Abstract

We characterize and compare the effects of turbulence on underwater laser propagation with theory. Measurements of the coupling efficiency of the focused beam into a single-mode fiber are reported. A simple tip-tilt control system, based on the position of the image centroid in the focal plane, was shown to maintain good coupling efficiency for a beam radius equal to the transverse coherence length, r0. These results are relevant to high bandwidth communication technology that requires good spatial mode quality.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Lacovara, “High-bandwidth underwater communications,” Marine Technol. Soc. J. 42, 93–102 (2008).
    [CrossRef]
  2. N. Farr, A. D. Chave, L. Freitag, J. Preisig, S. N. White, D. Yoerger, and F. Sonnichsen, “Optical modem technology for seafloor observatories,” in Proceedings of IEEE Oceans (IEEE, 2006), pp. 1–6.
  3. S. Karp, R. M. Gagliardi, S. E. Moran, and L. B. Stotts, Optical Channels (Plenum, 1988).
  4. F. Hanson and S. Radic, “High bandwidth underwater optical communication,” Appl. Opt. 47, 277–283 (2008).
    [CrossRef]
  5. G. Langrock, E. Diamanti, R. V. Rousseuv, Y. Yamamoto, and M. M. Fejer, “Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides,” Opt. Lett. 30, 1725–1727 (2005).
    [CrossRef]
  6. R. Jiang, R. E. Saperstein, N. Alic, M. Nezhad, C. J. McKinstrie, J. E. Ford, Y. Fainman, and S. Radic, “Continuous-wave band translation between the near-infrared and visible spectral ranges,” J. Lightwave Technol. 25, 58–66 (2007).
    [CrossRef]
  7. I. Thormahlen, J. Straub, and U. Grigull, “Refractive index of water and its dependence on wavelength, temperature, and density,” J. Phys. Chem. Ref. Data 14, 933–945 (1985).
    [CrossRef]
  8. J. C. Owens, “Optical refractive index of air: dependence on pressure, temperature and composition,” Appl. Opt. 6, 51–59(1967).
    [CrossRef]
  9. N. Swanson, “Coherence loss of laser light propagated through simulated coastal waters,” Proc. SPIE 1750, 397–406(1992).
    [CrossRef]
  10. K. Arora and E. O. Sheybani, “Measurement of the temporal coherence of an underwater optical scattered field,” Microwave Opt. Technol. Lett. 6, 151–154 (1993).
    [CrossRef]
  11. A. Perennou, J. Cariou, and J. Lotrian, “Two interferometric evaluations of the spatial coherence of a laser beam scattered by turbid water,” Pure Appl. Opt. 4, 617–628 (1995).
    [CrossRef]
  12. M. L. Holohan and J. C. Dainty, “Low-order adaptive optics: a possible use in underwater imaging?,” Opt. Laser Technol. 29, 51–55 (1997).
    [CrossRef]
  13. H. T. Yura and S. G. Hanson, “Optical beam wave propagation through complex optical systems,” J. Opt. Soc. Am. A 4, 1931–1948 (1987).
    [CrossRef]
  14. R. J. Hill, “Models of the scalar spectrum for turbulent advection,” J. Fluid Mech. 88, 541–562 (1978).
    [CrossRef]
  15. R. J. Hill, “Optical propagation in turbulent water,” J. Opt. Soc. Am. 68, 1067–1072 (1978).
    [CrossRef]
  16. V. V. Nikishov and V. I. Nikishov, “Spectrum of turbulent fluctuations of the sea-water refractive index,” Int. J. Fluid Mech. Res. 27, 82–98 (2000).
  17. L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media (SPIE, 1998).
  18. J. S. Xiang, Z. Yao, and Y. Hu, “Tracking algorithms for coupling space light distorted by turbulence in single mode fiber,” High Power Laser Part. Beams 18, 1460–1464 (2006).
  19. W. Lu, L. Lu, and J. Sun, “Influence of temperature and salinity fluctuations on propagation of partially coherent beams in oceanic turbulence,” J. Opt. A: Pure Appl. Opt. 8, 1052–1058(2006).
    [CrossRef]

2008 (2)

P. Lacovara, “High-bandwidth underwater communications,” Marine Technol. Soc. J. 42, 93–102 (2008).
[CrossRef]

F. Hanson and S. Radic, “High bandwidth underwater optical communication,” Appl. Opt. 47, 277–283 (2008).
[CrossRef]

2007 (1)

2006 (2)

J. S. Xiang, Z. Yao, and Y. Hu, “Tracking algorithms for coupling space light distorted by turbulence in single mode fiber,” High Power Laser Part. Beams 18, 1460–1464 (2006).

W. Lu, L. Lu, and J. Sun, “Influence of temperature and salinity fluctuations on propagation of partially coherent beams in oceanic turbulence,” J. Opt. A: Pure Appl. Opt. 8, 1052–1058(2006).
[CrossRef]

2005 (1)

2000 (1)

V. V. Nikishov and V. I. Nikishov, “Spectrum of turbulent fluctuations of the sea-water refractive index,” Int. J. Fluid Mech. Res. 27, 82–98 (2000).

1997 (1)

M. L. Holohan and J. C. Dainty, “Low-order adaptive optics: a possible use in underwater imaging?,” Opt. Laser Technol. 29, 51–55 (1997).
[CrossRef]

1995 (1)

A. Perennou, J. Cariou, and J. Lotrian, “Two interferometric evaluations of the spatial coherence of a laser beam scattered by turbid water,” Pure Appl. Opt. 4, 617–628 (1995).
[CrossRef]

1993 (1)

K. Arora and E. O. Sheybani, “Measurement of the temporal coherence of an underwater optical scattered field,” Microwave Opt. Technol. Lett. 6, 151–154 (1993).
[CrossRef]

1992 (1)

N. Swanson, “Coherence loss of laser light propagated through simulated coastal waters,” Proc. SPIE 1750, 397–406(1992).
[CrossRef]

1987 (1)

1985 (1)

I. Thormahlen, J. Straub, and U. Grigull, “Refractive index of water and its dependence on wavelength, temperature, and density,” J. Phys. Chem. Ref. Data 14, 933–945 (1985).
[CrossRef]

1978 (2)

R. J. Hill, “Models of the scalar spectrum for turbulent advection,” J. Fluid Mech. 88, 541–562 (1978).
[CrossRef]

R. J. Hill, “Optical propagation in turbulent water,” J. Opt. Soc. Am. 68, 1067–1072 (1978).
[CrossRef]

1967 (1)

Alic, N.

Andrews, L. C.

L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media (SPIE, 1998).

Arora, K.

K. Arora and E. O. Sheybani, “Measurement of the temporal coherence of an underwater optical scattered field,” Microwave Opt. Technol. Lett. 6, 151–154 (1993).
[CrossRef]

Cariou, J.

A. Perennou, J. Cariou, and J. Lotrian, “Two interferometric evaluations of the spatial coherence of a laser beam scattered by turbid water,” Pure Appl. Opt. 4, 617–628 (1995).
[CrossRef]

Chave, A. D.

N. Farr, A. D. Chave, L. Freitag, J. Preisig, S. N. White, D. Yoerger, and F. Sonnichsen, “Optical modem technology for seafloor observatories,” in Proceedings of IEEE Oceans (IEEE, 2006), pp. 1–6.

Dainty, J. C.

M. L. Holohan and J. C. Dainty, “Low-order adaptive optics: a possible use in underwater imaging?,” Opt. Laser Technol. 29, 51–55 (1997).
[CrossRef]

Diamanti, E.

Fainman, Y.

Farr, N.

N. Farr, A. D. Chave, L. Freitag, J. Preisig, S. N. White, D. Yoerger, and F. Sonnichsen, “Optical modem technology for seafloor observatories,” in Proceedings of IEEE Oceans (IEEE, 2006), pp. 1–6.

Fejer, M. M.

Ford, J. E.

Freitag, L.

N. Farr, A. D. Chave, L. Freitag, J. Preisig, S. N. White, D. Yoerger, and F. Sonnichsen, “Optical modem technology for seafloor observatories,” in Proceedings of IEEE Oceans (IEEE, 2006), pp. 1–6.

Gagliardi, R. M.

S. Karp, R. M. Gagliardi, S. E. Moran, and L. B. Stotts, Optical Channels (Plenum, 1988).

Grigull, U.

I. Thormahlen, J. Straub, and U. Grigull, “Refractive index of water and its dependence on wavelength, temperature, and density,” J. Phys. Chem. Ref. Data 14, 933–945 (1985).
[CrossRef]

Hanson, F.

Hanson, S. G.

Hill, R. J.

R. J. Hill, “Optical propagation in turbulent water,” J. Opt. Soc. Am. 68, 1067–1072 (1978).
[CrossRef]

R. J. Hill, “Models of the scalar spectrum for turbulent advection,” J. Fluid Mech. 88, 541–562 (1978).
[CrossRef]

Holohan, M. L.

M. L. Holohan and J. C. Dainty, “Low-order adaptive optics: a possible use in underwater imaging?,” Opt. Laser Technol. 29, 51–55 (1997).
[CrossRef]

Hu, Y.

J. S. Xiang, Z. Yao, and Y. Hu, “Tracking algorithms for coupling space light distorted by turbulence in single mode fiber,” High Power Laser Part. Beams 18, 1460–1464 (2006).

Jiang, R.

Karp, S.

S. Karp, R. M. Gagliardi, S. E. Moran, and L. B. Stotts, Optical Channels (Plenum, 1988).

Lacovara, P.

P. Lacovara, “High-bandwidth underwater communications,” Marine Technol. Soc. J. 42, 93–102 (2008).
[CrossRef]

Langrock, G.

Lotrian, J.

A. Perennou, J. Cariou, and J. Lotrian, “Two interferometric evaluations of the spatial coherence of a laser beam scattered by turbid water,” Pure Appl. Opt. 4, 617–628 (1995).
[CrossRef]

Lu, L.

W. Lu, L. Lu, and J. Sun, “Influence of temperature and salinity fluctuations on propagation of partially coherent beams in oceanic turbulence,” J. Opt. A: Pure Appl. Opt. 8, 1052–1058(2006).
[CrossRef]

Lu, W.

W. Lu, L. Lu, and J. Sun, “Influence of temperature and salinity fluctuations on propagation of partially coherent beams in oceanic turbulence,” J. Opt. A: Pure Appl. Opt. 8, 1052–1058(2006).
[CrossRef]

McKinstrie, C. J.

Moran, S. E.

S. Karp, R. M. Gagliardi, S. E. Moran, and L. B. Stotts, Optical Channels (Plenum, 1988).

Nezhad, M.

Nikishov, V. I.

V. V. Nikishov and V. I. Nikishov, “Spectrum of turbulent fluctuations of the sea-water refractive index,” Int. J. Fluid Mech. Res. 27, 82–98 (2000).

Nikishov, V. V.

V. V. Nikishov and V. I. Nikishov, “Spectrum of turbulent fluctuations of the sea-water refractive index,” Int. J. Fluid Mech. Res. 27, 82–98 (2000).

Owens, J. C.

Perennou, A.

A. Perennou, J. Cariou, and J. Lotrian, “Two interferometric evaluations of the spatial coherence of a laser beam scattered by turbid water,” Pure Appl. Opt. 4, 617–628 (1995).
[CrossRef]

Phillips, R. L.

L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media (SPIE, 1998).

Preisig, J.

N. Farr, A. D. Chave, L. Freitag, J. Preisig, S. N. White, D. Yoerger, and F. Sonnichsen, “Optical modem technology for seafloor observatories,” in Proceedings of IEEE Oceans (IEEE, 2006), pp. 1–6.

Radic, S.

Rousseuv, R. V.

Saperstein, R. E.

Sheybani, E. O.

K. Arora and E. O. Sheybani, “Measurement of the temporal coherence of an underwater optical scattered field,” Microwave Opt. Technol. Lett. 6, 151–154 (1993).
[CrossRef]

Sonnichsen, F.

N. Farr, A. D. Chave, L. Freitag, J. Preisig, S. N. White, D. Yoerger, and F. Sonnichsen, “Optical modem technology for seafloor observatories,” in Proceedings of IEEE Oceans (IEEE, 2006), pp. 1–6.

Stotts, L. B.

S. Karp, R. M. Gagliardi, S. E. Moran, and L. B. Stotts, Optical Channels (Plenum, 1988).

Straub, J.

I. Thormahlen, J. Straub, and U. Grigull, “Refractive index of water and its dependence on wavelength, temperature, and density,” J. Phys. Chem. Ref. Data 14, 933–945 (1985).
[CrossRef]

Sun, J.

W. Lu, L. Lu, and J. Sun, “Influence of temperature and salinity fluctuations on propagation of partially coherent beams in oceanic turbulence,” J. Opt. A: Pure Appl. Opt. 8, 1052–1058(2006).
[CrossRef]

Swanson, N.

N. Swanson, “Coherence loss of laser light propagated through simulated coastal waters,” Proc. SPIE 1750, 397–406(1992).
[CrossRef]

Thormahlen, I.

I. Thormahlen, J. Straub, and U. Grigull, “Refractive index of water and its dependence on wavelength, temperature, and density,” J. Phys. Chem. Ref. Data 14, 933–945 (1985).
[CrossRef]

White, S. N.

N. Farr, A. D. Chave, L. Freitag, J. Preisig, S. N. White, D. Yoerger, and F. Sonnichsen, “Optical modem technology for seafloor observatories,” in Proceedings of IEEE Oceans (IEEE, 2006), pp. 1–6.

Xiang, J. S.

J. S. Xiang, Z. Yao, and Y. Hu, “Tracking algorithms for coupling space light distorted by turbulence in single mode fiber,” High Power Laser Part. Beams 18, 1460–1464 (2006).

Yamamoto, Y.

Yao, Z.

J. S. Xiang, Z. Yao, and Y. Hu, “Tracking algorithms for coupling space light distorted by turbulence in single mode fiber,” High Power Laser Part. Beams 18, 1460–1464 (2006).

Yoerger, D.

N. Farr, A. D. Chave, L. Freitag, J. Preisig, S. N. White, D. Yoerger, and F. Sonnichsen, “Optical modem technology for seafloor observatories,” in Proceedings of IEEE Oceans (IEEE, 2006), pp. 1–6.

Yura, H. T.

Appl. Opt. (2)

High Power Laser Part. Beams (1)

J. S. Xiang, Z. Yao, and Y. Hu, “Tracking algorithms for coupling space light distorted by turbulence in single mode fiber,” High Power Laser Part. Beams 18, 1460–1464 (2006).

Int. J. Fluid Mech. Res. (1)

V. V. Nikishov and V. I. Nikishov, “Spectrum of turbulent fluctuations of the sea-water refractive index,” Int. J. Fluid Mech. Res. 27, 82–98 (2000).

J. Fluid Mech. (1)

R. J. Hill, “Models of the scalar spectrum for turbulent advection,” J. Fluid Mech. 88, 541–562 (1978).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. A: Pure Appl. Opt. (1)

W. Lu, L. Lu, and J. Sun, “Influence of temperature and salinity fluctuations on propagation of partially coherent beams in oceanic turbulence,” J. Opt. A: Pure Appl. Opt. 8, 1052–1058(2006).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

J. Phys. Chem. Ref. Data (1)

I. Thormahlen, J. Straub, and U. Grigull, “Refractive index of water and its dependence on wavelength, temperature, and density,” J. Phys. Chem. Ref. Data 14, 933–945 (1985).
[CrossRef]

Marine Technol. Soc. J. (1)

P. Lacovara, “High-bandwidth underwater communications,” Marine Technol. Soc. J. 42, 93–102 (2008).
[CrossRef]

Microwave Opt. Technol. Lett. (1)

K. Arora and E. O. Sheybani, “Measurement of the temporal coherence of an underwater optical scattered field,” Microwave Opt. Technol. Lett. 6, 151–154 (1993).
[CrossRef]

Opt. Laser Technol. (1)

M. L. Holohan and J. C. Dainty, “Low-order adaptive optics: a possible use in underwater imaging?,” Opt. Laser Technol. 29, 51–55 (1997).
[CrossRef]

Opt. Lett. (1)

Proc. SPIE (1)

N. Swanson, “Coherence loss of laser light propagated through simulated coastal waters,” Proc. SPIE 1750, 397–406(1992).
[CrossRef]

Pure Appl. Opt. (1)

A. Perennou, J. Cariou, and J. Lotrian, “Two interferometric evaluations of the spatial coherence of a laser beam scattered by turbid water,” Pure Appl. Opt. 4, 617–628 (1995).
[CrossRef]

Other (3)

L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media (SPIE, 1998).

N. Farr, A. D. Chave, L. Freitag, J. Preisig, S. N. White, D. Yoerger, and F. Sonnichsen, “Optical modem technology for seafloor observatories,” in Proceedings of IEEE Oceans (IEEE, 2006), pp. 1–6.

S. Karp, R. M. Gagliardi, S. E. Moran, and L. B. Stotts, Optical Channels (Plenum, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental layout for laser propagation experiments in a 2 m water path. A heated water bath (B) was used in some cases to generate turbulence. A tip-tilt control loop, consisting of a PSD, LP filter, amplifier (Amp), and a piezo-driven mirror (M1), was used to maintain coupling into the SMF. Focal plane images were recorded on the CCD camera.

Fig. 2
Fig. 2

Spot radius of the time-averaged focused images for nearly flat-top beams of radius a propagating through calm water (•) and water with nominal turbulence from a flow of 0.105 liter / s (▪). Dashed line is the spot radius from a Gaussian fit to the ideal Airy profile.

Fig. 3
Fig. 3

Normalized spot area from Fig. 2 with limiting value ω 0 2 removed. Error bars are ± 1 standard deviation from four sets of measurements. The dashed line is a quadratic fit.

Fig. 4
Fig. 4

Normalized spot area, with the limiting value ω 0 2 removed, of the time-averaged focused images for two collimated Gaussian beams, with 1 / e 2 radius ω B = 2.03 mm (•) and 8.9 mm (▪), as the temperature difference Δ T between inlet and outlet flow was slowly increased. The solid lines show a fit of the combined data proportional to ω B 2 Δ T 12 / 5 with a single scaling factor.

Fig. 5
Fig. 5

Mean fiber coupling efficiency versus mean spot radius over 20 s with error bars showing ± 1 standard deviation. A collimated Gaussian beam was propagated in air (▿), calm water (▾), and water with turbulent flow rates of 0.032 liter / s (•), 0.063 liter / s (▪), and 0.105 liter / s (▴) using tip-tilt feedback control and with no control (•,▪,▴) for the same flow rates, respectively.

Fig. 6
Fig. 6

Model of refractive index fluctuations Φ n ( κ ) in water normalized to the Kolmogorov spectrum (solid, flat curve) due to temperature fluctuations (solid, wavy curve) and salinity fluctuations (dashed curve) from Ref. [16], where η is the Kolmogorov microscale.

Fig. 7
Fig. 7

Radial dependence of the normalized wave structure function D w ( r ) / r 5 / 3 calculated for temperature fluctuations (top) and salinity fluctuations (bottom) for ε = 10 10 , 10 7 , and 10 4 m 2 / s 3 and the constants given in Ref. [19]. For clarity, the magnitude of Φ n ( κ ) is arbitrarily adjusted to give unity at r = 1 cm .

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

I ( p ) = k 2 B 2 d r r J 0 ( k p r / B ) K ( r ) exp [ D w ( r ) / 2 ] ,
K ( r ) = d 2 R U i ( R + r / 2 ) U i * ( R r / 2 ) ,
D w ( r ) = 8 π k 2 0 L d z d κ κ Φ n ( κ , z ) [ 1 J 0 ( κ r b ( z ) / B ) ] ,
I ( p ) = k 2 2 π f 2 d r r J 0 ( k p r / f ) exp ( r 2 / 2 ω B 2 ) exp ( D w ( r ) / 2 ) .
ω 2 = 4 f 2 / k 2 ω B 2 + 8 f 2 / k 2 r 0 2 .
ω 2 / ω DL 2 = 1 + 2 ω B 2 / r 0 2 .
Φ n ( κ ) = ( 4 π ) 1 β ε 1 / 3 χ n κ 11 / 3 ( κ η 1 ) ,
Φ n ( κ ) = ( 4 π ) 1 β χ n ε 1 / 3 κ 11 / 3 [ 1 + ( κ η ) 2 / 3 Q ] φ ( κ , w ) ,

Metrics