense, B. H. Park, G. J. Tearney, B. E. Bouma, T. C. Chen, and J. F. de Boer, “In vivo dynamic human retinal blood flow imaging using ultrahigh-speed spectral domain optical Doppler tomography,” Opt. Express 11, 3490–3497 (2003).

S. H. Yun, G. J. Tearney, B. E. Bouma, B. H. Park, and J. F. de Boer, “High-speed spectral-domain optical coherence tomography at 1.3 μm wavelength,” Opt. Express 11, 2953–2963 (2003).
[CrossRef]

S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, “High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter,” Opt. Lett. 28, 1981–1983 (2003).
[CrossRef]

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28, 2067–2069 (2003).
[CrossRef]

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitvis, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037–2039 (1997).
[CrossRef]

G. J. Tearney, B. E. Bouma, and J. G. Fujimoto, “High-speed phase- and group-delay scanning with a grating-based phase control delay line,” Opt. Lett. 22, 1811–1813 (1997).
[CrossRef]

G. J. Tearney, B. E. Bouma, S. A. Boppart, B. Golubovic, E. A. Swanson, and J. G. Fujimoto, “Rapid acquisition of in vivo biological images by use of optical coherence tomography,” Opt. Lett. 21, 1408–1410 (1996).
[CrossRef]

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nature Med. 1, 970–972 (1995).

Teich, M.

B. E. Saleh and M. Teich, Fundamentals of Photonics(Wiley, 1991).

Tomov, I. V.

Y. Jiang, I. V. Tomov, Y. Wang, and Z. Chen, “High-resolution second-harmonic optical coherence tomography of collagen in rat-tail tendon,” Appl. Phys. Lett. 86, 133901–133901(2005).
[CrossRef]

Trost, P.

Ts’o, D.

M. D. Abramoff, Y. H. Kwon, D. Ts’o, P. Soliz, B. Zimmerman, J. Pokorny, and R. Kardon, “Visual stimulus-induced changes in human near-infrared fundus reflectance,” Investig. Ophthalmic Vis Sci. 47, 715–721. (2006).

Tsai, T. H.

D. C. Adler, C. Zhou, T. H. Tsai, J. Schmitt, Q. Huang, H. Mashimo, and J. G. Fujimoto, “Three-dimensional endomicroscopy of the human colon using optical coherence tomography,” Opt Express 17, 784–796 (2009).

Tsubota, K.

G. Hanazono, K. Tsunoda, Y. Kazato, K. Tsubota, and M. Tanifuji, “Evaluating neural activity of retinal ganglion cells by flash-evoked intrinsic signal imaging in macaque retina,” Investig. Ophthalmol. Vis. Sci. 49, 4655–4663 (2008).

G. Hanazono, K. Tsunoda, K. Shinoda, K. Tsubota, Y. Miyake, and M. Tanifuji, “Intrinsic signal imaging in macaque retina reveals different types of flash-induced light reflectance changes of different origins,” Investig. Ophthalmol. Vis. Sci. 48, 2903–2912 (2007).

Tsunoda, K.

K. Tsunoda, G. Hanazono, K. Inomata, Y. Kazato, W. Suzuki, and M. Tanifuji, “Origins of retinal intrinsic signals: a series of experiments on retinas of macaque monkeys,” Jpn. J. Ophthalmol. 53, 297–314 (2009).

G. Hanazono, K. Tsunoda, Y. Kazato, K. Tsubota, and M. Tanifuji, “Evaluating neural activity of retinal ganglion cells by flash-evoked intrinsic signal imaging in macaque retina,” Investig. Ophthalmol. Vis. Sci. 49, 4655–4663 (2008).

G. Hanazono, K. Tsunoda, K. Shinoda, K. Tsubota, Y. Miyake, and M. Tanifuji, “Intrinsic signal imaging in macaque retina reveals different types of flash-induced light reflectance changes of different origins,” Investig. Ophthalmol. Vis. Sci. 48, 2903–2912 (2007).

K. Tsunoda, Y. Oguchi, G. Hanazono, and M. Tanifuji, “Mapping cone- and rod-induced retinal responsiveness in macaque retina by optical imaging,” Investig. Ophthalmol. Vis.. Sci. 45, 3820–3826 (2004).

Tumlinson, A. R.

A. R. Tumlinson, B. Hermann, B. Hofer, B. Povazay, T. H. Margrain, A. M. Binns, and W. Drexler, “Techniques for extraction of depth-resolved in vivo human retinal intrinsic optical signals with optical coherence tomography,” Jpn. J. Ophthalmol. 53, 315–326 (2009).

Tyminska-Widmer, L.

P. Targowski, B. Rouba, M. Góra, L. Tymińska-Widmer, J. Marczak, and A. Kowalczyk, “Optical coherence tomography in art diagnostic and restoration,” Appl. Phys. A 92, 1–9 (2008).
[CrossRef]

Tyrrell, J. A.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15, 1219–1223 (2009).

Ung-arunyawee, R.

Unterhuber, A.

Vabre, L.

Vakoc, B. J.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15, 1219–1223 (2009).

B. E. Bouma, S. H. Yun, B. J. Vakoc, M. J. Suter, and G. J. Tearney, “Fourier-domain optical coherence tomography: recent advances toward clinical utility,” Curr. Opin. Biotechnol. 20, 111–118 (2009).
[CrossRef]

G. J. Tearney, S. Waxman, M. Shishkov, B. J. Vakoc, M. J. Suter, M. I. Freilich, A. E. Desjardins, W. Y. Oh, L. A. Bartlett, M. Rosenberg, and B. E. Bouma, “Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging,” JACC Cardiovasc. Imaging 1, 752–761 (2008).

B. J. Vakoc, M. Shishko, S. H. Yun, W. Y. Oh, M. J. Suter, A. E. Desjardins, J. A. Evans, N. S. Nishioka, G. J. Tearney, and B. E. Bouma, “Comprehensive esophageal microscopy by using optical frequency-domain imaging (with video),” Gastroint. Endosc. 65, 898–905 (2007).
[CrossRef]

W. Y. Oh, S. H. Yun, B. J. Vakoc, G. J. Tearney, and B. E. Bouma, “Ultrahigh-speed optical frequency domain imaging and application to laser ablation monitoring,” Appl. Phys. Lett. 88, (2006).

van der Meer, F. J.

van Gemert, M. J. C.

van Leeuwen, T. G.

Vanzetta, I.

D. A. Nelson, S. Krupsky, A. Pollack, E. Aloni, M. Belkin, I. Vanzetta, M. Rosner, and A. Grinvald, “Special report: Noninvasive multi-parameter functional optical imaging of the eye,” Ophthalmic Surg. Lasers Imaging 36, 57–66(2005).

Villiger, M. L.

Villringer, A.

A. Villringer and B. Chance, “Non-invasive optical spectroscopy and imaging of human brain function,” Trends Neurosci. 20, 435–442 (1997).
[CrossRef]

Vitkin, I. A.

Vuong, L. N.

I. Gorczynska, V. J. Srinivasan, L. N. Vuong, R. W. Chen, J. J. Liu, E. Reichel, M. Wojtkowski, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Projection OCT fundus imaging for visualising outer retinal pathology in non-exudative age-related macular degeneration,” Br. J. Ophthalmol. 93, 603–609 (2009).

Wadsworth, W. J.

Walti, R.

Wang, L. V.

L. V. Wang and H. Wu, Biomedical Optics (Wiley, 2007).

Wang, Q.

J. Zhang, Q. Wang, B. Rao, Z. P. Chen, and K. Hsu, “Swept laser source at 1 μm for Fourier-domain optical coherence tomography,” Appl. Phys. Lett. 89, 073901 (2006).
[CrossRef]

Wang, R. K.

Y. Jia, P. O. Bagnaninchi, Y. Yang, A. E. Haj, M. T. Hinds, S. J. Kirkpatrick, and R. K. Wang, “Doppler optical coherence tomography imaging of local fluid flow and shear stress within microporous scaffolds,” J. Biomed. Opt. 14, 034014 (2009).

R. K. Wang and L. An, “Doppler optical micro-angiography for volumetric imaging of vascular perfusion in vivo,” Opt. Express 17, 8926–8940 (2009).
[CrossRef]

L. An and R. K. Wang, “In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography,” Opt. Express 16, 11438–11452 (2008).
[CrossRef]

Wang, X.

X. Wang, T. E. Milner, Z. Chen, and J. S. Nelson, “Measurement of fluid-flow-velocity profile in turbid media by the use of optical Doppler tomography,” Appl Optics 36, 144–149(1997).

Z. Chen, T. E. Milner, S. Srinivas, X. Wang, A. Malekafzali, M. J. C. van Gemert, and J. S. Nelson, “Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography,” Opt. Lett. 22, 1119–1121 (1997).
[CrossRef]

Wang, Y.

Y. Jiang, I. V. Tomov, Y. Wang, and Z. Chen, “High-resolution second-harmonic optical coherence tomography of collagen in rat-tail tendon,” Appl. Phys. Lett. 86, 133901–133901(2005).
[CrossRef]

Wasilewski, W.

M. Wojtkowski, T. Bajraszewski, I. Gorczynska, P. Targowski, A. Kowalczyk, W. Wasilewski, and C. Radzewicz, “Ophthalmic imaging by spectral optical coherence tomography,” Am. J. Ophthalmol. 138, 412–419 (2004).
[CrossRef]

Watanabe, M.

Waxman, S.

G. J. Tearney, S. Waxman, M. Shishkov, B. J. Vakoc, M. J. Suter, M. I. Freilich, A. E. Desjardins, W. Y. Oh, L. A. Bartlett, M. Rosenberg, and B. E. Bouma, “Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging,” JACC Cardiovasc. Imaging 1, 752–761 (2008).

Wcjtkowski, M.

B. J. Kaluzny, A. Szkulmowska, M. Szkulmowski, T. Bajraszewski, A. Kowalczyk, and M. Wcjtkowski, “Fuchs’ endothelial dystrophy in 830 nm spectral domain optical coherence tomography,” Ophthalmic Surg. Lasers Imaging 39, S83–S85 (2008).

Wei, A.

Weinberg, S.

Weiner, A. M.

Welch, A. J.

Werner, J. S.

R. J. Zawadzki, A. R. Fuller, D. F. Wiley, B. Hamann, S. S. Choi, and J. S. Werner, “Adaptation of a support vector machine algorithm for segmentation and visualization of retinal structures in volumetric optical coherence tomography data sets,” J. Biomed. Opt. 12, 041206 (2007).

White, B. R.

Wieser, W.

Wiley, D. F.

R. J. Zawadzki, A. R. Fuller, D. F. Wiley, B. Hamann, S. S. Choi, and J. S. Werner, “Adaptation of a support vector machine algorithm for segmentation and visualization of retinal structures in volumetric optical coherence tomography data sets,” J. Biomed. Opt. 12, 041206 (2007).

Wilkins, J. R.

J. S. Schuman, T. PedutKloizman, L. Pieroth, E. Hertzmark, M. R. Hee, J. R. Wilkins, J. G. Coker, C. A. Puliafito, J. G. Fujimoto, and E. A. Swanson, “Quantitation of nerve fiber layer thickness loss over time in the glaucomatous monkey model using optical coherence tomography,” Investig. Ophthal. Vis. Sci. 37, 5255–5255 (1996).

M. R. Hee, C. R. Baumal, C. A. Puliafito, J. S. Duker, E. Reichel, J. R. Wilkins, J. G. Coker, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography of age-related macular degeneration and choroidal neovascularization,” Ophthalmology annual 103, 1260–1270 (1996).

Wilson, D. L.

Witkin, A. J.

V. J. Srinivasan, M. Wojtkowski, A. J. Witkin, J. S. Duker, T. H. Ko, M. Carvalho, J. S. Schuman, A. Kowalczyk, and J. G. Fujimoto, “High-definition and 3-dimensional imaging of macular pathologies with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmology annual 113, 2054–2065 (2006).
[CrossRef]

Wojtkowski, M.

M. Wojtkowski, B. Sikorski, I. Gorczynska, M. Gora, M. Szkulmowski, D. Bukowska, J. J. Kaluzny, J. G. Fujimoto, and A. Kowalczyk, “Comparison of reflectivity maps and outer retinal topography in retinal disease by three-dimensional Fourier-domain optical coherence tomography,” Opt. Express 17, 4189–4207 (2009).
[CrossRef]

S. Tamborski, D. Bukowska, M. Szkulmowski, A. Szkulmowska, A. Kowalczyk, and M. Wojtkowski, “Simultaneous analysis of flow velocity and spectroscopic properties of scattering media with the use of joint spectral and time-domain OCT,” Photon. Lett. Poland 1, 49–51 (2009).

B. J. Kaluzny, A. Szkulmowska, M. Szkulmowski, T. Bajraszewski, A. Kowalczyk, and M. Wojtkowski, “Fuchs’ endothelial dystrophy in 830 nm spectral domain optical coherence tomography,” Ophthalmic Surg. Lasers Imaging 40, 198–200 (2009).

I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski, “Anterior segment imaging with spectral OCT system using a high-speed CMOS camera,” Opt. Express 17, 4842–4858 (2009).
[CrossRef]

J. J. Kaluzny, M. Wojtkowski, B. L. Sikorski, M. Szkulmowski, A. Szkulmowska, T. Bajraszewski, J. G. Fujimoto, J. S. Duker, J. S. Schuman, and A. Kowalczyk, “Analysis of the outer retina reconstructed by high-resolution, three-dimensional spectral domain optical coherence tomography,” Ophthalmic Surg. Lasers Imaging 40, 102–108 (2009).

A. Szkulmowska, M. Szkulmowski, D. Szlag, A. Kowalczyk, and M. Wojtkowski, “Three-dimensional quantitative imaging of retinal and choroidal blood flow velocity using joint spectral and time-domain optical coherence tomography,” Opt Express 17, 10584–10598 (2009).

I. Gorczynska, V. J. Srinivasan, L. N. Vuong, R. W. Chen, J. J. Liu, E. Reichel, M. Wojtkowski, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Projection OCT fundus imaging for visualising outer retinal pathology in non-exudative age-related macular degeneration,” Br. J. Ophthalmol. 93, 603–609 (2009).

M. Gora, K. Karnowski, M. Szkulmowski, B. J. Kaluzny, R. Huber, A. Kowalczyk, and M. Wojtkowski, “Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range,” Opt. Express 17, 14880–14894 (2009).
[CrossRef]

M. Szkulmowski, I. Grulkowski, D. Szlag, A. Szkulmowska, A. Kowalczyk, and M. Wojtkowski, “Flow velocity estimation by complex ambiguity free joint spectral and time-domain optical coherence tomography,” Opt. Express 17, 14281–14297 (2009).
[CrossRef]

B. L. Sikorski, M. Wojtkowski, J. J. Kaluzny, M. Szkulmowski, and A. Kowalczyk, “Correlation of spectral optical coherence tomography with fluorescein and indocyanine green angiography in multiple evanescent white dot syndrome,” Br. J. Ophthalmol. 92, 1552–1557 (2008).
[CrossRef]

A. Szkulmowska, M. Szkulmowski, A. Kowalczyk, and M. Wojtkowski, “Phase-resolved Doppler optical coherence tomography—limitations and improvements,” Opt. Lett. 33, 1425–1427 (2008).
[CrossRef]

M. Szkulmowski, A. Szkulmowska, T. Bajraszewski, A. Kowalczyk, and M. Wojtkowski, “Flow velocity estimation using joint spectral and time-domain optical coherence tomography,” Opt. Express 16, 6008–6025 (2008).
[CrossRef]

T. Bajraszewski, M. Wojtkowski, M. Szkulmowski, A. Szkulmowska, R. Huber, and A. Kowalczyk, “Improved spectral optical coherence tomography using optical frequency comb,” Opt. Express 16, 4163–4176 (2008).
[CrossRef]

B. J. Kaluzny, W. Fojt, A. Szkulmowska, T. Bajraszewski, M. Wojtkowski, and A. Kowalczyk, “Spectral optical coherence tomography in video-rate and three-dimensional imaging of contact lens wear,” Optom. Vis. Sci. 84, 1104–1109 (2007).

T. Bajraszewski, M. Wojtkowski, A. Szkulmowska, W. Fojt, M. Szkulmowski, and A. Kowalczyk, “Fourier-domain optical coherence tomography using optical frequency comb,” Proc. SPIE 6429, 64291F (2007).

V. Christopoulos, L. Kagemann, G. Wollstein, H. Ishikawa, M. L. Gabriele, M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, J. S. Duker, D. K. Dhaliwal, and J. S. Schuman, “In vivo corneal high-speed, ultra high-resolution optical coherence tomography,” Arch. Ophthalmol. 125, 1027–1035 (2007).

R. A. Costa, M. Skaf, L. A. Melo, Jr., D. Calucci, J. A. Cardillo, J. C. Castro, D. Huang, and M. Wojtkowski, “Retinal assessment using optical coherence tomography,” Prog. Retin. Eye Res. 25, 325–353 (2006).

V. J. Srinivasan, M. Wojtkowski, J. G. Fujimoto, and J. S. Duker, “In vivo measurement of retinal physiology with high-speed ultrahigh-resolution optical coherence tomography,” Opt. Lett. 31, 2308–2310 (2006).
[CrossRef]

R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier domain mode locking (FDML): a new laser operating regime and applications for optical coherence tomography,” Opt. Express 14, 3225–3237 (2006).
[CrossRef]

B. J. Kaluzny, J. J. Kaluzny, A. Szkulmowska, I. Gorczynska, M. Szkulmowski, T. Bajraszewski, M. Wojtkowski, and P. Targowski, “Spectral optical coherence tomography: a novel technique for cornea imaging,” Cornea 25, 960–965 (2006).
[CrossRef]

V. J. Srinivasan, M. Wojtkowski, A. J. Witkin, J. S. Duker, T. H. Ko, M. Carvalho, J. S. Schuman, A. Kowalczyk, and J. G. Fujimoto, “High-definition and 3-dimensional imaging of macular pathologies with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmology annual 113, 2054–2065 (2006).
[CrossRef]

R. Huber, M. Wojtkowski, K. Taira, J. Fujimoto, and K. Hsu, “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles,” Opt. Express 13, 3513–3528 (2005).
[CrossRef]

M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, “Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmology annual 112, 1734–1746 (2005).
[CrossRef]

A. Szkulmowska, M. Wojtkowski, I. Gorczynska, T. Bajraszewski, M. Szkulmowski, P. Targowski, A. Kowalczyk, and J. J. Kaluzny, “Coherent noise-free ophthalmic imaging by spectral optical coherence tomography,” J. Phys. D 38, 2606–2611 (2005).
[CrossRef]

R. Huber, M. Wojtkowski, J. G. Fujimoto, J. Y. Jiang, and A. E. Cable, “Three-dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300 nm,” Opt. Express 13, 10523–10538 (2005).
[CrossRef]

M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution high-speed Fourier-domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12, 2404–2422 (2004).
[CrossRef]

M. Wojtkowski, T. Bajraszewski, I. Gorczynska, P. Targowski, A. Kowalczyk, W. Wasilewski, and C. Radzewicz, “Ophthalmic imaging by spectral optical coherence tomography,” Am. J. Ophthalmol. 138, 412–419 (2004).
[CrossRef]

P. Targowski, B. Rouba, M. Wojtkowski, and A. Kowalczyk, “The application of optical coherence tomography to non-destructive examination of museum objects,” Stud. Conserv. 49, 107–114 (2004).

M. Wojtkowski, T. Bajraszewski, P. Targowski, and A. Kowalczyk, “Real-time in vivo imaging by high-speed spectral optical coherence tomography,” Opt. Lett. 28, 1745–1747(2003).
[CrossRef]

M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. F. Fercher, “Full range complex spectral optical coherence tomography technique in eye imaging,” Opt. Lett. 27, 1415–1417 (2002).
[CrossRef]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier-domain optical coherence tomography,” J. Biomed. Opt. 7, 457–463 (2002).

R. Leitgeb, M. Wojtkowski, A. Kowalczyk, C. K. Hitzenberger, M. Sticker, and A. F. Fercher, “Spectral measurement of absorption by spectroscopic frequency-domain optical coherence tomography,” Opt. Lett. 25, 820–822 (2000).
[CrossRef]

Wollstein, G.

V. Christopoulos, L. Kagemann, G. Wollstein, H. Ishikawa, M. L. Gabriele, M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, J. S. Duker, D. K. Dhaliwal, and J. S. Schuman, “In vivo corneal high-speed, ultra high-resolution optical coherence tomography,” Arch. Ophthalmol. 125, 1027–1035 (2007).

Wong, C.

M. R. Hee, C. A. Puliafito, C. Wong, J. S. Duker, E. Reichel, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography of macular holes,” Ophthalmology annual 102, 748–756 (1995).

J. S. Schuman, M. R. Hee, C. A. Puliafito, C. Wong, T. Pedut-Kloizman, C. P. Lin, E. Hertzmark, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, “Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography,” Arch. Ophthalmol. 113, 586–596 (1995).

Wu, H.

L. V. Wang and H. Wu, Biomedical Optics (Wiley, 2007).

Wullert, J. R.

Xiang, S.

Xiang, S. H.

Yamanari, M.

M. Yamanari, Y. Lim, S. Makita, and Y. Yasuno, “Visualization of phase retardation of deep posterior eye by polarization-sensitive swept-source optical coherence tomography with 1 μm probe,” Opt. Express 17, 12385–12396(2009).
[CrossRef]

M. Miura, K. Kawana, T. Iwasaki, T. Kiuchi, T. Oshika, H. Mori, M. Yamanari, S. Makita, T. Yatagai, and Y. Yasuno, “Three-dimensional anterior segment optical coherence tomography of filtering blebs after trabeculectomy,” J. Glaucoma 17, 193–196 (2008).

M. Yamanari, S. Makita, and Y. Yasuno, “Polarization-sensitive swept-source optical coherence tomography with continuous source polarization modulation,” Opt. Express 16, 5892–5906 (2008).
[CrossRef]

M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, “Imaging polarimetry in age-related macular degeneration,” Investig. Ophthalmol. Vis. Sci. 49, 2661–2667 (2008).

S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Express 14, 7821–7840 (2006).
[CrossRef]

Yang, C.

Yang, C. H.

Yang, V. X. D.

Yang, Y.

Y. Jia, P. O. Bagnaninchi, Y. Yang, A. E. Haj, M. T. Hinds, S. J. Kirkpatrick, and R. K. Wang, “Doppler optical coherence tomography imaging of local fluid flow and shear stress within microporous scaffolds,” J. Biomed. Opt. 14, 034014 (2009).

Yankelevich, D.

Yasuno, Y.

M. Yamanari, Y. Lim, S. Makita, and Y. Yasuno, “Visualization of phase retardation of deep posterior eye by polarization-sensitive swept-source optical coherence tomography with 1 μm probe,” Opt. Express 17, 12385–12396(2009).
[CrossRef]

T. Fabritius, S. Makita, M. Miura, R. Myllyla, and Y. Yasuno, “Automated segmentation of the macula by optical coherence tomography,” Opt Express 17, 15659–15669 (2009).

M. Miura, K. Kawana, T. Iwasaki, T. Kiuchi, T. Oshika, H. Mori, M. Yamanari, S. Makita, T. Yatagai, and Y. Yasuno, “Three-dimensional anterior segment optical coherence tomography of filtering blebs after trabeculectomy,” J. Glaucoma 17, 193–196 (2008).

S. Makita, T. Fabritius, and Y. Yasuno, “Full-range, high-speed, high-resolution 1 μm spectral-domain optical coherence tomography using BM-scan for volumetric imaging of the human posterior eye,” Opt. Express 16, 8406–8420(2008).
[CrossRef]

S. Makita, T. Fabritius, and Y. Yasuno, “Quantitative retinal-blood flow measurement with three-dimensional vessel geometry determination using ultrahigh-resolution Doppler optical coherence angiography,” Opt. Lett. 33, 836–838(2008).
[CrossRef]

M. Yamanari, S. Makita, and Y. Yasuno, “Polarization-sensitive swept-source optical coherence tomography with continuous source polarization modulation,” Opt. Express 16, 5892–5906 (2008).
[CrossRef]

M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, “Imaging polarimetry in age-related macular degeneration,” Investig. Ophthalmol. Vis. Sci. 49, 2661–2667 (2008).

Y. Yasuno, S. Makita, T. Endo, G. Aoki, M. Itoh, and T. Yatagai, “Simultaneous B-M-mode scanning method for real-time full-range Fourier-domain optical coherence tomography,” Appl. Opt. 45, 1861–1865 (2006).
[CrossRef]

S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Express 14, 7821–7840 (2006).
[CrossRef]

Yatagai, T.

M. Miura, K. Kawana, T. Iwasaki, T. Kiuchi, T. Oshika, H. Mori, M. Yamanari, S. Makita, T. Yatagai, and Y. Yasuno, “Three-dimensional anterior segment optical coherence tomography of filtering blebs after trabeculectomy,” J. Glaucoma 17, 193–196 (2008).

M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, “Imaging polarimetry in age-related macular degeneration,” Investig. Ophthalmol. Vis. Sci. 49, 2661–2667 (2008).

Y. Yasuno, S. Makita, T. Endo, G. Aoki, M. Itoh, and T. Yatagai, “Simultaneous B-M-mode scanning method for real-time full-range Fourier-domain optical coherence tomography,” Appl. Opt. 45, 1861–1865 (2006).
[CrossRef]

S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Express 14, 7821–7840 (2006).
[CrossRef]

Yazdanfar, S.

Yelin, R.

Yoshimura, R.

Yun, S.

Yun, S. H.

B. E. Bouma, S. H. Yun, B. J. Vakoc, M. J. Suter, and G. J. Tearney, “Fourier-domain optical coherence tomography: recent advances toward clinical utility,” Curr. Opin. Biotechnol. 20, 111–118 (2009).
[CrossRef]

B. J. Vakoc, M. Shishko, S. H. Yun, W. Y. Oh, M. J. Suter, A. E. Desjardins, J. A. Evans, N. S. Nishioka, G. J. Tearney, and B. E. Bouma, “Comprehensive esophageal microscopy by using optical frequency-domain imaging (with video),” Gastroint. Endosc. 65, 898–905 (2007).
[CrossRef]

W. Y. Oh, S. H. Yun, B. J. Vakoc, G. J. Tearney, and B. E. Bouma, “Ultrahigh-speed optical frequency domain imaging and application to laser ablation monitoring,” Appl. Phys. Lett. 88, (2006).

W. Y. Oh, B. E. Bouma, N. Iftimia, S. H. Yun, R. Yelin, and G. J. Tearney, “Ultrahigh-resolution full-field optical coherence microscopy using InGaAs camera,” Opt. Express 14, 726–735(2006).
[CrossRef]

W. Y. Oh, S. H. Yun, G. J. Tearney, and B. E. Bouma, “115 kHz tuning repetition rate ultrahigh-speed wavelength-swept semiconductor laser,” Opt. Lett. 30, 3159–3161 (2005).
[CrossRef]

N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography,” Opt. Lett. 29, 480–482 (2004).
[CrossRef]

S. H. Yun, G. J. Tearney, J. F. de Boer, and B. E. Bouma, “Motion artifacts in optical coherence tomography with frequency-domain ranging,” Opt. Express 12, 2977–2998 (2004).
[CrossRef]

N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, and J. F. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Express 12, 367–376 (2004).
[CrossRef]

S. H. Yun, G. J. Tearney, B. E. Bouma, B. H. Park, and J. F. de Boer, “High-speed spectral-domain optical coherence tomography at 1.3 μm wavelength,” Opt. Express 11, 2953–2963 (2003).
[CrossRef]

S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, “High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter,” Opt. Lett. 28, 1981–1983 (2003).
[CrossRef]

Yun, S.-H.

Yung, K. M.

Zawadzki, R. J.

R. J. Zawadzki, A. R. Fuller, D. F. Wiley, B. Hamann, S. S. Choi, and J. S. Werner, “Adaptation of a support vector machine algorithm for segmentation and visualization of retinal structures in volumetric optical coherence tomography data sets,” J. Biomed. Opt. 12, 041206 (2007).

R. A. Leitgeb, L. Schmetterer, W. Drexler, A. F. Fercher, R. J. Zawadzki, and T. Bajraszewski, “Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier-domain optical coherence tomography,” Opt. Express 11, 3116–3121 (2003).

Zhang, J.

J. Zhang, Q. Wang, B. Rao, Z. P. Chen, and K. Hsu, “Swept laser source at 1 μm for Fourier-domain optical coherence tomography,” Appl. Phys. Lett. 89, 073901 (2006).
[CrossRef]

Zhang, Y.

Zhao, M.

Zhao, Y.

Zhou, C.

D. C. Adler, C. Zhou, T. H. Tsai, J. Schmitt, Q. Huang, H. Mashimo, and J. G. Fujimoto, “Three-dimensional endomicroscopy of the human colon using optical coherence tomography,” Opt Express 17, 784–796 (2009).

Zhou, Q. Y.

Zimmerman, B.

M. D. Abramoff, Y. H. Kwon, D. Ts’o, P. Soliz, B. Zimmerman, J. Pokorny, and R. Kardon, “Visual stimulus-induced changes in human near-infrared fundus reflectance,” Investig. Ophthalmic Vis Sci. 47, 715–721. (2006).

Zweifel, D. A.

Zysk, A. M.

A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: a review of clinical development from bench to bedside,” J Biomed Opt 12, 051403 (2007).

Am. J. Ophthalmol.

M. Wojtkowski, T. Bajraszewski, I. Gorczynska, P. Targowski, A. Kowalczyk, W. Wasilewski, and C. Radzewicz, “Ophthalmic imaging by spectral optical coherence tomography,” Am. J. Ophthalmol. 138, 412–419 (2004).
[CrossRef]

Appl Optics

X. Wang, T. E. Milner, Z. Chen, and J. S. Nelson, “Measurement of fluid-flow-velocity profile in turbid media by the use of optical Doppler tomography,” Appl Optics 36, 144–149(1997).

Appl. Opt.

Appl. Phys. A

P. Targowski, B. Rouba, M. Góra, L. Tymińska-Widmer, J. Marczak, and A. Kowalczyk, “Optical coherence tomography in art diagnostic and restoration,” Appl. Phys. A 92, 1–9 (2008).
[CrossRef]

D. Stifter, P. Burgholzer, O. Hoglinger, E. Gotzinger, and C. K. Hitzenberger, “Polarisation-sensitive optical coherence tomography for material characterisation and strain-field mapping,” Appl. Phys. A 76, 947–951 (2003).
[CrossRef]

Appl. Phys. Lett.

Y. Jiang, I. V. Tomov, Y. Wang, and Z. Chen, “High-resolution second-harmonic optical coherence tomography of collagen in rat-tail tendon,” Appl. Phys. Lett. 86, 133901–133901(2005).
[CrossRef]

W. Y. Oh, S. H. Yun, B. J. Vakoc, G. J. Tearney, and B. E. Bouma, “Ultrahigh-speed optical frequency domain imaging and application to laser ablation monitoring,” Appl. Phys. Lett. 88, (2006).

J. Zhang, Q. Wang, B. Rao, Z. P. Chen, and K. Hsu, “Swept laser source at 1 μm for Fourier-domain optical coherence tomography,” Appl. Phys. Lett. 89, 073901 (2006).
[CrossRef]

Arch. Ophthalmol.

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Arch. Ophthalmol. 112, 1584–1589 (1994).

J. S. Schuman, M. R. Hee, C. A. Puliafito, C. Wong, T. Pedut-Kloizman, C. P. Lin, E. Hertzmark, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, “Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography,” Arch. Ophthalmol. 113, 586–596 (1995).

V. Christopoulos, L. Kagemann, G. Wollstein, H. Ishikawa, M. L. Gabriele, M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, J. S. Duker, D. K. Dhaliwal, and J. S. Schuman, “In vivo corneal high-speed, ultra high-resolution optical coherence tomography,” Arch. Ophthalmol. 125, 1027–1035 (2007).

M. V. Sarunic, S. Asrani, and J. A. Izatt, “Imaging the ocular anterior segment with real-time, full-range Fourier-domain optical coherence tomography,” Arch. Ophthalmol. 126, 537–542 (2008).

Biophys. J.

T. Akkin, C. Joo, and J. F. de Boer, “Depth-resolved measurement of transient structural changes during action potential propagation,” Biophys. J. 93, 1347–1353 (2007).
[CrossRef]

Br. J. Ophthalmol.

B. L. Sikorski, M. Wojtkowski, J. J. Kaluzny, M. Szkulmowski, and A. Kowalczyk, “Correlation of spectral optical coherence tomography with fluorescein and indocyanine green angiography in multiple evanescent white dot syndrome,” Br. J. Ophthalmol. 92, 1552–1557 (2008).
[CrossRef]

I. Gorczynska, V. J. Srinivasan, L. N. Vuong, R. W. Chen, J. J. Liu, E. Reichel, M. Wojtkowski, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Projection OCT fundus imaging for visualising outer retinal pathology in non-exudative age-related macular degeneration,” Br. J. Ophthalmol. 93, 603–609 (2009).

Cornea

B. J. Kaluzny, J. J. Kaluzny, A. Szkulmowska, I. Gorczynska, M. Szkulmowski, T. Bajraszewski, M. Wojtkowski, and P. Targowski, “Spectral optical coherence tomography: a novel technique for cornea imaging,” Cornea 25, 960–965 (2006).
[CrossRef]

Curr. Opin. Biotechnol.

B. E. Bouma, S. H. Yun, B. J. Vakoc, M. J. Suter, and G. J. Tearney, “Fourier-domain optical coherence tomography: recent advances toward clinical utility,” Curr. Opin. Biotechnol. 20, 111–118 (2009).
[CrossRef]

Curr. Opin. Ophthalmol.

J. S. Schuman, M. R. Hee, A. V. Arya, T. Pedut-Kloizman, C. A. Puliafito, J. G. Fujimoto, and E. A. Swanson, “Optical coherence tomography: a new tool for glaucoma diagnosis,” Curr. Opin. Ophthalmol. 6, 89–95 (1995).

Gastroint. Endosc.

B. J. Vakoc, M. Shishko, S. H. Yun, W. Y. Oh, M. J. Suter, A. E. Desjardins, J. A. Evans, N. S. Nishioka, G. J. Tearney, and B. E. Bouma, “Comprehensive esophageal microscopy by using optical frequency-domain imaging (with video),” Gastroint. Endosc. 65, 898–905 (2007).
[CrossRef]

Invest. Ophthalmol. Vis. Sci.

B. Povazay, B. Hermann, B. Hofer, V. Kajic, E. Simpson, T. Bridgford, and W. Drexler, “Wide-field optical coherence tomography of the choroid in vivo,” Invest. Ophthalmol. Vis. Sci. 50, 1856–1863 (2009).

R. B. Rosen, M. Hathaway, J. Rogers, J. Pedro, P. Garcia, G. M. Dobre, and A. G. Podoleanu, “Simultaneous OCT/SLO/ICG imaging,” Invest. Ophthalmol. Vis. Sci. 50, 851–860(2009).

Investig. Ophthal. Vis. Sci.

J. S. Schuman, T. PedutKloizman, L. Pieroth, E. Hertzmark, M. R. Hee, J. R. Wilkins, J. G. Coker, C. A. Puliafito, J. G. Fujimoto, and E. A. Swanson, “Quantitation of nerve fiber layer thickness loss over time in the glaucomatous monkey model using optical coherence tomography,” Investig. Ophthal. Vis. Sci. 37, 5255–5255 (1996).

Investig. Ophthalmic Vis Sci.

M. D. Abramoff, Y. H. Kwon, D. Ts’o, P. Soliz, B. Zimmerman, J. Pokorny, and R. Kardon, “Visual stimulus-induced changes in human near-infrared fundus reflectance,” Investig. Ophthalmic Vis Sci. 47, 715–721. (2006).

Investig. Ophthalmol. Vis. Sci.

K. Grieve and A. Roorda, “Intrinsic signals from human cone photoreceptors,” Investig. Ophthalmol. Vis. Sci. 49, 713–719(2008).

C. Ahlers, E. Goetzinger, M. Pircher, I. Golbaz, F. Prager, C. Schutze, B. Baumann, C. Hitzenberger, and U. Schmidt-Erfurth, “Imaging of the retinal pigment epithelium in age-related macular degeneration using polarization sensitive optical coherence tomography,” Investig. Ophthalmol. Vis. Sci. doi:10.1167/iovs.09-3817 (2009).

M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, “Imaging polarimetry in age-related macular degeneration,” Investig. Ophthalmol. Vis. Sci. 49, 2661–2667 (2008).

G. Hanazono, K. Tsunoda, K. Shinoda, K. Tsubota, Y. Miyake, and M. Tanifuji, “Intrinsic signal imaging in macaque retina reveals different types of flash-induced light reflectance changes of different origins,” Investig. Ophthalmol. Vis. Sci. 48, 2903–2912 (2007).

G. Hanazono, K. Tsunoda, Y. Kazato, K. Tsubota, and M. Tanifuji, “Evaluating neural activity of retinal ganglion cells by flash-evoked intrinsic signal imaging in macaque retina,” Investig. Ophthalmol. Vis. Sci. 49, 4655–4663 (2008).

Investig. Ophthalmol. Vis.. Sci.

K. Tsunoda, Y. Oguchi, G. Hanazono, and M. Tanifuji, “Mapping cone- and rod-induced retinal responsiveness in macaque retina by optical imaging,” Investig. Ophthalmol. Vis.. Sci. 45, 3820–3826 (2004).

J Biomed Opt

A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: a review of clinical development from bench to bedside,” J Biomed Opt 12, 051403 (2007).

J. Biomed. Opt.

U. H. P. Haberland, V. Blazek, and H. J. Schrnitt, “Chirp optical coherence tomography of layered scattering media,” J. Biomed. Opt. 3, 259–266 (1998).

Y. Jia, P. O. Bagnaninchi, Y. Yang, A. E. Haj, M. T. Hinds, S. J. Kirkpatrick, and R. K. Wang, “Doppler optical coherence tomography imaging of local fluid flow and shear stress within microporous scaffolds,” J. Biomed. Opt. 14, 034014 (2009).

I. V. Larina, N. Sudheendran, M. Ghosn, J. Jiang, A. Cable, K. V. Larin, and M. E. Dickinson, “Live imaging of blood flow in mammalian embryos using Doppler swept-source optical coherence tomography,” J. Biomed. Opt. 13, 060506(2008).

M. W. Jenkins, O. Q. Chughtai, A. N. Basavanhally, M. Watanabe, and A. M. Rollins, “In vivo gated 4D imaging of the embryonic heart using optical coherence tomography,” J. Biomed. Opt. 12, 030505 (2007).

R. J. Zawadzki, A. R. Fuller, D. F. Wiley, B. Hamann, S. S. Choi, and J. S. Werner, “Adaptation of a support vector machine algorithm for segmentation and visualization of retinal structures in volumetric optical coherence tomography data sets,” J. Biomed. Opt. 12, 041206 (2007).

L. Plesea and A. G. Podoleanu, “Direct corneal elevation measurements using multiple delay en face optical coherence tomography,” J. Biomed. Opt. 13, 054054 (2008).

I. V. Larina, K. Furushima, M. E. Dickinson, R. R. Behringer, and K. V. Larin, “Live imaging of rat embryos with Doppler swept-source optical coherence tomography,” J. Biomed. Opt. 14, 050506 (2009).

M. A. Choma, K. Hsu, and J. A. Izatt, “Swept source optical coherence tomography using an all-fiber 1300 nm ring laser source,” J. Biomed. Opt. 10, 044009 (2005).

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier-domain optical coherence tomography,” J. Biomed. Opt. 7, 457–463 (2002).

G. Hausler and M. W. Linduer, ““Coherence radar” and “spectral radar”-new tools for dermatological diagnosis,” J. Biomed. Opt. 3, 21–31 (1998).

A. Fercher, “Optical coherence tomography,” J. Biomed. Opt. 1, 157–173 (1996).

J. Glaucoma

M. Miura, K. Kawana, T. Iwasaki, T. Kiuchi, T. Oshika, H. Mori, M. Yamanari, S. Makita, T. Yatagai, and Y. Yasuno, “Three-dimensional anterior segment optical coherence tomography of filtering blebs after trabeculectomy,” J. Glaucoma 17, 193–196 (2008).

J. Neurosci. Meth.

R. U. Maheswari, H. Takaoka, H. Kadono, R. Homma, and M. Tanifuji, “Novel functional imaging technique from brain surface with optical coherence tomography enabling visualization of depth resolved functional structure in vivo,” J. Neurosci. Meth. 124, 83–92 (2003).

J. Opt. A Pure Appl. Opt.

K. Grieve, G. Moneron, A. Dubois, J.-F. Le Gargasson, and C. Boccara, “Ultrahigh resolution ex vivo ocular imaging using ultrashort acquisition time en face optical coherence tomography,” J. Opt. A Pure Appl. Opt. 7, 368–373 (2005).
[CrossRef]

J. Opt. Soc. Am. A

J. Phys. D

A. Szkulmowska, M. Wojtkowski, I. Gorczynska, T. Bajraszewski, M. Szkulmowski, P. Targowski, A. Kowalczyk, and J. J. Kaluzny, “Coherent noise-free ophthalmic imaging by spectral optical coherence tomography,” J. Phys. D 38, 2606–2611 (2005).
[CrossRef]

J. Physiol.

D. K. Hill, “The volume change resulting from stimulation of a giant nerve fibre,” J. Physiol. 111, 304–327 (1950).

J. Refract. Surg.

A. C. Cheng, S. K. Rao, S. Lau, C. K. Leung, and D. S. Lam, “Central corneal thickness measurements by ultrasound, Orbscan II, and Visante OCT after LASIK for myopia,” J. Refract. Surg. 24, 361–365 (2008).

JACC Cardiovasc. Imaging

G. J. Tearney, S. Waxman, M. Shishkov, B. J. Vakoc, M. J. Suter, M. I. Freilich, A. E. Desjardins, W. Y. Oh, L. A. Bartlett, M. Rosenberg, and B. E. Bouma, “Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging,” JACC Cardiovasc. Imaging 1, 752–761 (2008).

Jpn. J. Ophthalmol.

A. R. Tumlinson, B. Hermann, B. Hofer, B. Povazay, T. H. Margrain, A. M. Binns, and W. Drexler, “Techniques for extraction of depth-resolved in vivo human retinal intrinsic optical signals with optical coherence tomography,” Jpn. J. Ophthalmol. 53, 315–326 (2009).

K. Tsunoda, G. Hanazono, K. Inomata, Y. Kazato, W. Suzuki, and M. Tanifuji, “Origins of retinal intrinsic signals: a series of experiments on retinas of macaque monkeys,” Jpn. J. Ophthalmol. 53, 297–314 (2009).

Nat. Med.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15, 1219–1223 (2009).

Nat. Photon.

D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, “Three-dimensional endomicroscopy using optical coherence tomography,” Nat. Photon. 1, 709–716 (2007).
[CrossRef]

Nature Med.

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nature Med. 1, 970–972 (1995).

Ophthalmic Surg. Lasers Imaging

D. A. Nelson, S. Krupsky, A. Pollack, E. Aloni, M. Belkin, I. Vanzetta, M. Rosner, and A. Grinvald, “Special report: Noninvasive multi-parameter functional optical imaging of the eye,” Ophthalmic Surg. Lasers Imaging 36, 57–66(2005).

B. J. Kaluzny, A. Szkulmowska, M. Szkulmowski, T. Bajraszewski, A. Kowalczyk, and M. Wcjtkowski, “Fuchs’ endothelial dystrophy in 830 nm spectral domain optical coherence tomography,” Ophthalmic Surg. Lasers Imaging 39, S83–S85 (2008).

B. J. Kaluzny, A. Szkulmowska, M. Szkulmowski, T. Bajraszewski, A. Kowalczyk, and M. Wojtkowski, “Fuchs’ endothelial dystrophy in 830 nm spectral domain optical coherence tomography,” Ophthalmic Surg. Lasers Imaging 40, 198–200 (2009).

J. J. Kaluzny, M. Wojtkowski, B. L. Sikorski, M. Szkulmowski, A. Szkulmowska, T. Bajraszewski, J. G. Fujimoto, J. S. Duker, J. S. Schuman, and A. Kowalczyk, “Analysis of the outer retina reconstructed by high-resolution, three-dimensional spectral domain optical coherence tomography,” Ophthalmic Surg. Lasers Imaging 40, 102–108 (2009).

Ophthalmology annual

M. R. Hee, C. R. Baumal, C. A. Puliafito, J. S. Duker, E. Reichel, J. R. Wilkins, J. G. Coker, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography of age-related macular degeneration and choroidal neovascularization,” Ophthalmology annual 103, 1260–1270 (1996).

V. J. Srinivasan, M. Wojtkowski, A. J. Witkin, J. S. Duker, T. H. Ko, M. Carvalho, J. S. Schuman, A. Kowalczyk, and J. G. Fujimoto, “High-definition and 3-dimensional imaging of macular pathologies with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmology annual 113, 2054–2065 (2006).
[CrossRef]

M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, “Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmology annual 112, 1734–1746 (2005).
[CrossRef]

M. R. Hee, C. A. Puliafito, C. Wong, J. S. Duker, E. Reichel, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography of macular holes,” Ophthalmology annual 102, 748–756 (1995).

Opt Express

A. Szkulmowska, M. Szkulmowski, D. Szlag, A. Kowalczyk, and M. Wojtkowski, “Three-dimensional quantitative imaging of retinal and choroidal blood flow velocity using joint spectral and time-domain optical coherence tomography,” Opt Express 17, 10584–10598 (2009).

B. R. Biedermann, W. Wieser, C. M. Eigenwillig, T. Klein, and R. Huber, “Dispersion, coherence and noise of Fourier-domain mode locked lasers,” Opt Express 17, 9947–9961 (2009).

S. W. Huang, A. D. Aguirre, R. A. Huber, D. C. Adler, and J. G. Fujimoto, “Swept source optical coherence microscopy using a Fourier-domain mode-locked laser,” Opt Express 15, 6210–6217 (2007).

T. Schmoll, C. Kolbitsch, and R. A. Leitgeb, “Ultra-high-speed volumetric tomography of human retinal blood flow,” Opt Express 17, 4166–4176 (2009).

T. Fabritius, S. Makita, M. Miura, R. Myllyla, and Y. Yasuno, “Automated segmentation of the macula by optical coherence tomography,” Opt Express 17, 15659–15669 (2009).

D. C. Adler, C. Zhou, T. H. Tsai, J. Schmitt, Q. Huang, H. Mashimo, and J. G. Fujimoto, “Three-dimensional endomicroscopy of the human colon using optical coherence tomography,” Opt Express 17, 784–796 (2009).

Opt. Commun.

R. U. Maheswari, H. Takaoka, R. Homma, H. Kadono, and M. Tanifuji, “Implementation of optical coherence tomography (OCT) in visualization of functional structures of cat visual cortex,” Opt. Commun. 202, 47–54 (2002).
[CrossRef]

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
[CrossRef]

Opt. Express

S. Yazdanfar, M. D. Kulkarni, and J. A. Izatt, “High resolution imaging of in vivo cardiac dynamics using color Doppler optical coherence tomography,” Opt. Express 1, 424–431(1997).
[CrossRef]

A. M. Rollins, M. D. Kulkarni, S. Yazdanfar, R. Ung-arunyawee, and J. A. Izatt, “In vivo video rate optical coherence tomography,” Opt. Express 3, 219–229 (1998).
[CrossRef]

A. G. Podoleanu, J. A. Rogers, D. A. Jackson, and S. Dunne, “Three-dimensional OCT images from retina and skin,” Opt. Express 7, 292–298 (2000).
[CrossRef]

S. Sanders, D. Mattison, L. Ma, J. Jeffries, and R. Hanson, “Wavelength-agile diode-laser sensing strategies for monitoring gas properties in optically harsh flows: application in cesium-seeded pulse detonation,” Opt. Express 10, 505–514(2002).

B. Hermann, K. Bizheva, A. Unterhuber, B. Povazay, H. Sattmann, L. Schmetterer, A. F. Fercher, and W. Drexler, “Precision of extracting absorption profiles from weakly scattering media with spectroscopic time-domain optical coherence tomography,” Opt. Express 12, 1677–1688 (2004).
[CrossRef]

D. J. Faber, F. J. van der Meer, and M. C. G. Aalders, “Quantitative measurement of attenuation coefficients of weakly scattering media using optical coherence tomography,” Opt. Express 12, 4353–4365 (2004).
[CrossRef]

S. Yun, G. Tearney, J. de Boer, N. Iftimia, and B. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express 11, 2953–2963 (2003).
[CrossRef]

S. H. Yun, G. J. Tearney, B. E. Bouma, B. H. Park, and J. F. de Boer, “High-speed spectral-domain optical coherence tomography at 1.3 μm wavelength,” Opt. Express 11, 2953–2963 (2003).
[CrossRef]

R. A. Leitgeb, L. Schmetterer, W. Drexler, A. F. Fercher, R. J. Zawadzki, and T. Bajraszewski, “Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier-domain optical coherence tomography,” Opt. Express 11, 3116–3121 (2003).

B. R. White, M. C. Pierce, N. Nassif, B. Cense, B. H. Park, G. J. Tearney, B. E. Bouma, T. C. Chen, and J. F. de Boer, “In vivo dynamic human retinal blood flow imaging using ultrahigh-speed spectral domain optical Doppler tomography,” Opt. Express 11, 3490–3497 (2003).

N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, and J. F. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Express 12, 367–376 (2004).
[CrossRef]

M. A. Choma, M. V. Sarunic, C. H. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier-domain optical coherence tomography,” Opt. Express 11, 2183–2189(2003).

R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier domain mode locking (FDML): a new laser operating regime and applications for optical coherence tomography,” Opt. Express 14, 3225–3237 (2006).
[CrossRef]

S. L. Jiao, R. Knighton, X. R. Huang, G. Gregori, and C. A. Puliafito, “Simultaneous acquisition of sectional and fundus ophthalmic images with spectral-domain optical coherence tomography,” Opt. Express 13, 444–452 (2005).
[CrossRef]

B. Grajciar, M. Pircher, A. Fercher, and R. Leitgeb, “Parallel Fourier-domain optical coherence tomography for in vivo measurement of the human eye,” Opt. Express 13, 1131–1137(2005).
[CrossRef]

A. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, A. Chavez-Pirson, and W. Drexler, “In vivo retinal optical coherence tomography at 1040 nm-enhanced penetration into the choroid,” Opt. Express 13, 3252–3258 (2005).
[CrossRef]

R. Huber, M. Wojtkowski, K. Taira, J. Fujimoto, and K. Hsu, “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles,” Opt. Express 13, 3513–3528 (2005).
[CrossRef]

R. A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. F. Fercher, “Ultrahigh resolution Fourier-domain optical coherence tomography,” Opt. Express 12, 2156–2165 (2004).
[CrossRef]

T. Akkin, D. P. Dave, T. E. Milner, and H. G. Rylander, “Detection of neural activity using phase-sensitive optical low-coherence reflectometry,” Opt. Express 12, 2377–2386(2004).
[CrossRef]

M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution high-speed Fourier-domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12, 2404–2422 (2004).
[CrossRef]

B. Cense, N. A. Nassif, T. C. Chen, M. C. Pierce, S.-H. Yun, B. H. Park, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography,” Opt. Express 12, 2435–2447 (2004).
[CrossRef]

S. H. Yun, G. J. Tearney, J. F. de Boer, and B. E. Bouma, “Motion artifacts in optical coherence tomography with frequency-domain ranging,” Opt. Express 12, 2977–2998 (2004).
[CrossRef]

B. H. Park, M. C. Pierce, B. Cense, and J. F. de Boer, “Real-time multi-functional optical coherence tomography,” Opt. Express 11, 782–793 (2003).
[CrossRef]

R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of Fourier-domain vs. time domain optical coherence tomography,” Opt. Express 11, 889–894 (2003).

B. Povazay, K. Bizheva, B. Hermann, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, C. Schubert, P. K. Ahnelt, M. Mei, R. Holzwarth, W. J. Wadsworth, J. C. Knight, and P. S. Russel, “Enhanced visualization of choroidal vessels using ultrahigh resolution ophthalmic OCT at 1050 nm,” Opt. Express 11, 1980–1986 (2003).

C. K. Hitzenberger, P. Trost, P. W. Lo, and Q. Y. Zhou, “Three-dimensional imaging of the human retina by high-speed optical coherence tomography,” Opt. Express 11, 2753–2761(2003).

B. E. Applegate and J. A. Izatt, “Molecular imaging of endogenous and exogenous chromophores using ground state recovery pump-probe optical coherence tomography,” Opt. Express 14, 9142–9155 (2006).
[CrossRef]

S. Moon and D. Y. Kim, “Ultra-high-speed optical coherence tomography with a stretched pulse supercontinuum source,” Opt. Express 14, 11575–11584 (2006).
[CrossRef]

A. H. Bachmann, M. L. Villiger, C. Blatter, T. Lasser, and R. A. Leitgeb, “Resonant Doppler flow imaging and optical vivisection of retinal blood vessels,” Opt. Express 15, 408–422 (2007).
[CrossRef]

A. Mariampillai, B. A. Standish, N. R. Munce, C. Randall, G. Liu, J. Y. Jiang, A. E. Cable, I. A. Vitkin, and V. X. D. Yang, “Doppler optical cardiogram gated 2D color flow imaging at 1000 fps and 4D in vivo visualization of embryonic heart at 45 fps on a swept source OCT system,” Opt. Express 15, 1627–1638 (2007).
[CrossRef]

S. W. Huang, A. D. Aguirre, R. A. Huber, D. C. Adler, and J. G. Fujimoto, “Swept source optical coherence microscopy using a Fourier-domain mode-locked laser,” Opt. Express 15, 6210–6217 (2007).
[CrossRef]

M. W. Jenkins, D. C. Adler, M. Gargesha, R. Huber, F. Rothenberg, J. Belding, M. Watanabe, D. L. Wilson, J. G. Fujimoto, and A. M. Rollins, “Ultrahigh-speed optical coherence tomography imaging and visualization of the embryonic avian heart using a buffered Fourier domain mode locked laser,” Opt. Express 15, 6251–6267 (2007).
[CrossRef]

A. L. Oldenburg, M. N. Hansen, D. A. Zweifel, A. Wei, and S. A. Boppart, “Plasmon-resonant gold nanorods as low backscattering albedo contrast agents for optical coherence tomography,” Opt. Express 14, 6724–6738 (2006).
[CrossRef]

W. Tan, A. L. Oldenburg, J. J. Norman, T. A. Desai, and S. A. Boppart, “Optical coherence tomography of cell dynamics in three-dimensional tissue models,” Opt. Express 14, 7159–7171 (2006).
[CrossRef]

S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Express 14, 7821–7840 (2006).
[CrossRef]

R. Huber, M. Wojtkowski, J. G. Fujimoto, J. Y. Jiang, and A. E. Cable, “Three-dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300 nm,” Opt. Express 13, 10523–10538 (2005).
[CrossRef]

W. Y. Oh, B. E. Bouma, N. Iftimia, S. H. Yun, R. Yelin, and G. J. Tearney, “Ultrahigh-resolution full-field optical coherence microscopy using InGaAs camera,” Opt. Express 14, 726–735(2006).
[CrossRef]

R. S. Jonnal, J. Rha, Y. Zhang, B. Cense, W. Gao, and D. T. Miller, “In vivo functional imaging of human cone photoreceptors,” Opt. Express 15, 16141–16160 (2007).
[CrossRef]

T. Bajraszewski, M. Wojtkowski, M. Szkulmowski, A. Szkulmowska, R. Huber, and A. Kowalczyk, “Improved spectral optical coherence tomography using optical frequency comb,” Opt. Express 16, 4163–4176 (2008).
[CrossRef]

M. Yamanari, S. Makita, and Y. Yasuno, “Polarization-sensitive swept-source optical coherence tomography with continuous source polarization modulation,” Opt. Express 16, 5892–5906 (2008).
[CrossRef]

M. Szkulmowski, A. Szkulmowska, T. Bajraszewski, A. Kowalczyk, and M. Wojtkowski, “Flow velocity estimation using joint spectral and time-domain optical coherence tomography,” Opt. Express 16, 6008–6025 (2008).
[CrossRef]

S. Makita, T. Fabritius, and Y. Yasuno, “Full-range, high-speed, high-resolution 1 μm spectral-domain optical coherence tomography using BM-scan for volumetric imaging of the human posterior eye,” Opt. Express 16, 8406–8420(2008).
[CrossRef]

C. M. Eigenwillig, B. R. Biedermann, G. Palte, and R. Huber, “K-space linear Fourier-domain mode locked laser and applications for optical coherence tomography,” Opt. Express 16, 8916–8937 (2008).
[CrossRef]

X. Liang, A. L. Oldenburg, V. Crecea, E. J. Chaney, and S. A. Boppart, “Optical micro-scale mapping of dynamic biomechanical tissue properties,” Opt. Express 16, 11052–11065 (2008).
[CrossRef]

L. An and R. K. Wang, “In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography,” Opt. Express 16, 11438–11452 (2008).
[CrossRef]

B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral / Fourier-domain OCT ophthalmic imaging at 70,000 to 312,500 A-scans/s,” Opt. Express 16, 15149–15169 (2008).
[CrossRef]

E. Goetzinger, M. Pircher, W. Geitzenauer, C. Ahlers, B. Baumann, S. Michels, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Retinal pigment epithelium segmentation by polarization sensitive optical coherence tomography,” Opt. Express 16, 16410–16422 (2008).
[CrossRef]

A. Dubois, J. Moreau, and C. Boccara, “Spectroscopic ultrahigh-resolution full-field optical coherence microscopy,” Opt. Express 16, 17082–17091 (2008).
[CrossRef]

V. J. Srinivasan, Y. Chen, J. S. Duker, and J. G. Fujimoto, “In vivo functional imaging of intrinsic scattering changes in the human retina with high-speed ultrahigh resolution OCT,” Opt. Express 17, 3861–3877 (2009).
[CrossRef]

E. Gotzinger, M. Pircher, B. Baumann, C. Ahlers, W. Geitzenauer, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Three-dimensional polarization sensitive OCT imaging and interactive display of the human retina,” Opt. Express 17, 4151–4165 (2009).
[CrossRef]

Y. K. Tao, K. M. Kennedy, and J. A. Izatt, “Velocity-resolved three-dimensional retinal microvessel imaging using single-pass flow imaging spectral domain optical coherence tomography,” Opt. Express 17, 4177–4188 (2009).
[CrossRef]

M. Wojtkowski, B. Sikorski, I. Gorczynska, M. Gora, M. Szkulmowski, D. Bukowska, J. J. Kaluzny, J. G. Fujimoto, and A. Kowalczyk, “Comparison of reflectivity maps and outer retinal topography in retinal disease by three-dimensional Fourier-domain optical coherence tomography,” Opt. Express 17, 4189–4207 (2009).
[CrossRef]

I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski, “Anterior segment imaging with spectral OCT system using a high-speed CMOS camera,” Opt. Express 17, 4842–4858 (2009).
[CrossRef]

R. K. Wang and L. An, “Doppler optical micro-angiography for volumetric imaging of vascular perfusion in vivo,” Opt. Express 17, 8926–8940 (2009).
[CrossRef]

M. Yamanari, Y. Lim, S. Makita, and Y. Yasuno, “Visualization of phase retardation of deep posterior eye by polarization-sensitive swept-source optical coherence tomography with 1 μm probe,” Opt. Express 17, 12385–12396(2009).
[CrossRef]

M. Szkulmowski, I. Grulkowski, D. Szlag, A. Szkulmowska, A. Kowalczyk, and M. Wojtkowski, “Flow velocity estimation by complex ambiguity free joint spectral and time-domain optical coherence tomography,” Opt. Express 17, 14281–14297 (2009).
[CrossRef]

M. Gora, K. Karnowski, M. Szkulmowski, B. J. Kaluzny, R. Huber, A. Kowalczyk, and M. Wojtkowski, “Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range,” Opt. Express 17, 14880–14894 (2009).
[CrossRef]

Opt. Lett.

S. Kray, F. Spoler, M. Forst, and H. Kurz, “High-resolution simultaneous dual-band spectral domain optical coherence tomography,” Opt. Lett. 34, 1970–1972 (2009).
[CrossRef]

I. V. Larina, S. Ivers, S. Syed, M. E. Dickinson, and K. V. Larin, “Hemodynamic measurements from individual blood cells in early mammalian embryos with Doppler swept source OCT,” Opt. Lett. 34, 986–988 (2009).
[CrossRef]

B. R. Biedermann, W. Wieser, C. M. Eigenwillig, G. Palte, D. C. Adler, V. J. Srinivasan, J. G. Fujimoto, and R. Huber, “Real time en face Fourier-domain optical coherence tomography with direct hardware frequency demodulation,” Opt. Lett. 33, 2556–2558 (2008).
[CrossRef]

D. Choi, H. Hiro-Oka, H. Furukawa, R. Yoshimura, M. Nakanishi, K. Shimizu, and K. Ohbayashi, “Fourier-domain optical coherence tomography using optical demultiplexers imaging at 60,000,000 lines/s,” Opt. Lett. 33, 1318–1320(2008).
[CrossRef]

A. Szkulmowska, M. Szkulmowski, A. Kowalczyk, and M. Wojtkowski, “Phase-resolved Doppler optical coherence tomography—limitations and improvements,” Opt. Lett. 33, 1425–1427 (2008).
[CrossRef]

S. Makita, T. Fabritius, and Y. Yasuno, “Quantitative retinal-blood flow measurement with three-dimensional vessel geometry determination using ultrahigh-resolution Doppler optical coherence angiography,” Opt. Lett. 33, 836–838(2008).
[CrossRef]

R. Huber, D. C. Adler, and J. G. Fujimoto, “Buffered Fourier-domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s,” Opt. Lett. 31, 2975–2977 (2006).
[CrossRef]

R. Huber, D. C. Adler, V. J. Srinivasan, and J. G. Fujimoto, “Fourier-domain mode locking at 1050 nm for ultrahigh-speed optical coherence tomography of the human retina at 236,000 axial scans per second,” Opt. Lett. 32, 2049–2051 (2007).
[CrossRef]

Y. K. Tao, M. Zhao, and J. A. Izatt, “High-speed complex conjugate resolved retinal spectral domain optical coherence tomography using sinusoidal phase modulation,” Opt. Lett. 32, 2918–2920 (2007).
[CrossRef]

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28, 2067–2069 (2003).
[CrossRef]

M. Wojtkowski, T. Bajraszewski, P. Targowski, and A. Kowalczyk, “Real-time in vivo imaging by high-speed spectral optical coherence tomography,” Opt. Lett. 28, 1745–1747(2003).
[CrossRef]

S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, “High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter,” Opt. Lett. 28, 1981–1983 (2003).
[CrossRef]

M. Akiba, K. P. Chan, and N. Tanno, “Full-field optical coherence tomography by 2D heterodyne detection with a pair of CCD cameras,” Opt. Lett. 28, 816–818 (2003).
[CrossRef]

M. Lazebnik, D. L. Marks, K. Potgieter, R. Gillette, and S. A. Boppart, “Functional optical coherence tomography for detecting neural activity through scattering changes,” Opt. Lett. 28, 1218–1220 (2003).
[CrossRef]

D. L. Faber, E. G. Mik, M. C. G. Aalders, and T. G. van Leeuwen, “Light absorption of (oxy-)hemoglobin assessed by spectroscopic optical coherence tomography,” Opt. Lett. 28, 1436–1438 (2003).
[CrossRef]

P. Koch, G. Huttmann, H. Schleiermacher, J. Eichholz, and E. Koch, “Linear optical coherence tomography system with a downconverted fringe pattern,” Opt. Lett. 29, 1644–1646(2004).
[CrossRef]

C. Fang-Yen, M. C. Chu, H. S. Seung, R. R. Dasari, and M. S. Feld, “Noncontact measurement of nerve displacement during action potential with a dual-beam low-coherence interferometer,” Opt. Lett. 29, 2028–2030 (2004).
[CrossRef]

M. A. Choma, A. K. Ellerbee, C. Yang, T. L. Creazzo, and J. A. Izatt, “Spectral-domain phase microscopy,” Opt. Lett. 30, 1162–1164 (2005).
[CrossRef]

M. V. Sarunic, B. E. Applegate, and J. A. Izatt, “Spectral domain second-harmonic optical coherence tomography,” Opt. Lett. 30, 2391–2393 (2005).
[CrossRef]

W. Y. Oh, S. H. Yun, G. J. Tearney, and B. E. Bouma, “115 kHz tuning repetition rate ultrahigh-speed wavelength-swept semiconductor laser,” Opt. Lett. 30, 3159–3161 (2005).
[CrossRef]

M. V. Sarunic, S. Weinberg, and J. A. Izatt, “Full-field swept-source phase microscopy,” Opt. Lett. 31, 1462–1464(2006).
[CrossRef]

V. J. Srinivasan, M. Wojtkowski, J. G. Fujimoto, and J. S. Duker, “In vivo measurement of retinal physiology with high-speed ultrahigh-resolution optical coherence tomography,” Opt. Lett. 31, 2308–2310 (2006).
[CrossRef]

N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography,” Opt. Lett. 29, 480–482 (2004).
[CrossRef]

G. M. Dobre, A. G. Podoleanu, and R. B. Rosen, “Simultaneous optical coherence tomography—Indocyanine Green dye fluorescence imaging system for investigations of the eye’s fundus,” Opt. Lett. 30, 58–60 (2005).
[CrossRef]

M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. F. Fercher, “Full range complex spectral optical coherence tomography technique in eye imaging,” Opt. Lett. 27, 1415–1417 (2002).
[CrossRef]

G. J. Tearney, B. E. Bouma, S. A. Boppart, B. Golubovic, E. A. Swanson, and J. G. Fujimoto, “Rapid acquisition of in vivo biological images by use of optical coherence tomography,” Opt. Lett. 21, 1408–1410 (1996).
[CrossRef]

Y. Zhao, Z. Chen, C. Saxer, Q. Shen, S. Xiang, J. F. de Boer, and J. S. Nelson, “Doppler standard deviation imaging for clinical monitoring of in vivo human skin blood flow,” Opt. Lett. 25, 1358–1360 (2000).
[CrossRef]

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, “Programmable femtosecond pulse shaping by use of a multielement liquid-crystal phase modulator,” Opt. Lett. 15, 326(1990).
[CrossRef]

K. F. Kwong, D. Yankelevich, K. C. Chu, J. P. Heritage, and A. Dienes, “400 Hz mechanical scanning optical delay line,” Opt. Lett. 18, 558–560 (1993).
[CrossRef]

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “In vivo retinal imaging by optical coherence tomography,” Opt. Lett. 18, 1864–1866 (1993).
[CrossRef]

S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22, 340–342 (1997).
[CrossRef]

J. Ballif, R. Gianotti, P. Chavanne, R. Walti, and R. P. Salathe, “Rapid and scalable scans at 21 m/s in optical low-coherence reflectometry,” Opt. Lett. 22, 757–759 (1997).
[CrossRef]

Z. Chen, T. E. Milner, S. Srinivas, X. Wang, A. Malekafzali, M. J. C. van Gemert, and J. S. Nelson, “Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography,” Opt. Lett. 22, 1119–1121 (1997).
[CrossRef]

J. A. Izatt, M. D. Kulkami, S. Yazdanfar, J. K. Barton, and A. J. Welch, “In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography,” Opt. Lett. 22, 1439–1441 (1997).
[CrossRef]

B. Golubovic, B. Bouma, G. Tearney, and J. Fujimoto, “Optical frequency-domain reflectometry using rapid wavelength tuning of a Cr4+ forsterite laser,” Opt. Lett. 22, 1704–1706 (1997).
[CrossRef]

G. J. Tearney, B. E. Bouma, and J. G. Fujimoto, “High-speed phase- and group-delay scanning with a grating-based phase control delay line,” Opt. Lett. 22, 1811–1813 (1997).
[CrossRef]

A. G. Podoleanu, G. M. Dobre, and D. A. Jackson, “En-face coherence imaging using galvanometer scanner modulation,” Opt. Lett. 23, 147–149 (1998).
[CrossRef]

M. D. Kulkarni, T. G. van Leeuwen, S. Yazdanfar, and J. A. Izatt, “Velocity-estimation accuracy and frame-rate limitations in color Doppler optical coherence tomography,” Opt. Lett. 23, 1057–1059 (1998).
[CrossRef]

A. M. Rollins and J. A. Izatt, “Optimal interferometer designs for optical coherence tomography,” Opt. Lett. 24, 1484–1486(1999).
[CrossRef]

U. Morgner, W. Drexler, F. X. Kartner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto, “Spectroscopic optical coherence tomography,” Opt. Lett. 25, 111–113 (2000).
[CrossRef]

Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, and J. S. Nelson, “Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity,” Opt. Lett. 25, 114–116 (2000).
[CrossRef]

R. Leitgeb, M. Wojtkowski, A. Kowalczyk, C. K. Hitzenberger, M. Sticker, and A. F. Fercher, “Spectral measurement of absorption by spectroscopic frequency-domain optical coherence tomography,” Opt. Lett. 25, 820–822 (2000).
[CrossRef]

Optom. Vis. Sci.

B. J. Kaluzny, W. Fojt, A. Szkulmowska, T. Bajraszewski, M. Wojtkowski, and A. Kowalczyk, “Spectral optical coherence tomography in video-rate and three-dimensional imaging of contact lens wear,” Optom. Vis. Sci. 84, 1104–1109 (2007).

Photon. Lett. Poland

S. Tamborski, D. Bukowska, M. Szkulmowski, A. Szkulmowska, A. Kowalczyk, and M. Wojtkowski, “Simultaneous analysis of flow velocity and spectroscopic properties of scattering media with the use of joint spectral and time-domain OCT,” Photon. Lett. Poland 1, 49–51 (2009).

Physiol. Rev.

A. Grinvald, R. D. Frostig, E. Lieke, and R. Hildesheim, “Optical imaging of neuronal-activity,” Physiol. Rev. 68, 1285–1366 (1988).

Proc. Natl. Acad. Sci. U.S.A.

K. Bizheva, R. Pflug, B. Hermann, B. Povazay, H. Sattmann, P. Qiu, E. Anger, H. Reitsamer, S. Popov, J. R. Taylor, A. Unterhuber, P. Ahnelt, and W. Drexler, “Optophysiology: depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography,” Proc. Natl. Acad. Sci. U.S.A. 103, 5066–5071 (2006).

Proc. SPIE

T. Bajraszewski, M. Wojtkowski, A. Szkulmowska, W. Fojt, M. Szkulmowski, and A. Kowalczyk, “Fourier-domain optical coherence tomography using optical frequency comb,” Proc. SPIE 6429, 64291F (2007).

Prog. Retin. Eye Res.

R. A. Costa, M. Skaf, L. A. Melo, Jr., D. Calucci, J. A. Cardillo, J. C. Castro, D. Huang, and M. Wojtkowski, “Retinal assessment using optical coherence tomography,” Prog. Retin. Eye Res. 25, 325–353 (2006).

Rep. Prog. Phys.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[CrossRef]

Science

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitvis, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037–2039 (1997).
[CrossRef]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Stud. Conserv.

P. Targowski, B. Rouba, M. Wojtkowski, and A. Kowalczyk, “The application of optical coherence tomography to non-destructive examination of museum objects,” Stud. Conserv. 49, 107–114 (2004).

Trends Neurosci.

A. Villringer and B. Chance, “Non-invasive optical spectroscopy and imaging of human brain function,” Trends Neurosci. 20, 435–442 (1997).
[CrossRef]

Other

W.Drexler and J.G.Fujimoto, eds., Optical Coherence Tomography (Springer-Verlag, 2008).

B.Bouma and G.Tearney, eds., Handbook of Optical Coherence Tomography (Marcel-Dekker, 2002).

L. V. Wang and H. Wu, Biomedical Optics (Wiley, 2007).

J. W. Goodman, Statistical Optics (Wiley, 1985).

A. Fercher, Optics in Medicine, Biology and Environmental Research: Selected Contributions to the First International Conference on Optics Within Life Sciences (Manufacturing Research and Technology) (Elsevier, 1990), pp. 221–228.

M. H. Niemz, Laser-Tissue Interactions (Springer-Verlag, 1996).

J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, Optical Coherence Tomography of Ocular Diseases, 2nd ed. (Slack, 2004).

M. A. Parker, Physics of Optoelectronics (Taylor & Francis, 2005).

B. E. Saleh and M. Teich, Fundamentals of Photonics(Wiley, 1991).

T. Akkin, D. P. Dave, H. G. Rylander, and T. E. Milner, “Non-contact sub-nanometer measurement of transient surface displacement during action potential propagation,” presented at SPIE Photonics West Conference, San Jose, California, USA, 22–27 January 2005.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (29)

Fig. 1
Fig. 1

Simplified block diagram of the TdOCT method.

Fig. 2
Fig. 2

Illustration of A-scan formation in FdOCT. Besides the A-scan corresponding to the structure, the resultant signal also includes a conjugate symmetrical image and coherence noise terms. Additionally all signals are affected by the sensitivity drop-off caused by the limited spectral resolving power of OCT spectrometers or the finite instantaneous linewidth of light emitted by a rapidly tunable laser.

Fig. 3
Fig. 3

Block diagrams of the OCT methods with the use of Fourier-domain detection: (a) spectral (spectral domain) OCT (SOCT), (b) swept source OCT (OFDI).

Fig. 4
Fig. 4

Sensitivity as a function of the reflectivity of the reference mirror for the SOCT system with a complementary metal oxide semiconductor camera with exposure time T exp = 4 μs and for a swept source OCT instrument without dual-balanced detection with corresponding exposure time T exp = 12 μs . In both cases the measured optical power on the sample P = 1 mW . The solid green line corresponds to theoretically calculated sensitivity. The solid blue, red, and black lines represent separately contributions of shot-noise, RIN, and read-noise components.

Fig. 5
Fig. 5

Progress in high-speed OCT technology. The graph demonstrates arbitrarily chosen, representative milestones in the OCT speed development: the instruments are blue, TdOCT; red, SOCT; green, swept source OCT.

Fig. 6
Fig. 6

Comparison of OCT cross-sectional imaging of the human eye in vivo: (a) time-domain detection, image obtained with the use of a commercially available OCT 3 Stratus (Zeiss) device, which enables imaging with an axial resolution of approximately 10 μm and speed allowing for acquiring 400 optical A-scans per second; (b) Fourier-domain detection, image obtained with the use of a laboratory device that enables imaging with an axial resolution equal to 2 μm and speed allowing for a measurement of 30,000 optical A-scans/s.

Fig. 7
Fig. 7

High-quality cross-sectional retinal imaging: (a) Fundus photography with a line indicating the location of the transverse OCT scan shown in (c). (b) OCT cross-sectional image of outer retinal layers including external limiting membrane (ELM), junction between inner and outer segments of photoreceptors ( IS / OS ) and the RPE-enlarged region from (c). (c) High-quality panoramic OCT image scanned along the pappilomacular axis acquired with the registration speed equals 30,000 lines/s.

Fig. 8
Fig. 8

High-quality clinical retinal cross-sectional imaging of retinas with AMD: (a) nonexudative AMD with soft drusen, (b) exudative AMD with neovascular membrane and fibrous scar, (c) nonexudative AMD along with large confluent drusen.

Fig. 9
Fig. 9

High-quality clinical retinal cross-sectional imaging using high-speed SOCT instrument: (a) full thickness macular hole, (b) central serous chorioretinopathy in acute stage, (c). photoreceptor dysfunction in a patient with acute zonal occult outer retinopathy.

Fig. 10
Fig. 10

(a) Diagram of creating the image of the eye’s fundus from data obtained by 3D OCT. (b) Illustration showing retinal reflectivity maps of chosen layers from 3D OCT: NFL, nerve fiber layer; IS / OS , junction between inner and outer segments of photoreceptors; RPE, retinal pigment epithelium.

Fig. 11
Fig. 11

Three-dimensional OCT imaging of human optic disc in vivo along with a quantitative analysis of the nerve fiber layer (NFL) thickness.

Fig. 12
Fig. 12

Quantitative analysis of outer retinal layers based on 3D OCT data in case of confluent drusen in 61 year-old patient’s eye. Zoomed inset indicates the localization of segmented layer consisting of outer segments of photoreceptors and RPE. Measurements performed after 12 months indicate a significant dynamics of the disease progression, which can be determined quantitatively by direct comparison of RPE topography and/or IS / OS topography maps.

Fig. 13
Fig. 13

High-quality, ultrahigh-resolution ( 3 μm in tissue) cross-sectional imaging of the anterior segment of the human eye in vivo with 800 nm SOCT instruments: (a) cornea, (b) corneo-scleral angle, and (c) anterior part of the crystalline lens. (Courtesy of Tomasz Bajraszewski, R&D Optopol Technology/images obtained by the prototype SOCT Anterius instrument.)

Fig. 14
Fig. 14

High-quality, ultrahigh-resolution cross-sectional in vivo imaging of the anterior segment of the human eye measured by 800 nm high-speed spectral OCT instrument with CMOS detector: (a) corneal imaging, (b) crystalline lens, (c) full range complex SOCT of the anterior segment of the human eye.

Fig. 15
Fig. 15

Large scale OCT imaging of the anterior segment of the human eye in vivo. Volume rendering from data acquired by a table top swept source OCT instrument using 1300 nm tunable laser (Axsun Technologies) with 50,000 A-scans/s.

Fig. 16
Fig. 16

Four-dimensional OCT imaging using high-speed 800 nm , SOCT instrument: consecutive volume renderings of anterior segment of the human eye during pupillary contraction, volume size 300 × 100 × 1024 pixels corresponding to 5 mm × 15 mm × 15 mm .

Fig. 17
Fig. 17

Volume rendering of 3D OCT data of anterior segment in vivo: (a) normal eye, (c) eye with keratoconus. Results of the quantitative corneal analysis of normal eye (b) and the eye with keratoconus (d) are shown. The posterior surface of the pathologically changed cornea is highly conical, and the apex of this surface is shifted to the left with respect to the anterior surface. An aspherical shape of both the anterior and posterior surfaces may be identified on the elevation maps by the regions characterized by large values of the distance between the corneal surface and the fitted sphere.

Fig. 18
Fig. 18

High-speed large scale imaging of porcine distal esophagus in vivo: 3D renderings of the distal esophagus with quadrant cutouts and planes designating the locations of the cross-sectional images. (Courtesy of Brett Bouma and Ben Vakoc; Image reprinted from Vakoc et al. [117] with permission of the American Society for Gastrointestinal Endoscopy.)

Fig. 19
Fig. 19

Volumetric ex vivo imaging of a human radial artery (bypass graft segment) using an FDML laser operating at 45 kHz, 80   frames / s , 10 mm / s longitudinal scan rate. (Courtesy of Joseph Schmitt, Lightlab Imaging.)

Fig. 20
Fig. 20

Structural imaging of early embryos with swept source OCT. (a)–(c) Three-dimensional reconstructions of live embryos with the yolk sac at 7.5 dpc , 8.5 dpc , and 9.5 dpc , respectively. (d) Three-dimensional reconstruction of 10.5 dpc embryo. (e) Live imaging of a heart and a fragment of a vitelline vein with individual circulating blood cells (labeled with arrows) at 8.5 dpc . (Courtesy of Kirill Larin, University of Houston.)

Fig. 21
Fig. 21

High-speed OCT of (a)–(c) stage 10–12 from the same quail embryo, (d)–(f) stages 13–15 from a different quail embryo, same orientation and location. The white arrows point to the location of possible tethers connecting the endocardium to the myocardium. Myo, myocardium; SV, sinus venosus; CJ, cardiac jelly; EC, endocardium; In, inflow; Out, outflow. (Courtesy of Andrew Rollins from Case Western University. Image reprinted from Jenkins et al. [120] with permission of OSA.)

Fig. 22
Fig. 22

Performance of 3D phase-resolved Doppler-FdOCT at different acquisition speeds covering a patch of 4 ° × 4 ° across the optic nerve head. The volumes were recorded at line rates of 20 kHz (A and J), 60 kHz (D) and 100 kHz (G). (A, D, G) Volumes containing phase-resolved Doppler-FdOCT tomograms in the RGB channel and intensity tomograms in the α-channel. (B, E, H) corresponding en-face cross-sections at significant positions. (C, F, I) corresponding fast axis cross-sections (B-scan) at significant positions. Solid arrows in (B, E, H) show vessels with lower flow speeds and almost perpendicular orientation to the detection axis. (Courtesy Rainer Letgeb from Medical University of Vienna, Image reprinted from Schmoll et al. [133] with permission of OSA.)

Fig. 23
Fig. 23

(a) Phase-resolved 4D velocity measurements using a retrospective gating procedure within the tadpole heart during the midsystolic phase of the cardiac cycle. (b) Single frame from the optical cardiogram gated structural movie at the level of spiral valve (SV) and atrio-ventricular valve (AVv) during peak systolic (a) and diastolic (b) phases of the cardiac cycle at 160 ms and 775 ms , respectively. (Courtesy of Alex Vitkin, Image reprinted from Mariampillai et al. [75], with permission of OSA.)

Fig. 24
Fig. 24

Phase-resolved swept source OCT velocity measurements from individual blood cells at 8.5 dpc . (a) Structural and corresponding color-coded Doppler velocity images acquired at different phases of the heartbeat cycle. Green (online) corresponds to zero velocity. Individual blood cells are distinguishable in the dorsal aorta. (b) Average blood flow velocity as a function of time in the corresponding area of the dorsal aorta. (c) Blood flow velocity profiles at different phases of the cardiac cycle. Each data point corresponds to the Doppler OCT velocity measurement from an individual cell. The data points were regressed using a parabolic fit. (Courtesy of Kirill Larin from University of Houston, Image reprinted from Larina et al. [119], with permission of OSA.)

Fig. 25
Fig. 25

Illustration of the joint spectral and time-domain OCT (STdOCT) procedure.

Fig. 26
Fig. 26

Three-dimensional flow analysis in retinal and choroidal blood vessels performed by joint spectral and time-domain OCT (STdOCT); the white square indicates the analyzed region, C-choroidal blood vessels. En-face STdOCT velocity map shows spatial distribution of the axial component of measured velocity in three dimensions. Rapid changes between blue and red colors in vessels are caused by vessels orientation with respect to direction of sampling light beam.

Fig. 27
Fig. 27

(a) Dark-adapted and preadapted functional response for anesthetized Long–Evans rat’s retina. Data were obtained by averaging the photoreceptor outer segment reflectance from one volume acquired in 162 ms . (b) Plot of the percent change in photoreceptor outer segment amplitude reflectance for t = 2.6 s compared with t = 1.3 s along with the cross-sectional data from one volume, which were unwrapped and flattened to the IS / OS boundary. (Image reprinted from Srinivasan et al. [164], with permission of OSA.)

Fig. 28
Fig. 28

(a), (b) High-quality SOCT cross-sectional retinal images of retina with multiple evanescent white dot syndrome (MEWDS) (a) obtained during the acute phase of the disease, revealing strong inhomogeneity on the reflectivity of a line corresponding to the inner/outer segments junction ( IS / OS ), and (b) measured after regaining visual acuity to 20 / 20 . (c) Analysis of reflectivity for extracted retinal layers in respect to fluorescein angiography (FA). Strong reflectivity changes corresponding to hyperfluorescent spots in FA (exemplary indicated by arrows) are visible only in IS / OS layer. Reflectivity maps of RPE and choroid demonstrate homogenous distribution of backreflected light. The bright areas visible in the NFL map are specular reflections from the surface of the retina. The SOCT fundus view shows a superposition of all analyzed layers. Here the contrast of reflectivity changes in IS / OS layer is much smaller than in the separated IS / OS reflectivity map.

Fig. 29
Fig. 29

Reconstruction of spectral envelopes for flowing (blue curve online) versus stationary (red curve online) medium obtained by high-speed FdOCT imaging in retinal vessels in vivo: (a) Cross-sectional retinal image with Doppler signals indicating localization of blood vessels; rectangles correspond to the regions averaged to reconstruct the spectral envelopes. (b) Spectral envelope (darker curve) reconstructed from data corresponding to blood vessel (c) Spectral envelope (darker curve) reconstructed from data corresponding to static region of retina. Both curves are displayed along with the original spectrum emitted by an ASE light source (Broadlighter; gray curve).

Tables (1)

Tables Icon

Table 1 Comparison of Signal and Noise Components, Sensitivity, and Dynamic Range for TdOCT and FdOCT a

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

E sampl ( t ) = n E sampl ( t + τ n ) .
E ( t ) = E ref ( t ) + n E sampl ( t + τ n ) ,
I = E * ( t ) E ( t ) .
I ( τ ) = I 0 ( a r + n a n + 2 m n a n a m Re { γ s s ( τ n m ) } + 2 n a r a n Re { γ ( τ n ) } ) ,
γ ( τ ) = Γ ( τ ) I 0 ref I 0 sampl = | γ ( τ ) | exp ( - i ω τ ) ,
Γ ( τ ) = E * ( t ) E ( t + τ ) .
I ( τ r ) = Const + 2 I 0 n a r a n | γ ( τ n ) | cos ( ω τ n ) .
S ( ω ) = 1 2 π - + Γ ( τ ) exp { i ω ( τ ) } d τ .
S total ( ω ) = S ( ω ) [ ( a r + n a n + 2 m n a n a m cos ( τ n m ω ) + 2 n a r a n cos ( τ n ω ) ] ,
I ˜ ( τ ) = IFT ω τ { S total ( ω ) } , I ^ ( τ ) = ( a r + n a n ) Γ ( τ ) + m n a n a m ( Γ ( τ ) δ ( τ ± τ n m ) ) + n a r a n ( Γ ( τ ) δ ( τ ± τ n ) ) .
Δ z = l c 2 = 1 2 t c c = 2 ln 2 π n λ 0 2 Δ λ FWHM ,
σ s 2 = ( i rms ) 2 = 2 e - i a v Δ f ,
Sens = 10 log ( 1 R min ) ,
Δ f 2 Z max λ 0 2 T Δ λ ,
SNR TdOCT = λ 0 2 Z max Δ λ FWHM ρ P 0 T e γ r γ s R r R s ( R r + R s ) .
SNR FdOCT = 2 ln 2 π · Z max Δ z SNR TdOCT .
σ J 2 = 4 k T Δ f R ,
σ RIN 2 = B e - i ¯ 2 ,
SNR = | AC | 2 σ s 2 + σ j 2 + σ RIN 2 ,

Metrics