Abstract

We present a brief historical background and a description of the main features of the eye’s optical properties: the eye is a simple, but rather optimized, optical instrument. It is only since Galileo’s time that the importance of the eye as a part of different optical instruments has driven a continuous scientific exploration of ocular optics. In the past decade, the use of wavefront sensing technology allowed us to complete our understating of eye optics as a robust aplanatic system.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Artal and J. Tabernero, “The eye’s aplanatic answer,” Nat. Photon. 2, 586–589 (2008).
    [CrossRef]
  2. J. Tabernero, A. Benito, E. Alcón, and P. Artal, “Mechanism of compensation of aberrations in the human eye,” J. Opt. Soc. Am. A 24, 3274–3283 (2007).
    [CrossRef]
  3. P. Artal, E. Berrio, A. Guirao, and P. Piers, “Contribution of the cornea and internal surfaces to the change of ocular aberrations with age,” J. Opt. Soc. Am. A 19, 137–143 (2002).
    [CrossRef]
  4. N. J. Wade and S. Finger, “The eye as an optical instrument: from camera obscura to Helmholtz’s perspective,” Perception 30, 1157–1177 (2001).
    [CrossRef] [PubMed]
  5. N. J. Wade, “Image, eye, and retina,” J. Opt. Soc. Am. A 24, 1229–1249 (2007).
    [CrossRef]
  6. Y. Zik, “Galileo and optical aberrations,” Nuncius J. Hist. Science 17, 455–465 (2002).
  7. V. Greco, G. Molesini, and F. Quercioli, “Telescopes of Galileo,” Appl. Opt. 32, 6219–6226 (1993).
    [CrossRef] [PubMed]
  8. A. Van Helden, “Introduction,” in Sidereus Nuncius, Galileo Galilei, translated by A.Van Helden (U. Chicago Press, 1989), pp. 13–14.
  9. T. Young, “On the mechanism of the eye,” Philos. Trans. R. Soc. London 91, 23–88 (1801).
    [CrossRef]
  10. M. Koomen, R. Tousey, and R. Scolnik, “The spherical aberration of the eye,” J. Opt. Soc. Am. 39, 370–376 (1949).
    [CrossRef] [PubMed]
  11. I. Newton, Opticks (1730), 4th ed., Book 1, Part 2, Prop. VIII. (reprinted by Bell, 1931).
  12. T. Young, “An account of some cases of the productions of colors, not hitherto described,” Philos. Trans. R. Soc. London 92, 387–397 (1802).
    [CrossRef]
  13. A. C. S. Van Heel, “Correcting the spherical and chromatic aberrations of the eye,” J. Opt. Soc. Am. 36, 237–239 (1946).
    [CrossRef] [PubMed]
  14. Y. Benny, S. Manzanera, P. M. Prieto, E. N. Ribak, and P. Artal, “Wide-angle chromatic aberration corrector for the human eye,” J. Opt. Soc. Am. A 24, 1538–1544 (2007).
    [CrossRef]
  15. D. Atchison and G. Smith, Optics of the Human Eye (Butterworth-Heinemann, 2000).
  16. J. P. C. Southall, Helmholtz’s Treatise on Physiological Optics (Optical Society of America, 1924), Vol. 1.
  17. Y. Le Grand and S. G. El Hage, Physiological Optics(Springer, 1980).
  18. H. H. Emsley, Visual Optics (Butterworth, 1952).
  19. N. H. L. Ridley, “Intraocular acrylic lenses after cataract extraction,” Lancet 259, 118–129 (1952).
    [CrossRef]
  20. M. S. Smirnov, “Measurement of the wave aberration of the human eye,” Biofizika 6, 776–795 (1961).
    [PubMed]
  21. S. G. El Hage and F. Berny, “Contribution of the crystalline lens to the spherical aberration of the eye,” J. Opt. Soc. Am. 63, 205–211 (1973).
    [CrossRef] [PubMed]
  22. M. Millodot and J. Sivak, “Contribution of the cornea and lens to the spherical aberration of the eye,” Vision Res. 19, 685–687(1979).
    [CrossRef] [PubMed]
  23. A. Tomlinson, R. P. Hememger, and R. Garriott, “Method for estimating the spherical aberration of the human crystalline lens in vivo,” Invest. Ophthalmol. Visual Sci. 34, 621–629(1993).
  24. J. Santamaría, P. Artal, and J. Bescós, “Determination of the point-spread function of the human eye using a hybrid optical–digital method,” J. Opt. Soc. Am. A 4, 1109–1114 (1987).
    [CrossRef] [PubMed]
  25. I. Iglesias, E. Berrio, and P. Artal, “Estimates of the ocular wave aberration from pairs of double-pass retinal images,” J. Opt. Soc. Am. A 15, 2466–2476 (1998).
    [CrossRef]
  26. P. Artal and A. Guirao, “Contribution of corneal and lens to the aberrations of the human eye,” Opt. Lett. 23, 1713–1715(1998).
    [CrossRef]
  27. J. Liang, B. Grimm, S. Goelz, and J. F. Bille, “Objective measurement of the WA’s aberration of the human eye with the use of a Hartmann–Shack sensor,” J. Opt. Soc. Am. A 11, 1949–1957 (1994).
    [CrossRef]
  28. P. M. Prieto, F. Vargas-Martín, S. Goelz, and P. Artal, “Analysis of the performance of the Hartmann–Shack sensor in the human eye,” J. Opt. Soc. Am. A 17, 1388–1398 (2000).
    [CrossRef]
  29. P. Artal, P. A. Guirao, E. Berrio, and D. R. Williams, “Compensation of corneal aberrations by the internal optics in the human eye,” J. Vision 1, 1–8 (2001).
    [CrossRef]
  30. P. Artal, A. Benito, and J. Tabernero, “The human eye is an example of robust optical design,” J. Vision 6, 1–7 (2006).
    [CrossRef]
  31. H. Hofer, P. Artal, B. Singer, J. L. Aragón, and D. R. Williams, “Dynamics of the eye’s wave aberration,” J. Opt. Soc. Am. A 18, 497–506 (2001).
    [CrossRef]
  32. J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14, 2884–2892 (1997).
    [CrossRef]
  33. E. J. Fernández, I. Iglesias, and P. Artal, “Closed-loop adaptive optics in the human eye,” Opt. Lett. 26, 746–748 (2001).
    [CrossRef]
  34. H. Hofer, L. Chen, G. Y. Yoon, B. Singer, Y. Yamauchi, and D. R. Williams, “Improvement in retinal image quality with dynamic correction of the eye’s aberrations,” Opt. Express 8, 631–643 (2001).
    [CrossRef] [PubMed]
  35. W. Lotmar, “Theoretical eye model with aspherics,” J. Opt. Soc. Am. 61, 1522–1529 (1971).
    [CrossRef]
  36. A. C. Kooijman, “Light distribution on the retina of a wide angle theoretical eye,” J. Opt. Soc. Am. 73, 1544–1550 (1983).
    [CrossRef] [PubMed]
  37. R. Navarro, J. Santamaría, and J. Bescós, “Accommodation-dependent model of the human eye with aspherics,” J. Opt. Soc. Am. A 2, 1273–1281 (1985).
    [CrossRef] [PubMed]
  38. M. Dubbelman, G. L. van der Heijde, and H. A. Weeber, “Change in shape of the aging human crystalline lens with accommodation,” Vision Res. 45, 117–132 (2005).
    [CrossRef]
  39. H. L. Liou and N. A. Brennan, “Anatomically accurate, finite model eye for optical modelling,” J. Opt. Soc. Am. A 14, 1684–1695 (1997).
    [CrossRef]
  40. D. Siedlecki, H. Kasprzak, and B. Pierscionek, “Schematic eye with a gradient index lens and aspheric surfaces,” Opt. Lett. 29, 1197–1199 (2004).
    [CrossRef] [PubMed]
  41. A. Goncharov and C. Dainty, “Wide-field schematic eye models with gradient index lens,” J. Opt. Soc. Am. A 24, 2157–2174(2007).
    [CrossRef]
  42. L. N. Thibos, M. Ye, X. Zhang, and A. Bradley, “The chromatic eye: a new reduced-eye model of ocular chromatic aberration in humans,” Appl. Opt. 31, 3594–3660 (1992).
    [CrossRef] [PubMed]
  43. M. Rynders, B. Lidkea, W. Chisholm, and L. N. Thibos, “Statistical distribution of foveal transverse chromatic aberration, pupil centration, and angle Ψ in a population of young adult eyes,” J. Opt. Soc. Am. A 12, 2348–2357 (1995).
    [CrossRef]
  44. S. Marcos, S. A. Burns, E. Moreno-Barriuso, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39, 4309–4323 (1999).
    [CrossRef]
  45. R. B. Rabbetts, Bennett and Rabbetts’ Clinical Visual Optics (Butterworth-Heinemann, 1998).
  46. S. Norrby, “The Dubbelman eye model analysed by ray tracing through aspheric surfaces,” Ophthalmic Physiol. Opt. 25, 153–61 (2005).
    [CrossRef] [PubMed]
  47. J. F. Castejón-Mochón, N. López-Gil, A. Benito, and P. Artal, “Ocular wave-front aberration statistics in a normal young population,” Vision Res. 42, 1611–1617 (2002).
    [CrossRef] [PubMed]
  48. J. Porter, A. Guirao, I. G. Cox, and D. R. Williams, “Monochromatic aberrations of the human eye in a large population,” J. Opt. Soc. Am. A 18, 1793–1803 (2001).
    [CrossRef]
  49. L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” J. Opt. Soc. Am. A 19, 2329–2348 (2002).
    [CrossRef]
  50. J. E. Kelly, T. Mihashi, and H. C. Howland, “Compensation of corneal horizontal/vertical astigmatism, lateral coma, and spherical aberration by internal optics of the eye,” J. Vision 4, 262–271 (2004).
    [CrossRef]
  51. J. Tabernero, A. Benito, V. Nourrit, and P. Artal, “Instrument for measuring the misalignments of ocular surfaces,” Opt. Express 14, 10945–10956 (2006).
    [CrossRef] [PubMed]
  52. L. N. Hazra and C. A. Delisle, “Primary aberrations of a thin lens with different object and image space media,” J. Opt. Soc. Am. A 15, 945–953 (1998).
    [CrossRef]
  53. A. Benito, M. Redondo, and P. Artal, “Laser in situ keratomileusis disrupts the aberration compensation mechanism of the human eye,” Am. J. Ophthalmol. 147, 424–431 (2009).
    [CrossRef]
  54. R. Navarro, M. Ferro, P. Artal, and I. Miranda, “Modulation transfer functions of eyes implanted with intraocular lenses,” Appl. Opt. 32, 6359–6367 (1993).
    [CrossRef] [PubMed]
  55. P. Artal, S. Marcos, R. Navarro, I. Miranda, and M. Ferro, “Through focus image quality of eyes implanted with monofocal and multifocal intraocular lenses,” Opt. Eng. 34, 772–779(1995).
    [CrossRef]
  56. N. E. S. Norrby, “Standardized methods for assessing the imaging quality of intraocular lenses,” Appl. Opt. 34, 7327–7333 (1995).
    [CrossRef] [PubMed]
  57. D. A. Atchison, “Design of aspheric intraocular lenses,” Ophthalmic Physiol. Opt. 11, 137–146 (1991).
    [CrossRef] [PubMed]
  58. A. Guirao, M. Redondo, E. Geraghty, P. Piers, S. Norrby, and P. Artal, “Corneal optical aberrations and retinal image quality in patients in whom monofocal intraocular lenses were implanted,” Arch. Ophthalmol. 120, 1143–1151 (2002).
    [PubMed]
  59. J. T. Holladay, P. A. Piers, G. Koranyi, M. van der Mooren, and N. E. Norrby, “A new intraocular lens design to reduce spherical aberration of pseudophakic eyes,” J. Refract. Surg. 18, 683–691 (2002).
    [PubMed]
  60. J. Tabernero, P. Piers, and P. Artal, “Intraocular lens to correct corneal coma,” Opt. Lett. 32, 406–408 (2007).
    [CrossRef] [PubMed]
  61. E. J. Fernández, S. Manzanera, P. Piers, and P. Artal, “Adaptive optics visual simulator,” J. Refract. Surg. 18, S634–S638 (2002).
    [PubMed]
  62. E. J. Fernández, P. M. Prieto, and P. Artal, “Binocular adaptive optics visual simulator,” Opt. Lett. 34, 2628–2630 (2009).
    [CrossRef] [PubMed]
  63. A. Roorda and D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature 397, 520–522 (1999).
    [CrossRef] [PubMed]
  64. B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, “Adaptive-optics ultrahigh-resolution optical coherence tomography,” Opt. Lett. 29, 2142–2144 (2004).
    [CrossRef] [PubMed]
  65. L. Lundstrom, A. Mira-Agudelo, and P. Artal, “Peripheral optical errors and their change with accommodation differ between emmetropic and myopic eyes,” J. Vision 9, 1–11(2009).
    [CrossRef]

2009

A. Benito, M. Redondo, and P. Artal, “Laser in situ keratomileusis disrupts the aberration compensation mechanism of the human eye,” Am. J. Ophthalmol. 147, 424–431 (2009).
[CrossRef]

E. J. Fernández, P. M. Prieto, and P. Artal, “Binocular adaptive optics visual simulator,” Opt. Lett. 34, 2628–2630 (2009).
[CrossRef] [PubMed]

L. Lundstrom, A. Mira-Agudelo, and P. Artal, “Peripheral optical errors and their change with accommodation differ between emmetropic and myopic eyes,” J. Vision 9, 1–11(2009).
[CrossRef]

2008

P. Artal and J. Tabernero, “The eye’s aplanatic answer,” Nat. Photon. 2, 586–589 (2008).
[CrossRef]

2007

2006

J. Tabernero, A. Benito, V. Nourrit, and P. Artal, “Instrument for measuring the misalignments of ocular surfaces,” Opt. Express 14, 10945–10956 (2006).
[CrossRef] [PubMed]

P. Artal, A. Benito, and J. Tabernero, “The human eye is an example of robust optical design,” J. Vision 6, 1–7 (2006).
[CrossRef]

2005

M. Dubbelman, G. L. van der Heijde, and H. A. Weeber, “Change in shape of the aging human crystalline lens with accommodation,” Vision Res. 45, 117–132 (2005).
[CrossRef]

S. Norrby, “The Dubbelman eye model analysed by ray tracing through aspheric surfaces,” Ophthalmic Physiol. Opt. 25, 153–61 (2005).
[CrossRef] [PubMed]

2004

2002

J. F. Castejón-Mochón, N. López-Gil, A. Benito, and P. Artal, “Ocular wave-front aberration statistics in a normal young population,” Vision Res. 42, 1611–1617 (2002).
[CrossRef] [PubMed]

L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” J. Opt. Soc. Am. A 19, 2329–2348 (2002).
[CrossRef]

E. J. Fernández, S. Manzanera, P. Piers, and P. Artal, “Adaptive optics visual simulator,” J. Refract. Surg. 18, S634–S638 (2002).
[PubMed]

A. Guirao, M. Redondo, E. Geraghty, P. Piers, S. Norrby, and P. Artal, “Corneal optical aberrations and retinal image quality in patients in whom monofocal intraocular lenses were implanted,” Arch. Ophthalmol. 120, 1143–1151 (2002).
[PubMed]

J. T. Holladay, P. A. Piers, G. Koranyi, M. van der Mooren, and N. E. Norrby, “A new intraocular lens design to reduce spherical aberration of pseudophakic eyes,” J. Refract. Surg. 18, 683–691 (2002).
[PubMed]

Y. Zik, “Galileo and optical aberrations,” Nuncius J. Hist. Science 17, 455–465 (2002).

P. Artal, E. Berrio, A. Guirao, and P. Piers, “Contribution of the cornea and internal surfaces to the change of ocular aberrations with age,” J. Opt. Soc. Am. A 19, 137–143 (2002).
[CrossRef]

2001

2000

1999

S. Marcos, S. A. Burns, E. Moreno-Barriuso, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39, 4309–4323 (1999).
[CrossRef]

A. Roorda and D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature 397, 520–522 (1999).
[CrossRef] [PubMed]

1998

1997

1995

1994

1993

1992

1991

D. A. Atchison, “Design of aspheric intraocular lenses,” Ophthalmic Physiol. Opt. 11, 137–146 (1991).
[CrossRef] [PubMed]

1987

1985

1983

1979

M. Millodot and J. Sivak, “Contribution of the cornea and lens to the spherical aberration of the eye,” Vision Res. 19, 685–687(1979).
[CrossRef] [PubMed]

1973

1971

1961

M. S. Smirnov, “Measurement of the wave aberration of the human eye,” Biofizika 6, 776–795 (1961).
[PubMed]

1952

N. H. L. Ridley, “Intraocular acrylic lenses after cataract extraction,” Lancet 259, 118–129 (1952).
[CrossRef]

1949

1946

1802

T. Young, “An account of some cases of the productions of colors, not hitherto described,” Philos. Trans. R. Soc. London 92, 387–397 (1802).
[CrossRef]

1801

T. Young, “On the mechanism of the eye,” Philos. Trans. R. Soc. London 91, 23–88 (1801).
[CrossRef]

Alcón, E.

Aragón, J. L.

Artal, P.

A. Benito, M. Redondo, and P. Artal, “Laser in situ keratomileusis disrupts the aberration compensation mechanism of the human eye,” Am. J. Ophthalmol. 147, 424–431 (2009).
[CrossRef]

E. J. Fernández, P. M. Prieto, and P. Artal, “Binocular adaptive optics visual simulator,” Opt. Lett. 34, 2628–2630 (2009).
[CrossRef] [PubMed]

L. Lundstrom, A. Mira-Agudelo, and P. Artal, “Peripheral optical errors and their change with accommodation differ between emmetropic and myopic eyes,” J. Vision 9, 1–11(2009).
[CrossRef]

P. Artal and J. Tabernero, “The eye’s aplanatic answer,” Nat. Photon. 2, 586–589 (2008).
[CrossRef]

J. Tabernero, P. Piers, and P. Artal, “Intraocular lens to correct corneal coma,” Opt. Lett. 32, 406–408 (2007).
[CrossRef] [PubMed]

Y. Benny, S. Manzanera, P. M. Prieto, E. N. Ribak, and P. Artal, “Wide-angle chromatic aberration corrector for the human eye,” J. Opt. Soc. Am. A 24, 1538–1544 (2007).
[CrossRef]

J. Tabernero, A. Benito, E. Alcón, and P. Artal, “Mechanism of compensation of aberrations in the human eye,” J. Opt. Soc. Am. A 24, 3274–3283 (2007).
[CrossRef]

J. Tabernero, A. Benito, V. Nourrit, and P. Artal, “Instrument for measuring the misalignments of ocular surfaces,” Opt. Express 14, 10945–10956 (2006).
[CrossRef] [PubMed]

P. Artal, A. Benito, and J. Tabernero, “The human eye is an example of robust optical design,” J. Vision 6, 1–7 (2006).
[CrossRef]

B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, “Adaptive-optics ultrahigh-resolution optical coherence tomography,” Opt. Lett. 29, 2142–2144 (2004).
[CrossRef] [PubMed]

P. Artal, E. Berrio, A. Guirao, and P. Piers, “Contribution of the cornea and internal surfaces to the change of ocular aberrations with age,” J. Opt. Soc. Am. A 19, 137–143 (2002).
[CrossRef]

E. J. Fernández, S. Manzanera, P. Piers, and P. Artal, “Adaptive optics visual simulator,” J. Refract. Surg. 18, S634–S638 (2002).
[PubMed]

J. F. Castejón-Mochón, N. López-Gil, A. Benito, and P. Artal, “Ocular wave-front aberration statistics in a normal young population,” Vision Res. 42, 1611–1617 (2002).
[CrossRef] [PubMed]

A. Guirao, M. Redondo, E. Geraghty, P. Piers, S. Norrby, and P. Artal, “Corneal optical aberrations and retinal image quality in patients in whom monofocal intraocular lenses were implanted,” Arch. Ophthalmol. 120, 1143–1151 (2002).
[PubMed]

E. J. Fernández, I. Iglesias, and P. Artal, “Closed-loop adaptive optics in the human eye,” Opt. Lett. 26, 746–748 (2001).
[CrossRef]

P. Artal, P. A. Guirao, E. Berrio, and D. R. Williams, “Compensation of corneal aberrations by the internal optics in the human eye,” J. Vision 1, 1–8 (2001).
[CrossRef]

H. Hofer, P. Artal, B. Singer, J. L. Aragón, and D. R. Williams, “Dynamics of the eye’s wave aberration,” J. Opt. Soc. Am. A 18, 497–506 (2001).
[CrossRef]

P. M. Prieto, F. Vargas-Martín, S. Goelz, and P. Artal, “Analysis of the performance of the Hartmann–Shack sensor in the human eye,” J. Opt. Soc. Am. A 17, 1388–1398 (2000).
[CrossRef]

I. Iglesias, E. Berrio, and P. Artal, “Estimates of the ocular wave aberration from pairs of double-pass retinal images,” J. Opt. Soc. Am. A 15, 2466–2476 (1998).
[CrossRef]

P. Artal and A. Guirao, “Contribution of corneal and lens to the aberrations of the human eye,” Opt. Lett. 23, 1713–1715(1998).
[CrossRef]

P. Artal, S. Marcos, R. Navarro, I. Miranda, and M. Ferro, “Through focus image quality of eyes implanted with monofocal and multifocal intraocular lenses,” Opt. Eng. 34, 772–779(1995).
[CrossRef]

R. Navarro, M. Ferro, P. Artal, and I. Miranda, “Modulation transfer functions of eyes implanted with intraocular lenses,” Appl. Opt. 32, 6359–6367 (1993).
[CrossRef] [PubMed]

J. Santamaría, P. Artal, and J. Bescós, “Determination of the point-spread function of the human eye using a hybrid optical–digital method,” J. Opt. Soc. Am. A 4, 1109–1114 (1987).
[CrossRef] [PubMed]

Atchison, D.

D. Atchison and G. Smith, Optics of the Human Eye (Butterworth-Heinemann, 2000).

Atchison, D. A.

D. A. Atchison, “Design of aspheric intraocular lenses,” Ophthalmic Physiol. Opt. 11, 137–146 (1991).
[CrossRef] [PubMed]

Benito, A.

A. Benito, M. Redondo, and P. Artal, “Laser in situ keratomileusis disrupts the aberration compensation mechanism of the human eye,” Am. J. Ophthalmol. 147, 424–431 (2009).
[CrossRef]

J. Tabernero, A. Benito, E. Alcón, and P. Artal, “Mechanism of compensation of aberrations in the human eye,” J. Opt. Soc. Am. A 24, 3274–3283 (2007).
[CrossRef]

P. Artal, A. Benito, and J. Tabernero, “The human eye is an example of robust optical design,” J. Vision 6, 1–7 (2006).
[CrossRef]

J. Tabernero, A. Benito, V. Nourrit, and P. Artal, “Instrument for measuring the misalignments of ocular surfaces,” Opt. Express 14, 10945–10956 (2006).
[CrossRef] [PubMed]

J. F. Castejón-Mochón, N. López-Gil, A. Benito, and P. Artal, “Ocular wave-front aberration statistics in a normal young population,” Vision Res. 42, 1611–1617 (2002).
[CrossRef] [PubMed]

Benny, Y.

Berny, F.

Berrio, E.

Bescós, J.

Bille, J. F.

Bradley, A.

Brennan, N. A.

Burns, S. A.

S. Marcos, S. A. Burns, E. Moreno-Barriuso, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39, 4309–4323 (1999).
[CrossRef]

Castejón-Mochón, J. F.

J. F. Castejón-Mochón, N. López-Gil, A. Benito, and P. Artal, “Ocular wave-front aberration statistics in a normal young population,” Vision Res. 42, 1611–1617 (2002).
[CrossRef] [PubMed]

Chen, L.

Cheng, X.

Chisholm, W.

Cox, I. G.

Dainty, C.

Delisle, C. A.

Drexler, W.

Dubbelman, M.

M. Dubbelman, G. L. van der Heijde, and H. A. Weeber, “Change in shape of the aging human crystalline lens with accommodation,” Vision Res. 45, 117–132 (2005).
[CrossRef]

El Hage, S. G.

Emsley, H. H.

H. H. Emsley, Visual Optics (Butterworth, 1952).

Fercher, A. F.

Fernández, E. J.

Ferro, M.

P. Artal, S. Marcos, R. Navarro, I. Miranda, and M. Ferro, “Through focus image quality of eyes implanted with monofocal and multifocal intraocular lenses,” Opt. Eng. 34, 772–779(1995).
[CrossRef]

R. Navarro, M. Ferro, P. Artal, and I. Miranda, “Modulation transfer functions of eyes implanted with intraocular lenses,” Appl. Opt. 32, 6359–6367 (1993).
[CrossRef] [PubMed]

Finger, S.

N. J. Wade and S. Finger, “The eye as an optical instrument: from camera obscura to Helmholtz’s perspective,” Perception 30, 1157–1177 (2001).
[CrossRef] [PubMed]

Garriott, R.

A. Tomlinson, R. P. Hememger, and R. Garriott, “Method for estimating the spherical aberration of the human crystalline lens in vivo,” Invest. Ophthalmol. Visual Sci. 34, 621–629(1993).

Geraghty, E.

A. Guirao, M. Redondo, E. Geraghty, P. Piers, S. Norrby, and P. Artal, “Corneal optical aberrations and retinal image quality in patients in whom monofocal intraocular lenses were implanted,” Arch. Ophthalmol. 120, 1143–1151 (2002).
[PubMed]

Goelz, S.

Goncharov, A.

Greco, V.

Grimm, B.

Guirao, A.

Guirao, P. A.

P. Artal, P. A. Guirao, E. Berrio, and D. R. Williams, “Compensation of corneal aberrations by the internal optics in the human eye,” J. Vision 1, 1–8 (2001).
[CrossRef]

Hazra, L. N.

Hememger, R. P.

A. Tomlinson, R. P. Hememger, and R. Garriott, “Method for estimating the spherical aberration of the human crystalline lens in vivo,” Invest. Ophthalmol. Visual Sci. 34, 621–629(1993).

Hermann, B.

Hofer, H.

Holladay, J. T.

J. T. Holladay, P. A. Piers, G. Koranyi, M. van der Mooren, and N. E. Norrby, “A new intraocular lens design to reduce spherical aberration of pseudophakic eyes,” J. Refract. Surg. 18, 683–691 (2002).
[PubMed]

Hong, X.

Howland, H. C.

J. E. Kelly, T. Mihashi, and H. C. Howland, “Compensation of corneal horizontal/vertical astigmatism, lateral coma, and spherical aberration by internal optics of the eye,” J. Vision 4, 262–271 (2004).
[CrossRef]

Iglesias, I.

Kasprzak, H.

Kelly, J. E.

J. E. Kelly, T. Mihashi, and H. C. Howland, “Compensation of corneal horizontal/vertical astigmatism, lateral coma, and spherical aberration by internal optics of the eye,” J. Vision 4, 262–271 (2004).
[CrossRef]

Kooijman, A. C.

Koomen, M.

Koranyi, G.

J. T. Holladay, P. A. Piers, G. Koranyi, M. van der Mooren, and N. E. Norrby, “A new intraocular lens design to reduce spherical aberration of pseudophakic eyes,” J. Refract. Surg. 18, 683–691 (2002).
[PubMed]

Le Grand, Y.

Y. Le Grand and S. G. El Hage, Physiological Optics(Springer, 1980).

Liang, J.

Lidkea, B.

Liou, H. L.

López-Gil, N.

J. F. Castejón-Mochón, N. López-Gil, A. Benito, and P. Artal, “Ocular wave-front aberration statistics in a normal young population,” Vision Res. 42, 1611–1617 (2002).
[CrossRef] [PubMed]

Lotmar, W.

Lundstrom, L.

L. Lundstrom, A. Mira-Agudelo, and P. Artal, “Peripheral optical errors and their change with accommodation differ between emmetropic and myopic eyes,” J. Vision 9, 1–11(2009).
[CrossRef]

Manzanera, S.

Y. Benny, S. Manzanera, P. M. Prieto, E. N. Ribak, and P. Artal, “Wide-angle chromatic aberration corrector for the human eye,” J. Opt. Soc. Am. A 24, 1538–1544 (2007).
[CrossRef]

E. J. Fernández, S. Manzanera, P. Piers, and P. Artal, “Adaptive optics visual simulator,” J. Refract. Surg. 18, S634–S638 (2002).
[PubMed]

Marcos, S.

S. Marcos, S. A. Burns, E. Moreno-Barriuso, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39, 4309–4323 (1999).
[CrossRef]

P. Artal, S. Marcos, R. Navarro, I. Miranda, and M. Ferro, “Through focus image quality of eyes implanted with monofocal and multifocal intraocular lenses,” Opt. Eng. 34, 772–779(1995).
[CrossRef]

Mihashi, T.

J. E. Kelly, T. Mihashi, and H. C. Howland, “Compensation of corneal horizontal/vertical astigmatism, lateral coma, and spherical aberration by internal optics of the eye,” J. Vision 4, 262–271 (2004).
[CrossRef]

Miller, D. T.

Millodot, M.

M. Millodot and J. Sivak, “Contribution of the cornea and lens to the spherical aberration of the eye,” Vision Res. 19, 685–687(1979).
[CrossRef] [PubMed]

Mira-Agudelo, A.

L. Lundstrom, A. Mira-Agudelo, and P. Artal, “Peripheral optical errors and their change with accommodation differ between emmetropic and myopic eyes,” J. Vision 9, 1–11(2009).
[CrossRef]

Miranda, I.

P. Artal, S. Marcos, R. Navarro, I. Miranda, and M. Ferro, “Through focus image quality of eyes implanted with monofocal and multifocal intraocular lenses,” Opt. Eng. 34, 772–779(1995).
[CrossRef]

R. Navarro, M. Ferro, P. Artal, and I. Miranda, “Modulation transfer functions of eyes implanted with intraocular lenses,” Appl. Opt. 32, 6359–6367 (1993).
[CrossRef] [PubMed]

Molesini, G.

Moreno-Barriuso, E.

S. Marcos, S. A. Burns, E. Moreno-Barriuso, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39, 4309–4323 (1999).
[CrossRef]

Navarro, R.

S. Marcos, S. A. Burns, E. Moreno-Barriuso, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39, 4309–4323 (1999).
[CrossRef]

P. Artal, S. Marcos, R. Navarro, I. Miranda, and M. Ferro, “Through focus image quality of eyes implanted with monofocal and multifocal intraocular lenses,” Opt. Eng. 34, 772–779(1995).
[CrossRef]

R. Navarro, M. Ferro, P. Artal, and I. Miranda, “Modulation transfer functions of eyes implanted with intraocular lenses,” Appl. Opt. 32, 6359–6367 (1993).
[CrossRef] [PubMed]

R. Navarro, J. Santamaría, and J. Bescós, “Accommodation-dependent model of the human eye with aspherics,” J. Opt. Soc. Am. A 2, 1273–1281 (1985).
[CrossRef] [PubMed]

Newton, I.

I. Newton, Opticks (1730), 4th ed., Book 1, Part 2, Prop. VIII. (reprinted by Bell, 1931).

Norrby, N. E.

J. T. Holladay, P. A. Piers, G. Koranyi, M. van der Mooren, and N. E. Norrby, “A new intraocular lens design to reduce spherical aberration of pseudophakic eyes,” J. Refract. Surg. 18, 683–691 (2002).
[PubMed]

Norrby, N. E. S.

Norrby, S.

S. Norrby, “The Dubbelman eye model analysed by ray tracing through aspheric surfaces,” Ophthalmic Physiol. Opt. 25, 153–61 (2005).
[CrossRef] [PubMed]

A. Guirao, M. Redondo, E. Geraghty, P. Piers, S. Norrby, and P. Artal, “Corneal optical aberrations and retinal image quality in patients in whom monofocal intraocular lenses were implanted,” Arch. Ophthalmol. 120, 1143–1151 (2002).
[PubMed]

Nourrit, V.

Piers, P.

J. Tabernero, P. Piers, and P. Artal, “Intraocular lens to correct corneal coma,” Opt. Lett. 32, 406–408 (2007).
[CrossRef] [PubMed]

P. Artal, E. Berrio, A. Guirao, and P. Piers, “Contribution of the cornea and internal surfaces to the change of ocular aberrations with age,” J. Opt. Soc. Am. A 19, 137–143 (2002).
[CrossRef]

E. J. Fernández, S. Manzanera, P. Piers, and P. Artal, “Adaptive optics visual simulator,” J. Refract. Surg. 18, S634–S638 (2002).
[PubMed]

A. Guirao, M. Redondo, E. Geraghty, P. Piers, S. Norrby, and P. Artal, “Corneal optical aberrations and retinal image quality in patients in whom monofocal intraocular lenses were implanted,” Arch. Ophthalmol. 120, 1143–1151 (2002).
[PubMed]

Piers, P. A.

J. T. Holladay, P. A. Piers, G. Koranyi, M. van der Mooren, and N. E. Norrby, “A new intraocular lens design to reduce spherical aberration of pseudophakic eyes,” J. Refract. Surg. 18, 683–691 (2002).
[PubMed]

Pierscionek, B.

Porter, J.

Prieto, P. M.

Quercioli, F.

Rabbetts, R. B.

R. B. Rabbetts, Bennett and Rabbetts’ Clinical Visual Optics (Butterworth-Heinemann, 1998).

Redondo, M.

A. Benito, M. Redondo, and P. Artal, “Laser in situ keratomileusis disrupts the aberration compensation mechanism of the human eye,” Am. J. Ophthalmol. 147, 424–431 (2009).
[CrossRef]

A. Guirao, M. Redondo, E. Geraghty, P. Piers, S. Norrby, and P. Artal, “Corneal optical aberrations and retinal image quality in patients in whom monofocal intraocular lenses were implanted,” Arch. Ophthalmol. 120, 1143–1151 (2002).
[PubMed]

Ribak, E. N.

Ridley, N. H. L.

N. H. L. Ridley, “Intraocular acrylic lenses after cataract extraction,” Lancet 259, 118–129 (1952).
[CrossRef]

Roorda, A.

A. Roorda and D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature 397, 520–522 (1999).
[CrossRef] [PubMed]

Rynders, M.

Santamaría, J.

Sattmann, H.

Scolnik, R.

Siedlecki, D.

Singer, B.

Sivak, J.

M. Millodot and J. Sivak, “Contribution of the cornea and lens to the spherical aberration of the eye,” Vision Res. 19, 685–687(1979).
[CrossRef] [PubMed]

Smirnov, M. S.

M. S. Smirnov, “Measurement of the wave aberration of the human eye,” Biofizika 6, 776–795 (1961).
[PubMed]

Smith, G.

D. Atchison and G. Smith, Optics of the Human Eye (Butterworth-Heinemann, 2000).

Southall, J. P. C.

J. P. C. Southall, Helmholtz’s Treatise on Physiological Optics (Optical Society of America, 1924), Vol. 1.

Tabernero, J.

Thibos, L. N.

Tomlinson, A.

A. Tomlinson, R. P. Hememger, and R. Garriott, “Method for estimating the spherical aberration of the human crystalline lens in vivo,” Invest. Ophthalmol. Visual Sci. 34, 621–629(1993).

Tousey, R.

Unterhuber, A.

van der Heijde, G. L.

M. Dubbelman, G. L. van der Heijde, and H. A. Weeber, “Change in shape of the aging human crystalline lens with accommodation,” Vision Res. 45, 117–132 (2005).
[CrossRef]

van der Mooren, M.

J. T. Holladay, P. A. Piers, G. Koranyi, M. van der Mooren, and N. E. Norrby, “A new intraocular lens design to reduce spherical aberration of pseudophakic eyes,” J. Refract. Surg. 18, 683–691 (2002).
[PubMed]

Van Heel, A. C. S.

Van Helden, A.

A. Van Helden, “Introduction,” in Sidereus Nuncius, Galileo Galilei, translated by A.Van Helden (U. Chicago Press, 1989), pp. 13–14.

Vargas-Martín, F.

Wade, N. J.

N. J. Wade, “Image, eye, and retina,” J. Opt. Soc. Am. A 24, 1229–1249 (2007).
[CrossRef]

N. J. Wade and S. Finger, “The eye as an optical instrument: from camera obscura to Helmholtz’s perspective,” Perception 30, 1157–1177 (2001).
[CrossRef] [PubMed]

Weeber, H. A.

M. Dubbelman, G. L. van der Heijde, and H. A. Weeber, “Change in shape of the aging human crystalline lens with accommodation,” Vision Res. 45, 117–132 (2005).
[CrossRef]

Williams, D. R.

Yamauchi, Y.

Ye, M.

Yoon, G. Y.

Young, T.

T. Young, “An account of some cases of the productions of colors, not hitherto described,” Philos. Trans. R. Soc. London 92, 387–397 (1802).
[CrossRef]

T. Young, “On the mechanism of the eye,” Philos. Trans. R. Soc. London 91, 23–88 (1801).
[CrossRef]

Zhang, X.

Zik, Y.

Y. Zik, “Galileo and optical aberrations,” Nuncius J. Hist. Science 17, 455–465 (2002).

Am. J. Ophthalmol.

A. Benito, M. Redondo, and P. Artal, “Laser in situ keratomileusis disrupts the aberration compensation mechanism of the human eye,” Am. J. Ophthalmol. 147, 424–431 (2009).
[CrossRef]

Appl. Opt.

Arch. Ophthalmol.

A. Guirao, M. Redondo, E. Geraghty, P. Piers, S. Norrby, and P. Artal, “Corneal optical aberrations and retinal image quality in patients in whom monofocal intraocular lenses were implanted,” Arch. Ophthalmol. 120, 1143–1151 (2002).
[PubMed]

Biofizika

M. S. Smirnov, “Measurement of the wave aberration of the human eye,” Biofizika 6, 776–795 (1961).
[PubMed]

Invest. Ophthalmol. Visual Sci.

A. Tomlinson, R. P. Hememger, and R. Garriott, “Method for estimating the spherical aberration of the human crystalline lens in vivo,” Invest. Ophthalmol. Visual Sci. 34, 621–629(1993).

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

J. Porter, A. Guirao, I. G. Cox, and D. R. Williams, “Monochromatic aberrations of the human eye in a large population,” J. Opt. Soc. Am. A 18, 1793–1803 (2001).
[CrossRef]

P. Artal, E. Berrio, A. Guirao, and P. Piers, “Contribution of the cornea and internal surfaces to the change of ocular aberrations with age,” J. Opt. Soc. Am. A 19, 137–143 (2002).
[CrossRef]

L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” J. Opt. Soc. Am. A 19, 2329–2348 (2002).
[CrossRef]

J. Liang, B. Grimm, S. Goelz, and J. F. Bille, “Objective measurement of the WA’s aberration of the human eye with the use of a Hartmann–Shack sensor,” J. Opt. Soc. Am. A 11, 1949–1957 (1994).
[CrossRef]

L. N. Hazra and C. A. Delisle, “Primary aberrations of a thin lens with different object and image space media,” J. Opt. Soc. Am. A 15, 945–953 (1998).
[CrossRef]

I. Iglesias, E. Berrio, and P. Artal, “Estimates of the ocular wave aberration from pairs of double-pass retinal images,” J. Opt. Soc. Am. A 15, 2466–2476 (1998).
[CrossRef]

H. L. Liou and N. A. Brennan, “Anatomically accurate, finite model eye for optical modelling,” J. Opt. Soc. Am. A 14, 1684–1695 (1997).
[CrossRef]

J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14, 2884–2892 (1997).
[CrossRef]

M. Rynders, B. Lidkea, W. Chisholm, and L. N. Thibos, “Statistical distribution of foveal transverse chromatic aberration, pupil centration, and angle Ψ in a population of young adult eyes,” J. Opt. Soc. Am. A 12, 2348–2357 (1995).
[CrossRef]

H. Hofer, P. Artal, B. Singer, J. L. Aragón, and D. R. Williams, “Dynamics of the eye’s wave aberration,” J. Opt. Soc. Am. A 18, 497–506 (2001).
[CrossRef]

N. J. Wade, “Image, eye, and retina,” J. Opt. Soc. Am. A 24, 1229–1249 (2007).
[CrossRef]

Y. Benny, S. Manzanera, P. M. Prieto, E. N. Ribak, and P. Artal, “Wide-angle chromatic aberration corrector for the human eye,” J. Opt. Soc. Am. A 24, 1538–1544 (2007).
[CrossRef]

A. Goncharov and C. Dainty, “Wide-field schematic eye models with gradient index lens,” J. Opt. Soc. Am. A 24, 2157–2174(2007).
[CrossRef]

J. Tabernero, A. Benito, E. Alcón, and P. Artal, “Mechanism of compensation of aberrations in the human eye,” J. Opt. Soc. Am. A 24, 3274–3283 (2007).
[CrossRef]

R. Navarro, J. Santamaría, and J. Bescós, “Accommodation-dependent model of the human eye with aspherics,” J. Opt. Soc. Am. A 2, 1273–1281 (1985).
[CrossRef] [PubMed]

J. Santamaría, P. Artal, and J. Bescós, “Determination of the point-spread function of the human eye using a hybrid optical–digital method,” J. Opt. Soc. Am. A 4, 1109–1114 (1987).
[CrossRef] [PubMed]

P. M. Prieto, F. Vargas-Martín, S. Goelz, and P. Artal, “Analysis of the performance of the Hartmann–Shack sensor in the human eye,” J. Opt. Soc. Am. A 17, 1388–1398 (2000).
[CrossRef]

J. Refract. Surg.

J. T. Holladay, P. A. Piers, G. Koranyi, M. van der Mooren, and N. E. Norrby, “A new intraocular lens design to reduce spherical aberration of pseudophakic eyes,” J. Refract. Surg. 18, 683–691 (2002).
[PubMed]

E. J. Fernández, S. Manzanera, P. Piers, and P. Artal, “Adaptive optics visual simulator,” J. Refract. Surg. 18, S634–S638 (2002).
[PubMed]

J. Vision

L. Lundstrom, A. Mira-Agudelo, and P. Artal, “Peripheral optical errors and their change with accommodation differ between emmetropic and myopic eyes,” J. Vision 9, 1–11(2009).
[CrossRef]

J. E. Kelly, T. Mihashi, and H. C. Howland, “Compensation of corneal horizontal/vertical astigmatism, lateral coma, and spherical aberration by internal optics of the eye,” J. Vision 4, 262–271 (2004).
[CrossRef]

P. Artal, P. A. Guirao, E. Berrio, and D. R. Williams, “Compensation of corneal aberrations by the internal optics in the human eye,” J. Vision 1, 1–8 (2001).
[CrossRef]

P. Artal, A. Benito, and J. Tabernero, “The human eye is an example of robust optical design,” J. Vision 6, 1–7 (2006).
[CrossRef]

Lancet

N. H. L. Ridley, “Intraocular acrylic lenses after cataract extraction,” Lancet 259, 118–129 (1952).
[CrossRef]

Nat. Photon.

P. Artal and J. Tabernero, “The eye’s aplanatic answer,” Nat. Photon. 2, 586–589 (2008).
[CrossRef]

Nature

A. Roorda and D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature 397, 520–522 (1999).
[CrossRef] [PubMed]

Nuncius J. Hist. Science

Y. Zik, “Galileo and optical aberrations,” Nuncius J. Hist. Science 17, 455–465 (2002).

Ophthalmic Physiol. Opt.

S. Norrby, “The Dubbelman eye model analysed by ray tracing through aspheric surfaces,” Ophthalmic Physiol. Opt. 25, 153–61 (2005).
[CrossRef] [PubMed]

D. A. Atchison, “Design of aspheric intraocular lenses,” Ophthalmic Physiol. Opt. 11, 137–146 (1991).
[CrossRef] [PubMed]

Opt. Eng.

P. Artal, S. Marcos, R. Navarro, I. Miranda, and M. Ferro, “Through focus image quality of eyes implanted with monofocal and multifocal intraocular lenses,” Opt. Eng. 34, 772–779(1995).
[CrossRef]

Opt. Express

Opt. Lett.

Perception

N. J. Wade and S. Finger, “The eye as an optical instrument: from camera obscura to Helmholtz’s perspective,” Perception 30, 1157–1177 (2001).
[CrossRef] [PubMed]

Philos. Trans. R. Soc. London

T. Young, “An account of some cases of the productions of colors, not hitherto described,” Philos. Trans. R. Soc. London 92, 387–397 (1802).
[CrossRef]

T. Young, “On the mechanism of the eye,” Philos. Trans. R. Soc. London 91, 23–88 (1801).
[CrossRef]

Vision Res.

M. Millodot and J. Sivak, “Contribution of the cornea and lens to the spherical aberration of the eye,” Vision Res. 19, 685–687(1979).
[CrossRef] [PubMed]

M. Dubbelman, G. L. van der Heijde, and H. A. Weeber, “Change in shape of the aging human crystalline lens with accommodation,” Vision Res. 45, 117–132 (2005).
[CrossRef]

S. Marcos, S. A. Burns, E. Moreno-Barriuso, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39, 4309–4323 (1999).
[CrossRef]

J. F. Castejón-Mochón, N. López-Gil, A. Benito, and P. Artal, “Ocular wave-front aberration statistics in a normal young population,” Vision Res. 42, 1611–1617 (2002).
[CrossRef] [PubMed]

Other

R. B. Rabbetts, Bennett and Rabbetts’ Clinical Visual Optics (Butterworth-Heinemann, 1998).

I. Newton, Opticks (1730), 4th ed., Book 1, Part 2, Prop. VIII. (reprinted by Bell, 1931).

D. Atchison and G. Smith, Optics of the Human Eye (Butterworth-Heinemann, 2000).

J. P. C. Southall, Helmholtz’s Treatise on Physiological Optics (Optical Society of America, 1924), Vol. 1.

Y. Le Grand and S. G. El Hage, Physiological Optics(Springer, 1980).

H. H. Emsley, Visual Optics (Butterworth, 1952).

A. Van Helden, “Introduction,” in Sidereus Nuncius, Galileo Galilei, translated by A.Van Helden (U. Chicago Press, 1989), pp. 13–14.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic example of a human eye model compared with an artificial optical objective.

Fig. 2
Fig. 2

(a) Values of lens decentration and (b) angle kappa in a group of normal subjects.

Fig. 3
Fig. 3

(a) Spherical aberration, (b) vertical coma, and (c) horizontal coma as a function of the refractive error in a group of normal young subjects. (d) Horizontal component of coma as a function of angle kappa. Circles represent the values for the cornea (measured from corneal topography) and the corresponding values for the total eye (measured using a Hartmann–Shack wavefront sensor). The internal aberrations (triangles) were obtained as the direct subtraction of corneal values to total values.

Fig. 4
Fig. 4

Examples of eye models and their associated point-spread functions; see text for additional details.

Metrics