Abstract

Since the time of Galilei 400 years ago the progress of optical systems was restricted due to the lack of optical glass types with different dispersion properties and due to poor material quality. With the work of Otto Schott, which started 125 years ago, glass became a tailorable, highly reproducible and homogeneous material, thus enabling systematic design of optical systems. The demand for new glass types is still going on as well as the requirement for ever tighter tolerances and their proofs. New measurement methods provide deeper insight in the material properties. Developments in processing allow new optical elements to be designed, further advancing technology. This also holds for zero-expansion glass ceramics, another key enabling material for optical systems. This publication highlights some milestones in the history of optical glass and glass ceramics, comments on present day glass development as well as new optical elements and measurement methods and provides some new information on the materials’ properties.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Greco, G. Molesini, and F. Quercioli, “Telescopes of Galilei,” Appl. Opt. 32 , 6219–6226 (1993).
    [CrossRef]
  2. D. Kappler and J. Steiner, SCHOTT 1884-2009 Vom Glaslabor zum Technologiekonzern (SCHOTT AG, 2009), pp. 1884–2009.
  3. C. R. Kurkjian and W. R. Prindle, “Perspectives on the history of glass composition,” J. Am. Ceram. Soc. 81, 795–813(1998).
  4. W. Jahn, “He brought us closer to the stars,” in Fraunhofer in Benediktbeuern, Vol. 415 (Fraunhofer Gesellschaft, 2008).
  5. E. Busch, “Report on the requirements of the Rathenow optical industry 1883,” in Gesammelte Abhandlungen, ErnstAbbe, ed. (Georg Olms, 1989), Vol. IV.
  6. SCHOTT Optical Glass Catalog, “Productions- und Preis-Verzeichnis,” (Glastechnisches Laboratorium Scott & Gen.1886).
  7. R. Koch, Letter to Company Carl Zeiss (1904).
  8. S. Sambrook, “No gunnery without glass—optical glass supply and production problems in Britain and the USA, 1914–1918,” (2000), http://www.europa.com/~telscope/glass-ss.txt.
  9. W. F. Parsons, “Optical materials research,” Appl. Opt. 11, 43–49 (1972).
    [CrossRef]
  10. M. Faulstich, “Die Hundertjährigen unter den optischen Gläsern,” Schott information 3, 32–39 (1984).
  11. H.Bach and D.Krause, eds., Low Thermal Expansion Glass Ceramics (Springer, 2005).
  12. T. Döhring, R. Jedamzik, A. Thomas, and P. Hartmann, “Forty years of ZERODUR mirror substrates for astronomy: review and outlook,” Proc. SPIE 7018, 70183B (2008).
  13. H. W. Hoffmann, W. W. Jochs, and Gerhard Westenberger, “Use of the Sellmeier dispersion formula for optical glasses and practical implications,” Proc. SPIE 1780, 303314(1992).
  14. SCHOTT catalog, “Optical glass,” 10.000 e 0992 (1992).
  15. P. Hartmann, R. Mackh, and H. Kohlmann, “Advances in the homogeneity measurement of optical glasses at the Schott 20 inch Fizeau interferometer,” Proc. SPIE 2775, 108–114 (1996).
  16. W. Besenmatter, “How many glass types does a designer really need?,” Proc. SPIE 3482, 294–305 (1998).
  17. H.Bach and N.Neuroth, eds., The Properties of Optical Glass (Springer, 1998).
  18. E. Hecht, Optics (Pearson, 2006).
  19. J. Flügge, Leitfaden der geometrischen Optik und des Optikrechnens (Vandenhoeck & Ruprecht, 1956).
  20. M. Born, E. Wolf, and A. B. Bhatia, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Cambridge University Press, 1999).
  21. N. Nanba, “Zoom lens and optical apparatus having the same,” U.S. patent application S0133201 (2003), example #6.
  22. S. Reichel, U. Petzold, R. Biertuempfeland H. Vogt, “Flat hat glass diffractive optical beam shaper,” Proc. SPIE 7194, 719403 (2009).
  23. P. Hartmann and R. Jedamzik, “Large optical glass lenses for ELTs,” Proc. SPIE 6273, 62730H (2006).
  24. P. Hartmann, R. Mackh, and H. Kohlmann, “Advances in the homogeneity measurement of optical glasses at the SCHOTT 20 inch Fizeau interferometer,” Proc. SPIE 2775, 108–114(1996).
  25. R. Jedamzik, J. Hengst, F. Elsmann, C. Lemke, T. Döhring, and P. Hartmann, “Optical materials for astronomy from SCHOTT: the quality of large components,” Proc. SPIE 7018, 70180O (2008).
  26. H. Gross, M. Hofmann, R. Jedamzik, P. Hartmann, and S. Sinzinger, “Measurement and simulation of striae in optical glass,” Proc. SPIE 7389, 73891C (2009).
  27. P. Hartmann and R. Jedamzik, “Optical glasses and optical elements: comparison of specification standards ISO DIS 12123 and ISO 10110,” Proc. SPIE 7102, 71020L (2008).
  28. R. Jedamzik, T. Doehring, R. Mueller, and P. Hartmann, “Homogeneity of the coefficient of linear thermal expansion of ZERODUR,” Proc. SPIE 5868, 241–251 (2005).
  29. T. Döhring, P. Hartmann, F.-T. Lentes, R. Jedamzik, and M. J. Davis, “Heritage of ZERODUR glass ceramic for space applications,” Proc. SPIE 7425, 74250L (2009).
  30. W. A. Plummer and H. E. Hagy, “Precision thermal expansion measurements on low expansion optical materials,” Appl. Opt. 7, 825–831 (1968).
    [CrossRef]
  31. R. Mueller, K. Erb, R. Haug, A. Klaas, O. Lindig, and G. Wetzig, “Ultraprecision dilatometer system for thermal expansion measurements on low expansion glasses,” in 12th Thermal Expansion Symposium, Pittsburgh/PA, P. S. Gaal and D. E. Apostolescu, eds. (1997).
  32. I. Mitra, R. Mueller, U. Nolte, A. Engel, H. Hack, H. Kohlmann, V. Wittmer, W. Pannhorst, M. J. Davis, L. Aschke, and K. Knapp, “Optimized glass-ceramic substrate materials for EUVL applications,” Proc. SPIE 5374, 96(2004).
  33. R. Jedamzik, R. Müller, and P. Hartmann, “Homogeneity of the linear thermal expansion coefficient of ZERODUR measured with improved accuracy,” Proc. SPIE 6273, 62730H(2006).
  34. R. Jedamzik, T. Döhring, T. Johansson, P. Hartmann, and T. Westerhoff, “CTE characterization of ZERODUR for the ELT century,” Proc. SPIE 7425 , 742504 (2009).
  35. O. Lindig and W. Pannhorst, “Thermal expansion and length stability of ZERODUR in dependence on temperature and time,” Appl. Opt. 24, 3330 (1985).
    [CrossRef]
  36. D. B. Hall, “Dimensional stability tests over time and temperature for several low-expansion glass ceramics,” Appl. Opt. 35, 1673–1678 (1996).
    [CrossRef]
  37. A. Miyashita, R. Ogasawara, G. Macaraya, and N. Itoh, “Temperature control for the primari mirror of Subaru telescope using the data from forecast of Mauna Kea observatories,” Publ. Natl. Astron. Obs. Japan 7, 25–31 (2003).
  38. T. Döhring, A. Thomas, R. Jedamzik, H. Kohlmann, and P. Hartmann, “Manufacturing of lightweighted ZERODUR components at SCHOTT,” Proc. SPIE 6666, 666602 (2007).
  39. P. Hartmann, K. Nattermann, T. Döhring, R. Jedamzik, M. Kuhr, P. Thomas, G. Kling, and S. Lucarelli, “ZERODUR glass ceramics for high stress applications,” Proc. SPIE 7425, 74250M (2009).

2009 (5)

S. Reichel, U. Petzold, R. Biertuempfeland H. Vogt, “Flat hat glass diffractive optical beam shaper,” Proc. SPIE 7194, 719403 (2009).

H. Gross, M. Hofmann, R. Jedamzik, P. Hartmann, and S. Sinzinger, “Measurement and simulation of striae in optical glass,” Proc. SPIE 7389, 73891C (2009).

T. Döhring, P. Hartmann, F.-T. Lentes, R. Jedamzik, and M. J. Davis, “Heritage of ZERODUR glass ceramic for space applications,” Proc. SPIE 7425, 74250L (2009).

R. Jedamzik, T. Döhring, T. Johansson, P. Hartmann, and T. Westerhoff, “CTE characterization of ZERODUR for the ELT century,” Proc. SPIE 7425 , 742504 (2009).

P. Hartmann, K. Nattermann, T. Döhring, R. Jedamzik, M. Kuhr, P. Thomas, G. Kling, and S. Lucarelli, “ZERODUR glass ceramics for high stress applications,” Proc. SPIE 7425, 74250M (2009).

2008 (3)

R. Jedamzik, J. Hengst, F. Elsmann, C. Lemke, T. Döhring, and P. Hartmann, “Optical materials for astronomy from SCHOTT: the quality of large components,” Proc. SPIE 7018, 70180O (2008).

P. Hartmann and R. Jedamzik, “Optical glasses and optical elements: comparison of specification standards ISO DIS 12123 and ISO 10110,” Proc. SPIE 7102, 71020L (2008).

T. Döhring, R. Jedamzik, A. Thomas, and P. Hartmann, “Forty years of ZERODUR mirror substrates for astronomy: review and outlook,” Proc. SPIE 7018, 70183B (2008).

2007 (1)

T. Döhring, A. Thomas, R. Jedamzik, H. Kohlmann, and P. Hartmann, “Manufacturing of lightweighted ZERODUR components at SCHOTT,” Proc. SPIE 6666, 666602 (2007).

2006 (2)

P. Hartmann and R. Jedamzik, “Large optical glass lenses for ELTs,” Proc. SPIE 6273, 62730H (2006).

R. Jedamzik, R. Müller, and P. Hartmann, “Homogeneity of the linear thermal expansion coefficient of ZERODUR measured with improved accuracy,” Proc. SPIE 6273, 62730H(2006).

2005 (1)

R. Jedamzik, T. Doehring, R. Mueller, and P. Hartmann, “Homogeneity of the coefficient of linear thermal expansion of ZERODUR,” Proc. SPIE 5868, 241–251 (2005).

2003 (1)

A. Miyashita, R. Ogasawara, G. Macaraya, and N. Itoh, “Temperature control for the primari mirror of Subaru telescope using the data from forecast of Mauna Kea observatories,” Publ. Natl. Astron. Obs. Japan 7, 25–31 (2003).

1998 (2)

W. Besenmatter, “How many glass types does a designer really need?,” Proc. SPIE 3482, 294–305 (1998).

C. R. Kurkjian and W. R. Prindle, “Perspectives on the history of glass composition,” J. Am. Ceram. Soc. 81, 795–813(1998).

1996 (3)

P. Hartmann, R. Mackh, and H. Kohlmann, “Advances in the homogeneity measurement of optical glasses at the Schott 20 inch Fizeau interferometer,” Proc. SPIE 2775, 108–114 (1996).

P. Hartmann, R. Mackh, and H. Kohlmann, “Advances in the homogeneity measurement of optical glasses at the SCHOTT 20 inch Fizeau interferometer,” Proc. SPIE 2775, 108–114(1996).

D. B. Hall, “Dimensional stability tests over time and temperature for several low-expansion glass ceramics,” Appl. Opt. 35, 1673–1678 (1996).
[CrossRef]

1993 (1)

1992 (2)

H. W. Hoffmann, W. W. Jochs, and Gerhard Westenberger, “Use of the Sellmeier dispersion formula for optical glasses and practical implications,” Proc. SPIE 1780, 303314(1992).

SCHOTT catalog, “Optical glass,” 10.000 e 0992 (1992).

1985 (1)

1984 (1)

M. Faulstich, “Die Hundertjährigen unter den optischen Gläsern,” Schott information 3, 32–39 (1984).

1972 (1)

1968 (1)

Aschke, L.

I. Mitra, R. Mueller, U. Nolte, A. Engel, H. Hack, H. Kohlmann, V. Wittmer, W. Pannhorst, M. J. Davis, L. Aschke, and K. Knapp, “Optimized glass-ceramic substrate materials for EUVL applications,” Proc. SPIE 5374, 96(2004).

Besenmatter, W.

W. Besenmatter, “How many glass types does a designer really need?,” Proc. SPIE 3482, 294–305 (1998).

Bhatia, A. B.

M. Born, E. Wolf, and A. B. Bhatia, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Cambridge University Press, 1999).

Biertuempfel, R.

S. Reichel, U. Petzold, R. Biertuempfeland H. Vogt, “Flat hat glass diffractive optical beam shaper,” Proc. SPIE 7194, 719403 (2009).

Born, M.

M. Born, E. Wolf, and A. B. Bhatia, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Cambridge University Press, 1999).

Busch, E.

E. Busch, “Report on the requirements of the Rathenow optical industry 1883,” in Gesammelte Abhandlungen, ErnstAbbe, ed. (Georg Olms, 1989), Vol. IV.

Davis, M. J.

T. Döhring, P. Hartmann, F.-T. Lentes, R. Jedamzik, and M. J. Davis, “Heritage of ZERODUR glass ceramic for space applications,” Proc. SPIE 7425, 74250L (2009).

I. Mitra, R. Mueller, U. Nolte, A. Engel, H. Hack, H. Kohlmann, V. Wittmer, W. Pannhorst, M. J. Davis, L. Aschke, and K. Knapp, “Optimized glass-ceramic substrate materials for EUVL applications,” Proc. SPIE 5374, 96(2004).

Doehring, T.

R. Jedamzik, T. Doehring, R. Mueller, and P. Hartmann, “Homogeneity of the coefficient of linear thermal expansion of ZERODUR,” Proc. SPIE 5868, 241–251 (2005).

Döhring, T.

T. Döhring, P. Hartmann, F.-T. Lentes, R. Jedamzik, and M. J. Davis, “Heritage of ZERODUR glass ceramic for space applications,” Proc. SPIE 7425, 74250L (2009).

R. Jedamzik, T. Döhring, T. Johansson, P. Hartmann, and T. Westerhoff, “CTE characterization of ZERODUR for the ELT century,” Proc. SPIE 7425 , 742504 (2009).

P. Hartmann, K. Nattermann, T. Döhring, R. Jedamzik, M. Kuhr, P. Thomas, G. Kling, and S. Lucarelli, “ZERODUR glass ceramics for high stress applications,” Proc. SPIE 7425, 74250M (2009).

R. Jedamzik, J. Hengst, F. Elsmann, C. Lemke, T. Döhring, and P. Hartmann, “Optical materials for astronomy from SCHOTT: the quality of large components,” Proc. SPIE 7018, 70180O (2008).

T. Döhring, R. Jedamzik, A. Thomas, and P. Hartmann, “Forty years of ZERODUR mirror substrates for astronomy: review and outlook,” Proc. SPIE 7018, 70183B (2008).

T. Döhring, A. Thomas, R. Jedamzik, H. Kohlmann, and P. Hartmann, “Manufacturing of lightweighted ZERODUR components at SCHOTT,” Proc. SPIE 6666, 666602 (2007).

Elsmann, F.

R. Jedamzik, J. Hengst, F. Elsmann, C. Lemke, T. Döhring, and P. Hartmann, “Optical materials for astronomy from SCHOTT: the quality of large components,” Proc. SPIE 7018, 70180O (2008).

Engel, A.

I. Mitra, R. Mueller, U. Nolte, A. Engel, H. Hack, H. Kohlmann, V. Wittmer, W. Pannhorst, M. J. Davis, L. Aschke, and K. Knapp, “Optimized glass-ceramic substrate materials for EUVL applications,” Proc. SPIE 5374, 96(2004).

Faulstich, M.

M. Faulstich, “Die Hundertjährigen unter den optischen Gläsern,” Schott information 3, 32–39 (1984).

Flügge, J.

J. Flügge, Leitfaden der geometrischen Optik und des Optikrechnens (Vandenhoeck & Ruprecht, 1956).

Greco, V.

Gross, H.

H. Gross, M. Hofmann, R. Jedamzik, P. Hartmann, and S. Sinzinger, “Measurement and simulation of striae in optical glass,” Proc. SPIE 7389, 73891C (2009).

Hack, H.

I. Mitra, R. Mueller, U. Nolte, A. Engel, H. Hack, H. Kohlmann, V. Wittmer, W. Pannhorst, M. J. Davis, L. Aschke, and K. Knapp, “Optimized glass-ceramic substrate materials for EUVL applications,” Proc. SPIE 5374, 96(2004).

Hagy, H. E.

Hall, D. B.

Hartmann, P.

R. Jedamzik, T. Döhring, T. Johansson, P. Hartmann, and T. Westerhoff, “CTE characterization of ZERODUR for the ELT century,” Proc. SPIE 7425 , 742504 (2009).

P. Hartmann, K. Nattermann, T. Döhring, R. Jedamzik, M. Kuhr, P. Thomas, G. Kling, and S. Lucarelli, “ZERODUR glass ceramics for high stress applications,” Proc. SPIE 7425, 74250M (2009).

T. Döhring, P. Hartmann, F.-T. Lentes, R. Jedamzik, and M. J. Davis, “Heritage of ZERODUR glass ceramic for space applications,” Proc. SPIE 7425, 74250L (2009).

H. Gross, M. Hofmann, R. Jedamzik, P. Hartmann, and S. Sinzinger, “Measurement and simulation of striae in optical glass,” Proc. SPIE 7389, 73891C (2009).

P. Hartmann and R. Jedamzik, “Optical glasses and optical elements: comparison of specification standards ISO DIS 12123 and ISO 10110,” Proc. SPIE 7102, 71020L (2008).

R. Jedamzik, J. Hengst, F. Elsmann, C. Lemke, T. Döhring, and P. Hartmann, “Optical materials for astronomy from SCHOTT: the quality of large components,” Proc. SPIE 7018, 70180O (2008).

T. Döhring, R. Jedamzik, A. Thomas, and P. Hartmann, “Forty years of ZERODUR mirror substrates for astronomy: review and outlook,” Proc. SPIE 7018, 70183B (2008).

T. Döhring, A. Thomas, R. Jedamzik, H. Kohlmann, and P. Hartmann, “Manufacturing of lightweighted ZERODUR components at SCHOTT,” Proc. SPIE 6666, 666602 (2007).

R. Jedamzik, R. Müller, and P. Hartmann, “Homogeneity of the linear thermal expansion coefficient of ZERODUR measured with improved accuracy,” Proc. SPIE 6273, 62730H(2006).

P. Hartmann and R. Jedamzik, “Large optical glass lenses for ELTs,” Proc. SPIE 6273, 62730H (2006).

R. Jedamzik, T. Doehring, R. Mueller, and P. Hartmann, “Homogeneity of the coefficient of linear thermal expansion of ZERODUR,” Proc. SPIE 5868, 241–251 (2005).

P. Hartmann, R. Mackh, and H. Kohlmann, “Advances in the homogeneity measurement of optical glasses at the SCHOTT 20 inch Fizeau interferometer,” Proc. SPIE 2775, 108–114(1996).

P. Hartmann, R. Mackh, and H. Kohlmann, “Advances in the homogeneity measurement of optical glasses at the Schott 20 inch Fizeau interferometer,” Proc. SPIE 2775, 108–114 (1996).

Hecht, E.

E. Hecht, Optics (Pearson, 2006).

Hengst, J.

R. Jedamzik, J. Hengst, F. Elsmann, C. Lemke, T. Döhring, and P. Hartmann, “Optical materials for astronomy from SCHOTT: the quality of large components,” Proc. SPIE 7018, 70180O (2008).

Hoffmann, H. W.

H. W. Hoffmann, W. W. Jochs, and Gerhard Westenberger, “Use of the Sellmeier dispersion formula for optical glasses and practical implications,” Proc. SPIE 1780, 303314(1992).

Hofmann, M.

H. Gross, M. Hofmann, R. Jedamzik, P. Hartmann, and S. Sinzinger, “Measurement and simulation of striae in optical glass,” Proc. SPIE 7389, 73891C (2009).

Itoh, N.

A. Miyashita, R. Ogasawara, G. Macaraya, and N. Itoh, “Temperature control for the primari mirror of Subaru telescope using the data from forecast of Mauna Kea observatories,” Publ. Natl. Astron. Obs. Japan 7, 25–31 (2003).

Jahn, W.

W. Jahn, “He brought us closer to the stars,” in Fraunhofer in Benediktbeuern, Vol. 415 (Fraunhofer Gesellschaft, 2008).

Jedamzik, R.

H. Gross, M. Hofmann, R. Jedamzik, P. Hartmann, and S. Sinzinger, “Measurement and simulation of striae in optical glass,” Proc. SPIE 7389, 73891C (2009).

T. Döhring, P. Hartmann, F.-T. Lentes, R. Jedamzik, and M. J. Davis, “Heritage of ZERODUR glass ceramic for space applications,” Proc. SPIE 7425, 74250L (2009).

P. Hartmann, K. Nattermann, T. Döhring, R. Jedamzik, M. Kuhr, P. Thomas, G. Kling, and S. Lucarelli, “ZERODUR glass ceramics for high stress applications,” Proc. SPIE 7425, 74250M (2009).

R. Jedamzik, T. Döhring, T. Johansson, P. Hartmann, and T. Westerhoff, “CTE characterization of ZERODUR for the ELT century,” Proc. SPIE 7425 , 742504 (2009).

P. Hartmann and R. Jedamzik, “Optical glasses and optical elements: comparison of specification standards ISO DIS 12123 and ISO 10110,” Proc. SPIE 7102, 71020L (2008).

R. Jedamzik, J. Hengst, F. Elsmann, C. Lemke, T. Döhring, and P. Hartmann, “Optical materials for astronomy from SCHOTT: the quality of large components,” Proc. SPIE 7018, 70180O (2008).

T. Döhring, R. Jedamzik, A. Thomas, and P. Hartmann, “Forty years of ZERODUR mirror substrates for astronomy: review and outlook,” Proc. SPIE 7018, 70183B (2008).

T. Döhring, A. Thomas, R. Jedamzik, H. Kohlmann, and P. Hartmann, “Manufacturing of lightweighted ZERODUR components at SCHOTT,” Proc. SPIE 6666, 666602 (2007).

R. Jedamzik, R. Müller, and P. Hartmann, “Homogeneity of the linear thermal expansion coefficient of ZERODUR measured with improved accuracy,” Proc. SPIE 6273, 62730H(2006).

P. Hartmann and R. Jedamzik, “Large optical glass lenses for ELTs,” Proc. SPIE 6273, 62730H (2006).

R. Jedamzik, T. Doehring, R. Mueller, and P. Hartmann, “Homogeneity of the coefficient of linear thermal expansion of ZERODUR,” Proc. SPIE 5868, 241–251 (2005).

Jochs, W. W.

H. W. Hoffmann, W. W. Jochs, and Gerhard Westenberger, “Use of the Sellmeier dispersion formula for optical glasses and practical implications,” Proc. SPIE 1780, 303314(1992).

Johansson, T.

R. Jedamzik, T. Döhring, T. Johansson, P. Hartmann, and T. Westerhoff, “CTE characterization of ZERODUR for the ELT century,” Proc. SPIE 7425 , 742504 (2009).

Kappler, D.

D. Kappler and J. Steiner, SCHOTT 1884-2009 Vom Glaslabor zum Technologiekonzern (SCHOTT AG, 2009), pp. 1884–2009.

Kling, G.

P. Hartmann, K. Nattermann, T. Döhring, R. Jedamzik, M. Kuhr, P. Thomas, G. Kling, and S. Lucarelli, “ZERODUR glass ceramics for high stress applications,” Proc. SPIE 7425, 74250M (2009).

Knapp, K.

I. Mitra, R. Mueller, U. Nolte, A. Engel, H. Hack, H. Kohlmann, V. Wittmer, W. Pannhorst, M. J. Davis, L. Aschke, and K. Knapp, “Optimized glass-ceramic substrate materials for EUVL applications,” Proc. SPIE 5374, 96(2004).

Koch, R.

R. Koch, Letter to Company Carl Zeiss (1904).

Kohlmann, H.

T. Döhring, A. Thomas, R. Jedamzik, H. Kohlmann, and P. Hartmann, “Manufacturing of lightweighted ZERODUR components at SCHOTT,” Proc. SPIE 6666, 666602 (2007).

P. Hartmann, R. Mackh, and H. Kohlmann, “Advances in the homogeneity measurement of optical glasses at the Schott 20 inch Fizeau interferometer,” Proc. SPIE 2775, 108–114 (1996).

P. Hartmann, R. Mackh, and H. Kohlmann, “Advances in the homogeneity measurement of optical glasses at the SCHOTT 20 inch Fizeau interferometer,” Proc. SPIE 2775, 108–114(1996).

I. Mitra, R. Mueller, U. Nolte, A. Engel, H. Hack, H. Kohlmann, V. Wittmer, W. Pannhorst, M. J. Davis, L. Aschke, and K. Knapp, “Optimized glass-ceramic substrate materials for EUVL applications,” Proc. SPIE 5374, 96(2004).

Kuhr, M.

P. Hartmann, K. Nattermann, T. Döhring, R. Jedamzik, M. Kuhr, P. Thomas, G. Kling, and S. Lucarelli, “ZERODUR glass ceramics for high stress applications,” Proc. SPIE 7425, 74250M (2009).

Kurkjian, C. R.

C. R. Kurkjian and W. R. Prindle, “Perspectives on the history of glass composition,” J. Am. Ceram. Soc. 81, 795–813(1998).

Lemke, C.

R. Jedamzik, J. Hengst, F. Elsmann, C. Lemke, T. Döhring, and P. Hartmann, “Optical materials for astronomy from SCHOTT: the quality of large components,” Proc. SPIE 7018, 70180O (2008).

Lentes, F.-T.

T. Döhring, P. Hartmann, F.-T. Lentes, R. Jedamzik, and M. J. Davis, “Heritage of ZERODUR glass ceramic for space applications,” Proc. SPIE 7425, 74250L (2009).

Lindig, O.

Lucarelli, S.

P. Hartmann, K. Nattermann, T. Döhring, R. Jedamzik, M. Kuhr, P. Thomas, G. Kling, and S. Lucarelli, “ZERODUR glass ceramics for high stress applications,” Proc. SPIE 7425, 74250M (2009).

Macaraya, G.

A. Miyashita, R. Ogasawara, G. Macaraya, and N. Itoh, “Temperature control for the primari mirror of Subaru telescope using the data from forecast of Mauna Kea observatories,” Publ. Natl. Astron. Obs. Japan 7, 25–31 (2003).

Mackh, R.

P. Hartmann, R. Mackh, and H. Kohlmann, “Advances in the homogeneity measurement of optical glasses at the SCHOTT 20 inch Fizeau interferometer,” Proc. SPIE 2775, 108–114(1996).

P. Hartmann, R. Mackh, and H. Kohlmann, “Advances in the homogeneity measurement of optical glasses at the Schott 20 inch Fizeau interferometer,” Proc. SPIE 2775, 108–114 (1996).

Mitra, I.

I. Mitra, R. Mueller, U. Nolte, A. Engel, H. Hack, H. Kohlmann, V. Wittmer, W. Pannhorst, M. J. Davis, L. Aschke, and K. Knapp, “Optimized glass-ceramic substrate materials for EUVL applications,” Proc. SPIE 5374, 96(2004).

Miyashita, A.

A. Miyashita, R. Ogasawara, G. Macaraya, and N. Itoh, “Temperature control for the primari mirror of Subaru telescope using the data from forecast of Mauna Kea observatories,” Publ. Natl. Astron. Obs. Japan 7, 25–31 (2003).

Molesini, G.

Mueller, R.

R. Jedamzik, T. Doehring, R. Mueller, and P. Hartmann, “Homogeneity of the coefficient of linear thermal expansion of ZERODUR,” Proc. SPIE 5868, 241–251 (2005).

I. Mitra, R. Mueller, U. Nolte, A. Engel, H. Hack, H. Kohlmann, V. Wittmer, W. Pannhorst, M. J. Davis, L. Aschke, and K. Knapp, “Optimized glass-ceramic substrate materials for EUVL applications,” Proc. SPIE 5374, 96(2004).

Müller, R.

R. Jedamzik, R. Müller, and P. Hartmann, “Homogeneity of the linear thermal expansion coefficient of ZERODUR measured with improved accuracy,” Proc. SPIE 6273, 62730H(2006).

Nanba, N.

N. Nanba, “Zoom lens and optical apparatus having the same,” U.S. patent application S0133201 (2003), example #6.

Nattermann, K.

P. Hartmann, K. Nattermann, T. Döhring, R. Jedamzik, M. Kuhr, P. Thomas, G. Kling, and S. Lucarelli, “ZERODUR glass ceramics for high stress applications,” Proc. SPIE 7425, 74250M (2009).

Nolte, U.

I. Mitra, R. Mueller, U. Nolte, A. Engel, H. Hack, H. Kohlmann, V. Wittmer, W. Pannhorst, M. J. Davis, L. Aschke, and K. Knapp, “Optimized glass-ceramic substrate materials for EUVL applications,” Proc. SPIE 5374, 96(2004).

Ogasawara, R.

A. Miyashita, R. Ogasawara, G. Macaraya, and N. Itoh, “Temperature control for the primari mirror of Subaru telescope using the data from forecast of Mauna Kea observatories,” Publ. Natl. Astron. Obs. Japan 7, 25–31 (2003).

Pannhorst, W.

O. Lindig and W. Pannhorst, “Thermal expansion and length stability of ZERODUR in dependence on temperature and time,” Appl. Opt. 24, 3330 (1985).
[CrossRef]

I. Mitra, R. Mueller, U. Nolte, A. Engel, H. Hack, H. Kohlmann, V. Wittmer, W. Pannhorst, M. J. Davis, L. Aschke, and K. Knapp, “Optimized glass-ceramic substrate materials for EUVL applications,” Proc. SPIE 5374, 96(2004).

Parsons, W. F.

Petzold, U.

S. Reichel, U. Petzold, R. Biertuempfeland H. Vogt, “Flat hat glass diffractive optical beam shaper,” Proc. SPIE 7194, 719403 (2009).

Plummer, W. A.

Prindle, W. R.

C. R. Kurkjian and W. R. Prindle, “Perspectives on the history of glass composition,” J. Am. Ceram. Soc. 81, 795–813(1998).

Quercioli, F.

Reichel, S.

S. Reichel, U. Petzold, R. Biertuempfeland H. Vogt, “Flat hat glass diffractive optical beam shaper,” Proc. SPIE 7194, 719403 (2009).

Sambrook, S.

S. Sambrook, “No gunnery without glass—optical glass supply and production problems in Britain and the USA, 1914–1918,” (2000), http://www.europa.com/~telscope/glass-ss.txt.

Sinzinger, S.

H. Gross, M. Hofmann, R. Jedamzik, P. Hartmann, and S. Sinzinger, “Measurement and simulation of striae in optical glass,” Proc. SPIE 7389, 73891C (2009).

Steiner, J.

D. Kappler and J. Steiner, SCHOTT 1884-2009 Vom Glaslabor zum Technologiekonzern (SCHOTT AG, 2009), pp. 1884–2009.

Thomas, A.

T. Döhring, R. Jedamzik, A. Thomas, and P. Hartmann, “Forty years of ZERODUR mirror substrates for astronomy: review and outlook,” Proc. SPIE 7018, 70183B (2008).

T. Döhring, A. Thomas, R. Jedamzik, H. Kohlmann, and P. Hartmann, “Manufacturing of lightweighted ZERODUR components at SCHOTT,” Proc. SPIE 6666, 666602 (2007).

Thomas, P.

P. Hartmann, K. Nattermann, T. Döhring, R. Jedamzik, M. Kuhr, P. Thomas, G. Kling, and S. Lucarelli, “ZERODUR glass ceramics for high stress applications,” Proc. SPIE 7425, 74250M (2009).

Vogt, H.

S. Reichel, U. Petzold, R. Biertuempfeland H. Vogt, “Flat hat glass diffractive optical beam shaper,” Proc. SPIE 7194, 719403 (2009).

Westenberger, Gerhard

H. W. Hoffmann, W. W. Jochs, and Gerhard Westenberger, “Use of the Sellmeier dispersion formula for optical glasses and practical implications,” Proc. SPIE 1780, 303314(1992).

Westerhoff, T.

R. Jedamzik, T. Döhring, T. Johansson, P. Hartmann, and T. Westerhoff, “CTE characterization of ZERODUR for the ELT century,” Proc. SPIE 7425 , 742504 (2009).

Wittmer, V.

I. Mitra, R. Mueller, U. Nolte, A. Engel, H. Hack, H. Kohlmann, V. Wittmer, W. Pannhorst, M. J. Davis, L. Aschke, and K. Knapp, “Optimized glass-ceramic substrate materials for EUVL applications,” Proc. SPIE 5374, 96(2004).

Wolf, E.

M. Born, E. Wolf, and A. B. Bhatia, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Cambridge University Press, 1999).

Appl. Opt. (5)

J. Am. Ceram. Soc. (1)

C. R. Kurkjian and W. R. Prindle, “Perspectives on the history of glass composition,” J. Am. Ceram. Soc. 81, 795–813(1998).

Proc. SPIE (17)

S. Reichel, U. Petzold, R. Biertuempfeland H. Vogt, “Flat hat glass diffractive optical beam shaper,” Proc. SPIE 7194, 719403 (2009).

P. Hartmann and R. Jedamzik, “Large optical glass lenses for ELTs,” Proc. SPIE 6273, 62730H (2006).

P. Hartmann, R. Mackh, and H. Kohlmann, “Advances in the homogeneity measurement of optical glasses at the SCHOTT 20 inch Fizeau interferometer,” Proc. SPIE 2775, 108–114(1996).

R. Jedamzik, J. Hengst, F. Elsmann, C. Lemke, T. Döhring, and P. Hartmann, “Optical materials for astronomy from SCHOTT: the quality of large components,” Proc. SPIE 7018, 70180O (2008).

H. Gross, M. Hofmann, R. Jedamzik, P. Hartmann, and S. Sinzinger, “Measurement and simulation of striae in optical glass,” Proc. SPIE 7389, 73891C (2009).

P. Hartmann and R. Jedamzik, “Optical glasses and optical elements: comparison of specification standards ISO DIS 12123 and ISO 10110,” Proc. SPIE 7102, 71020L (2008).

R. Jedamzik, T. Doehring, R. Mueller, and P. Hartmann, “Homogeneity of the coefficient of linear thermal expansion of ZERODUR,” Proc. SPIE 5868, 241–251 (2005).

T. Döhring, P. Hartmann, F.-T. Lentes, R. Jedamzik, and M. J. Davis, “Heritage of ZERODUR glass ceramic for space applications,” Proc. SPIE 7425, 74250L (2009).

I. Mitra, R. Mueller, U. Nolte, A. Engel, H. Hack, H. Kohlmann, V. Wittmer, W. Pannhorst, M. J. Davis, L. Aschke, and K. Knapp, “Optimized glass-ceramic substrate materials for EUVL applications,” Proc. SPIE 5374, 96(2004).

R. Jedamzik, R. Müller, and P. Hartmann, “Homogeneity of the linear thermal expansion coefficient of ZERODUR measured with improved accuracy,” Proc. SPIE 6273, 62730H(2006).

R. Jedamzik, T. Döhring, T. Johansson, P. Hartmann, and T. Westerhoff, “CTE characterization of ZERODUR for the ELT century,” Proc. SPIE 7425 , 742504 (2009).

T. Döhring, A. Thomas, R. Jedamzik, H. Kohlmann, and P. Hartmann, “Manufacturing of lightweighted ZERODUR components at SCHOTT,” Proc. SPIE 6666, 666602 (2007).

P. Hartmann, K. Nattermann, T. Döhring, R. Jedamzik, M. Kuhr, P. Thomas, G. Kling, and S. Lucarelli, “ZERODUR glass ceramics for high stress applications,” Proc. SPIE 7425, 74250M (2009).

T. Döhring, R. Jedamzik, A. Thomas, and P. Hartmann, “Forty years of ZERODUR mirror substrates for astronomy: review and outlook,” Proc. SPIE 7018, 70183B (2008).

H. W. Hoffmann, W. W. Jochs, and Gerhard Westenberger, “Use of the Sellmeier dispersion formula for optical glasses and practical implications,” Proc. SPIE 1780, 303314(1992).

P. Hartmann, R. Mackh, and H. Kohlmann, “Advances in the homogeneity measurement of optical glasses at the Schott 20 inch Fizeau interferometer,” Proc. SPIE 2775, 108–114 (1996).

W. Besenmatter, “How many glass types does a designer really need?,” Proc. SPIE 3482, 294–305 (1998).

Schott information (1)

M. Faulstich, “Die Hundertjährigen unter den optischen Gläsern,” Schott information 3, 32–39 (1984).

Other (15)

H.Bach and D.Krause, eds., Low Thermal Expansion Glass Ceramics (Springer, 2005).

D. Kappler and J. Steiner, SCHOTT 1884-2009 Vom Glaslabor zum Technologiekonzern (SCHOTT AG, 2009), pp. 1884–2009.

W. Jahn, “He brought us closer to the stars,” in Fraunhofer in Benediktbeuern, Vol. 415 (Fraunhofer Gesellschaft, 2008).

E. Busch, “Report on the requirements of the Rathenow optical industry 1883,” in Gesammelte Abhandlungen, ErnstAbbe, ed. (Georg Olms, 1989), Vol. IV.

SCHOTT Optical Glass Catalog, “Productions- und Preis-Verzeichnis,” (Glastechnisches Laboratorium Scott & Gen.1886).

R. Koch, Letter to Company Carl Zeiss (1904).

S. Sambrook, “No gunnery without glass—optical glass supply and production problems in Britain and the USA, 1914–1918,” (2000), http://www.europa.com/~telscope/glass-ss.txt.

H.Bach and N.Neuroth, eds., The Properties of Optical Glass (Springer, 1998).

E. Hecht, Optics (Pearson, 2006).

J. Flügge, Leitfaden der geometrischen Optik und des Optikrechnens (Vandenhoeck & Ruprecht, 1956).

M. Born, E. Wolf, and A. B. Bhatia, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Cambridge University Press, 1999).

N. Nanba, “Zoom lens and optical apparatus having the same,” U.S. patent application S0133201 (2003), example #6.

SCHOTT catalog, “Optical glass,” 10.000 e 0992 (1992).

R. Mueller, K. Erb, R. Haug, A. Klaas, O. Lindig, and G. Wetzig, “Ultraprecision dilatometer system for thermal expansion measurements on low expansion glasses,” in 12th Thermal Expansion Symposium, Pittsburgh/PA, P. S. Gaal and D. E. Apostolescu, eds. (1997).

A. Miyashita, R. Ogasawara, G. Macaraya, and N. Itoh, “Temperature control for the primari mirror of Subaru telescope using the data from forecast of Mauna Kea observatories,” Publ. Natl. Astron. Obs. Japan 7, 25–31 (2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (25)

Fig. 1
Fig. 1

Number of glass types in the Schott catalogs since the first edition in 1886. Before there were around 20 types available. In 1999 classical glass types dropped to 20, whereas the total amount summed up to 86 including the new lead arsenic free glass types.

Fig. 2
Fig. 2

Abbe diagram of SCHOTT’s glass portfolio. Photos: Schott.

Fig. 3
Fig. 3

Basic chemical design strategy to develop glass in certain optical positions in the Abbe diagram.

Fig. 4
Fig. 4

Abbe diagram, highlighting areas, where material types (crystals glasses, polymers, and liquids) can be found. The red double arrow marks the optical positions of rare earth aluminates, obtained e.g. by laser melting.

Fig. 5
Fig. 5

P g , F vs. n d diagram of SCHOTT optical glasses. The straight line is the so-called normal line.

Fig. 6
Fig. 6

Optical design of a digital camera with 6 lenses (4 of them are aspheres) and an optical filter. After [39].

Fig. 7
Fig. 7

Sketch of the precise pressing process. First step: heating of the glass preform. Second step: pressing of the preform into the desired shape. Third step: cooling.

Fig. 8
Fig. 8

Filter characteristic of SCHOTT’s BG39 absoprtion filter, which can be used as an IR cut filter.

Fig. 9
Fig. 9

Optical design of a LED collimation lens (diameter 5 mm) with an aspherical surface..

Fig. 10
Fig. 10

Micro-optical lens array of aspheres with 1.55 mm diameter lenses manufactured by precise pressing method.

Fig. 11
Fig. 11

An incident Gaussian laser light is shaped into a rectangular shape by a DOE.

Fig. 12
Fig. 12

Measurement results of a glass DOE flat hat beam shaper. A photograph of the flat hat is shown (left) as well as a line cut of the intensity distribution (middle) and a scanning electron microscopy picture of the realized pressed glass structure.

Fig. 13
Fig. 13

Large disk of the lead flint glass type LLF1 diameter 980 mm × 210 mm, weight 0.47 tons (photo: SCHOTT).

Fig. 14
Fig. 14

The URIS automated spectral goniometer (photo: SCHOTT).

Fig. 15
Fig. 15

Change of the refractive index at the helium d-line at 588 nm versus temperature of some different glass types. The refractive index is relative to air, and catalog values are relative to 20 ° C.

Fig. 16
Fig. 16

Homogeneity measurement of a 1 m diameter glass blank using a ZEISS DIRECT 100 interferometer at 500 nm aperture [25].

Fig. 17
Fig. 17

Homogeneity measurement results of a 1 m diameter N-BK7 glass blank [25].

Fig. 18
Fig. 18

Stress birefriengence measurement of a glass blank with 270 nm diameter (measured: 238 mm) and 49 mm thickness. The darl cross comes from the disk support. The color coded scale spans from 0 (dark blue) to 1.5 nm/cm (dark red) [25].

Fig. 19
Fig. 19

Shadowgraph setup for stria inspection. Right: application in practice. The main problem is to calibrate its results in relation to optics design via the wavefront distortion and structural width (photo: SCHOTT) [32].

Fig. 20
Fig. 20

Fourier spectrum of a section through the diffraction pattern of a slit width phase step [26].

Fig. 21
Fig. 21

Reconstruction of the phase height and the slit width from measured data of the contrast and the position of the first minimum of the Fourier spectrum [26].

Fig. 22
Fig. 22

CTE homogeneity results of a single blank from 2008 [34].

Fig. 23
Fig. 23

Frequency distribution of the axial CTE gradient of more than 30 blanks produced in 2008 compared to the results achieved during the Keck and GRANTECAN (GTC) projects [34].

Fig. 24
Fig. 24

Modeling the thermal expansion behavior of two different ZERODUR® samples for a temperature variation of 1 ° C from 2 ° C at 12 hours per night [34].

Fig. 25
Fig. 25

Demonstration lightweight structure with 2 mm rib thickness 190 mm high (left) Etched structure with 0.65 mm rib thickness (right) [38].

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ν d = n d 1 n F n C ,
α D = i α i V .
P g , F = n g n F n F n C ,

Metrics