Abstract

We have proposed a novel type of photonic crystal fiber (PCF) with low dispersion and high nonlinearity for four-wave mixing. This type of fiber is composed of a solid silica core and a cladding with a squeezed hexagonal lattice elliptical airhole along the fiber length. Its dispersion and nonlinearity coefficient are investigated simultaneously by using the full vectorial finite element method. Numerical results show that the proposed highly nonlinear low-dispersion fiber has a total dispersion as low as ±2.5psnm1km1 over an ultrabroad wavelength range from 1.43 to 1.8μm, and the corresponding nonlinearity coefficient and birefringence are about 150W1km1 and 2.5×103 at 1.55μm, respectively. The proposed PCF with low ultraflattened dispersion, high nonlinearity, and high birefringence can have important application in four-wave mixing.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Takesue and K. Inoue, “Generation of polarization-entangled photon pairs and violation of Bell’s inequality using spontaneous four-wave mixing in a fiber loop,” Phys. Rev. A 70, 031802 (2004).
    [CrossRef]
  2. B. Khubchandani, P. N. Guzdar, and R. Roy, “Influence of stochasticity on multiple four-wave-mixing processes in an optical fiber,” Phys. Rev. E 66, 066609 (2002).
    [CrossRef]
  3. Q. Lin, F. Yaman, and G. P. Agrawal, “Photon-pair generation in optical fibers through four-wave mixing: role of Raman scattering and pump polarization,” Phys. Rev. A 75, 023803 (2007).
    [CrossRef]
  4. J. Fulconis, O. Alibart, J. L. O’Brien, W. J. Wadsworth, and J. G. Rarity, “Nonclassical interference and entanglement generation using a photonic crystal fiber pair photon source,” Phys. Rev. Lett. 99, 120501 (2007).
    [CrossRef] [PubMed]
  5. T. Ozeki, “High-fidelity transmission of quantum polarization states through birefringent optical fibers,” Phys. Rev. A 74, 024302 (2006).
    [CrossRef]
  6. C. J. McKinstrie, S. Radic, M. G. Raymer, and L. Schenato, “Unimpaired phase-sensitive amplification by vector four-wave mixing near the zero-dispersion frequency,” Opt. Express 15, 2178–2189 (2007).
    [CrossRef] [PubMed]
  7. X. Liu, X. Zhou, and C. Lu, “Multiple four wave mixing self stability in optical fibers,” Phys. Rev. A 72, 013811 (2005).
    [CrossRef]
  8. C. Lesvigne, V. Couderc, A. Tonello, P. Leproux, A. Barthelemy, S. Lacroix, F. Druon, P. Blandin, M. Hanna, and P. Georges, “Visible supercontinuum generation controlled by intermodal four-wave mixing in microstructured fiber,” Opt. Lett. 32, 2173–2175 (2007).
    [CrossRef] [PubMed]
  9. D. Elser, U. L. Andersen, A. Korn, O. Glockl, S. Lorenz, C. Marquardt, and G. Leuchs, “Reduction of guided acoustic wave Brillouin scattering in photonic crystal fibers,” Phys. Rev. Lett. 97, 133901 (2006).
    [CrossRef] [PubMed]
  10. A. B. Fedotov, A. A. Voronin, E. E. Serebryannikov, I. V. Fedotov, A. V. Mitrofanov, A. A. Ivanov, D. A. Sidorov-Biryukov, and A. M. Zheltikov, “Multifrequency third-harmonic generation by red-shifting solitons in a multimode photonic-crystal fiber,” Phys. Rev. E 75, 016614 (2007).
    [CrossRef]
  11. P. Dupriez, F. Poletti, P. Horak, M. N. Petrovich, Y. Jeong, J. Nilsson, D. J. Richardson, and D. N. Payne, “Efficient white light generation in secondary cores of holey fibers,” Opt. Express 15, 3729–3736 (2007).
    [CrossRef] [PubMed]
  12. X. Liu, “Theory and experiments for multiple four-wave mixing processes with multifrequency pumps in optical fibers,” Phys. Rev. A 77, 043818 (2008).
    [CrossRef]
  13. T. M. Monro and H. Ebendorff-Heidepriem, “Progress in microstructured optical fibers,” Ann. Rev. Mater. Res. 36, 467–495 (2006).
    [CrossRef]
  14. F. Biancalana, D. V. Skryabin, and P. S. J. Russell, “Four-wave mixing instabilities in photonic-crystal and tapered fibers,” Phys. Rev. E 68, 046603 (2003).
    [CrossRef]
  15. X. Liu, X. Zhou, X. Tang, J. Ng, J. Hao, T. Y. Chai, E. Leong, and C. Lu, “Switchable and tunable multiwavelength erbium-doped fiber laser with fiber Bragg gratings and photonic crystal fiber,” IEEE Photonics Technol. Lett. 17, 1626–1628(2005).
    [CrossRef]
  16. X. Liu, X. Yang, F. Lu, J. Ng, X. Zhou, and C. Lu, “Stable and uniform dual-wavelength erbium-doped fiber laser based on fiber Bragg gratings and photonic crystal fiber,” Opt. Express 13, 142–147 (2005).
    [CrossRef] [PubMed]
  17. W. H. Reeves, J. C. Knight, P. St. J. Russell, and P. Roberts, “Demonstration of ultra-flattened dispersion in photonic crystal fibers,” Opt. Express 10, 609–613 (2002).
    [PubMed]
  18. L. P. Shen, W. P. Huang, G. X. Chen, and S. S. Jian, “Design and optimization of photonic crystal fibers for broad-band dispersion compensation,” IEEE Photonics Technol. Lett. 15, 540–542 (2003).
    [CrossRef]
  19. F. Poli, A. Cucinotta, S. Selleri, and A. H. Bouk, “Tailoring of flattened dispersion in highly nonlinear photonic crystal fibers,” IEEE Photonics Technol. Lett. 16, 1065–1067(2004).
    [CrossRef]
  20. M. Koshiba and Y. Tsuji, “Curvilinear hybrid edge/nodal elements with triangular shape for guided-wave problems,” J. Lightwave Technol. 18, 737–740 (2000).
    [CrossRef]
  21. Y. Zhang, “Design of low-loss single-polarization single-mode photonic-crystal fiber based on polymer,” J. Mod. Opt. 55, 3563–3571 (2008).
    [CrossRef]
  22. Y. Zhang, R. Miao, L. Ren, H. Wang, L. Wang, and W. Zhao, “Polarization properties of elliptical core non-hexagonal symmetry polymer photonic crystal fibre,” Chin. Phys. 16, 1719–1725 (2007).
    [CrossRef]
  23. Y. Zhang, “High birefringence tunable effect of microstructured polymer optical fiber,” Acta Phys. Sin. 57, 5729–5734 (2008), in Chinese.
  24. K. Saitoh and M. Koshiba, “Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion,” Opt. Express 11, 843–852 (2003).
    [CrossRef] [PubMed]
  25. G. Agrawal, “Nonlinear Fiber Optics (Academic, 1995).
  26. S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harver, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers,” J. Opt. Soc. Am. B 19, 753–764 (2002).
    [CrossRef]
  27. K. K. Chow, C. Shu, C. Lin, and A. Bjarklev, “Polarization insensitive widely tunable wavelength converter based on four-wave mixing in a dispersion flattened nonlinear photonic crystal fiber,” IEEE Photonics Technol. Lett. 17, 624–626(2005).
    [CrossRef]
  28. A. Zhang and M. S. Demokan, “Broadband wavelength converter based on four-wave mixing in a highly nonlinear photonic crystal fiber,” Opt. Lett. 30, 2375–2377 (2005).
    [CrossRef] [PubMed]

2008 (3)

X. Liu, “Theory and experiments for multiple four-wave mixing processes with multifrequency pumps in optical fibers,” Phys. Rev. A 77, 043818 (2008).
[CrossRef]

Y. Zhang, “Design of low-loss single-polarization single-mode photonic-crystal fiber based on polymer,” J. Mod. Opt. 55, 3563–3571 (2008).
[CrossRef]

Y. Zhang, “High birefringence tunable effect of microstructured polymer optical fiber,” Acta Phys. Sin. 57, 5729–5734 (2008), in Chinese.

2007 (7)

Y. Zhang, R. Miao, L. Ren, H. Wang, L. Wang, and W. Zhao, “Polarization properties of elliptical core non-hexagonal symmetry polymer photonic crystal fibre,” Chin. Phys. 16, 1719–1725 (2007).
[CrossRef]

Q. Lin, F. Yaman, and G. P. Agrawal, “Photon-pair generation in optical fibers through four-wave mixing: role of Raman scattering and pump polarization,” Phys. Rev. A 75, 023803 (2007).
[CrossRef]

J. Fulconis, O. Alibart, J. L. O’Brien, W. J. Wadsworth, and J. G. Rarity, “Nonclassical interference and entanglement generation using a photonic crystal fiber pair photon source,” Phys. Rev. Lett. 99, 120501 (2007).
[CrossRef] [PubMed]

A. B. Fedotov, A. A. Voronin, E. E. Serebryannikov, I. V. Fedotov, A. V. Mitrofanov, A. A. Ivanov, D. A. Sidorov-Biryukov, and A. M. Zheltikov, “Multifrequency third-harmonic generation by red-shifting solitons in a multimode photonic-crystal fiber,” Phys. Rev. E 75, 016614 (2007).
[CrossRef]

C. J. McKinstrie, S. Radic, M. G. Raymer, and L. Schenato, “Unimpaired phase-sensitive amplification by vector four-wave mixing near the zero-dispersion frequency,” Opt. Express 15, 2178–2189 (2007).
[CrossRef] [PubMed]

P. Dupriez, F. Poletti, P. Horak, M. N. Petrovich, Y. Jeong, J. Nilsson, D. J. Richardson, and D. N. Payne, “Efficient white light generation in secondary cores of holey fibers,” Opt. Express 15, 3729–3736 (2007).
[CrossRef] [PubMed]

C. Lesvigne, V. Couderc, A. Tonello, P. Leproux, A. Barthelemy, S. Lacroix, F. Druon, P. Blandin, M. Hanna, and P. Georges, “Visible supercontinuum generation controlled by intermodal four-wave mixing in microstructured fiber,” Opt. Lett. 32, 2173–2175 (2007).
[CrossRef] [PubMed]

2006 (3)

D. Elser, U. L. Andersen, A. Korn, O. Glockl, S. Lorenz, C. Marquardt, and G. Leuchs, “Reduction of guided acoustic wave Brillouin scattering in photonic crystal fibers,” Phys. Rev. Lett. 97, 133901 (2006).
[CrossRef] [PubMed]

T. Ozeki, “High-fidelity transmission of quantum polarization states through birefringent optical fibers,” Phys. Rev. A 74, 024302 (2006).
[CrossRef]

T. M. Monro and H. Ebendorff-Heidepriem, “Progress in microstructured optical fibers,” Ann. Rev. Mater. Res. 36, 467–495 (2006).
[CrossRef]

2005 (5)

X. Liu, X. Zhou, X. Tang, J. Ng, J. Hao, T. Y. Chai, E. Leong, and C. Lu, “Switchable and tunable multiwavelength erbium-doped fiber laser with fiber Bragg gratings and photonic crystal fiber,” IEEE Photonics Technol. Lett. 17, 1626–1628(2005).
[CrossRef]

X. Liu, X. Zhou, and C. Lu, “Multiple four wave mixing self stability in optical fibers,” Phys. Rev. A 72, 013811 (2005).
[CrossRef]

X. Liu, X. Yang, F. Lu, J. Ng, X. Zhou, and C. Lu, “Stable and uniform dual-wavelength erbium-doped fiber laser based on fiber Bragg gratings and photonic crystal fiber,” Opt. Express 13, 142–147 (2005).
[CrossRef] [PubMed]

A. Zhang and M. S. Demokan, “Broadband wavelength converter based on four-wave mixing in a highly nonlinear photonic crystal fiber,” Opt. Lett. 30, 2375–2377 (2005).
[CrossRef] [PubMed]

K. K. Chow, C. Shu, C. Lin, and A. Bjarklev, “Polarization insensitive widely tunable wavelength converter based on four-wave mixing in a dispersion flattened nonlinear photonic crystal fiber,” IEEE Photonics Technol. Lett. 17, 624–626(2005).
[CrossRef]

2004 (2)

H. Takesue and K. Inoue, “Generation of polarization-entangled photon pairs and violation of Bell’s inequality using spontaneous four-wave mixing in a fiber loop,” Phys. Rev. A 70, 031802 (2004).
[CrossRef]

F. Poli, A. Cucinotta, S. Selleri, and A. H. Bouk, “Tailoring of flattened dispersion in highly nonlinear photonic crystal fibers,” IEEE Photonics Technol. Lett. 16, 1065–1067(2004).
[CrossRef]

2003 (3)

L. P. Shen, W. P. Huang, G. X. Chen, and S. S. Jian, “Design and optimization of photonic crystal fibers for broad-band dispersion compensation,” IEEE Photonics Technol. Lett. 15, 540–542 (2003).
[CrossRef]

F. Biancalana, D. V. Skryabin, and P. S. J. Russell, “Four-wave mixing instabilities in photonic-crystal and tapered fibers,” Phys. Rev. E 68, 046603 (2003).
[CrossRef]

K. Saitoh and M. Koshiba, “Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion,” Opt. Express 11, 843–852 (2003).
[CrossRef] [PubMed]

2002 (3)

2000 (1)

Agrawal, G.

G. Agrawal, “Nonlinear Fiber Optics (Academic, 1995).

Agrawal, G. P.

Q. Lin, F. Yaman, and G. P. Agrawal, “Photon-pair generation in optical fibers through four-wave mixing: role of Raman scattering and pump polarization,” Phys. Rev. A 75, 023803 (2007).
[CrossRef]

Alibart, O.

J. Fulconis, O. Alibart, J. L. O’Brien, W. J. Wadsworth, and J. G. Rarity, “Nonclassical interference and entanglement generation using a photonic crystal fiber pair photon source,” Phys. Rev. Lett. 99, 120501 (2007).
[CrossRef] [PubMed]

Andersen, U. L.

D. Elser, U. L. Andersen, A. Korn, O. Glockl, S. Lorenz, C. Marquardt, and G. Leuchs, “Reduction of guided acoustic wave Brillouin scattering in photonic crystal fibers,” Phys. Rev. Lett. 97, 133901 (2006).
[CrossRef] [PubMed]

Barthelemy, A.

Biancalana, F.

F. Biancalana, D. V. Skryabin, and P. S. J. Russell, “Four-wave mixing instabilities in photonic-crystal and tapered fibers,” Phys. Rev. E 68, 046603 (2003).
[CrossRef]

Bjarklev, A.

K. K. Chow, C. Shu, C. Lin, and A. Bjarklev, “Polarization insensitive widely tunable wavelength converter based on four-wave mixing in a dispersion flattened nonlinear photonic crystal fiber,” IEEE Photonics Technol. Lett. 17, 624–626(2005).
[CrossRef]

Blandin, P.

Bouk, A. H.

F. Poli, A. Cucinotta, S. Selleri, and A. H. Bouk, “Tailoring of flattened dispersion in highly nonlinear photonic crystal fibers,” IEEE Photonics Technol. Lett. 16, 1065–1067(2004).
[CrossRef]

Chai, T. Y.

X. Liu, X. Zhou, X. Tang, J. Ng, J. Hao, T. Y. Chai, E. Leong, and C. Lu, “Switchable and tunable multiwavelength erbium-doped fiber laser with fiber Bragg gratings and photonic crystal fiber,” IEEE Photonics Technol. Lett. 17, 1626–1628(2005).
[CrossRef]

Chau, A. H. L.

Chen, G. X.

L. P. Shen, W. P. Huang, G. X. Chen, and S. S. Jian, “Design and optimization of photonic crystal fibers for broad-band dispersion compensation,” IEEE Photonics Technol. Lett. 15, 540–542 (2003).
[CrossRef]

Chow, K. K.

K. K. Chow, C. Shu, C. Lin, and A. Bjarklev, “Polarization insensitive widely tunable wavelength converter based on four-wave mixing in a dispersion flattened nonlinear photonic crystal fiber,” IEEE Photonics Technol. Lett. 17, 624–626(2005).
[CrossRef]

Coen, S.

Couderc, V.

Cucinotta, A.

F. Poli, A. Cucinotta, S. Selleri, and A. H. Bouk, “Tailoring of flattened dispersion in highly nonlinear photonic crystal fibers,” IEEE Photonics Technol. Lett. 16, 1065–1067(2004).
[CrossRef]

Demokan, M. S.

Druon, F.

Dupriez, P.

Ebendorff-Heidepriem, H.

T. M. Monro and H. Ebendorff-Heidepriem, “Progress in microstructured optical fibers,” Ann. Rev. Mater. Res. 36, 467–495 (2006).
[CrossRef]

Elser, D.

D. Elser, U. L. Andersen, A. Korn, O. Glockl, S. Lorenz, C. Marquardt, and G. Leuchs, “Reduction of guided acoustic wave Brillouin scattering in photonic crystal fibers,” Phys. Rev. Lett. 97, 133901 (2006).
[CrossRef] [PubMed]

Fedotov, A. B.

A. B. Fedotov, A. A. Voronin, E. E. Serebryannikov, I. V. Fedotov, A. V. Mitrofanov, A. A. Ivanov, D. A. Sidorov-Biryukov, and A. M. Zheltikov, “Multifrequency third-harmonic generation by red-shifting solitons in a multimode photonic-crystal fiber,” Phys. Rev. E 75, 016614 (2007).
[CrossRef]

Fedotov, I. V.

A. B. Fedotov, A. A. Voronin, E. E. Serebryannikov, I. V. Fedotov, A. V. Mitrofanov, A. A. Ivanov, D. A. Sidorov-Biryukov, and A. M. Zheltikov, “Multifrequency third-harmonic generation by red-shifting solitons in a multimode photonic-crystal fiber,” Phys. Rev. E 75, 016614 (2007).
[CrossRef]

Fulconis, J.

J. Fulconis, O. Alibart, J. L. O’Brien, W. J. Wadsworth, and J. G. Rarity, “Nonclassical interference and entanglement generation using a photonic crystal fiber pair photon source,” Phys. Rev. Lett. 99, 120501 (2007).
[CrossRef] [PubMed]

Georges, P.

Glockl, O.

D. Elser, U. L. Andersen, A. Korn, O. Glockl, S. Lorenz, C. Marquardt, and G. Leuchs, “Reduction of guided acoustic wave Brillouin scattering in photonic crystal fibers,” Phys. Rev. Lett. 97, 133901 (2006).
[CrossRef] [PubMed]

Guzdar, P. N.

B. Khubchandani, P. N. Guzdar, and R. Roy, “Influence of stochasticity on multiple four-wave-mixing processes in an optical fiber,” Phys. Rev. E 66, 066609 (2002).
[CrossRef]

Hanna, M.

Hao, J.

X. Liu, X. Zhou, X. Tang, J. Ng, J. Hao, T. Y. Chai, E. Leong, and C. Lu, “Switchable and tunable multiwavelength erbium-doped fiber laser with fiber Bragg gratings and photonic crystal fiber,” IEEE Photonics Technol. Lett. 17, 1626–1628(2005).
[CrossRef]

Harver, J. D.

Horak, P.

Huang, W. P.

L. P. Shen, W. P. Huang, G. X. Chen, and S. S. Jian, “Design and optimization of photonic crystal fibers for broad-band dispersion compensation,” IEEE Photonics Technol. Lett. 15, 540–542 (2003).
[CrossRef]

Inoue, K.

H. Takesue and K. Inoue, “Generation of polarization-entangled photon pairs and violation of Bell’s inequality using spontaneous four-wave mixing in a fiber loop,” Phys. Rev. A 70, 031802 (2004).
[CrossRef]

Ivanov, A. A.

A. B. Fedotov, A. A. Voronin, E. E. Serebryannikov, I. V. Fedotov, A. V. Mitrofanov, A. A. Ivanov, D. A. Sidorov-Biryukov, and A. M. Zheltikov, “Multifrequency third-harmonic generation by red-shifting solitons in a multimode photonic-crystal fiber,” Phys. Rev. E 75, 016614 (2007).
[CrossRef]

Jeong, Y.

Jian, S. S.

L. P. Shen, W. P. Huang, G. X. Chen, and S. S. Jian, “Design and optimization of photonic crystal fibers for broad-band dispersion compensation,” IEEE Photonics Technol. Lett. 15, 540–542 (2003).
[CrossRef]

Khubchandani, B.

B. Khubchandani, P. N. Guzdar, and R. Roy, “Influence of stochasticity on multiple four-wave-mixing processes in an optical fiber,” Phys. Rev. E 66, 066609 (2002).
[CrossRef]

Knight, J. C.

Korn, A.

D. Elser, U. L. Andersen, A. Korn, O. Glockl, S. Lorenz, C. Marquardt, and G. Leuchs, “Reduction of guided acoustic wave Brillouin scattering in photonic crystal fibers,” Phys. Rev. Lett. 97, 133901 (2006).
[CrossRef] [PubMed]

Koshiba, M.

Lacroix, S.

Leong, E.

X. Liu, X. Zhou, X. Tang, J. Ng, J. Hao, T. Y. Chai, E. Leong, and C. Lu, “Switchable and tunable multiwavelength erbium-doped fiber laser with fiber Bragg gratings and photonic crystal fiber,” IEEE Photonics Technol. Lett. 17, 1626–1628(2005).
[CrossRef]

Leonhardt, R.

Leproux, P.

Lesvigne, C.

Leuchs, G.

D. Elser, U. L. Andersen, A. Korn, O. Glockl, S. Lorenz, C. Marquardt, and G. Leuchs, “Reduction of guided acoustic wave Brillouin scattering in photonic crystal fibers,” Phys. Rev. Lett. 97, 133901 (2006).
[CrossRef] [PubMed]

Lin, C.

K. K. Chow, C. Shu, C. Lin, and A. Bjarklev, “Polarization insensitive widely tunable wavelength converter based on four-wave mixing in a dispersion flattened nonlinear photonic crystal fiber,” IEEE Photonics Technol. Lett. 17, 624–626(2005).
[CrossRef]

Lin, Q.

Q. Lin, F. Yaman, and G. P. Agrawal, “Photon-pair generation in optical fibers through four-wave mixing: role of Raman scattering and pump polarization,” Phys. Rev. A 75, 023803 (2007).
[CrossRef]

Liu, X.

X. Liu, “Theory and experiments for multiple four-wave mixing processes with multifrequency pumps in optical fibers,” Phys. Rev. A 77, 043818 (2008).
[CrossRef]

X. Liu, X. Yang, F. Lu, J. Ng, X. Zhou, and C. Lu, “Stable and uniform dual-wavelength erbium-doped fiber laser based on fiber Bragg gratings and photonic crystal fiber,” Opt. Express 13, 142–147 (2005).
[CrossRef] [PubMed]

X. Liu, X. Zhou, X. Tang, J. Ng, J. Hao, T. Y. Chai, E. Leong, and C. Lu, “Switchable and tunable multiwavelength erbium-doped fiber laser with fiber Bragg gratings and photonic crystal fiber,” IEEE Photonics Technol. Lett. 17, 1626–1628(2005).
[CrossRef]

X. Liu, X. Zhou, and C. Lu, “Multiple four wave mixing self stability in optical fibers,” Phys. Rev. A 72, 013811 (2005).
[CrossRef]

Lorenz, S.

D. Elser, U. L. Andersen, A. Korn, O. Glockl, S. Lorenz, C. Marquardt, and G. Leuchs, “Reduction of guided acoustic wave Brillouin scattering in photonic crystal fibers,” Phys. Rev. Lett. 97, 133901 (2006).
[CrossRef] [PubMed]

Lu, C.

X. Liu, X. Yang, F. Lu, J. Ng, X. Zhou, and C. Lu, “Stable and uniform dual-wavelength erbium-doped fiber laser based on fiber Bragg gratings and photonic crystal fiber,” Opt. Express 13, 142–147 (2005).
[CrossRef] [PubMed]

X. Liu, X. Zhou, X. Tang, J. Ng, J. Hao, T. Y. Chai, E. Leong, and C. Lu, “Switchable and tunable multiwavelength erbium-doped fiber laser with fiber Bragg gratings and photonic crystal fiber,” IEEE Photonics Technol. Lett. 17, 1626–1628(2005).
[CrossRef]

X. Liu, X. Zhou, and C. Lu, “Multiple four wave mixing self stability in optical fibers,” Phys. Rev. A 72, 013811 (2005).
[CrossRef]

Lu, F.

Marquardt, C.

D. Elser, U. L. Andersen, A. Korn, O. Glockl, S. Lorenz, C. Marquardt, and G. Leuchs, “Reduction of guided acoustic wave Brillouin scattering in photonic crystal fibers,” Phys. Rev. Lett. 97, 133901 (2006).
[CrossRef] [PubMed]

McKinstrie, C. J.

Miao, R.

Y. Zhang, R. Miao, L. Ren, H. Wang, L. Wang, and W. Zhao, “Polarization properties of elliptical core non-hexagonal symmetry polymer photonic crystal fibre,” Chin. Phys. 16, 1719–1725 (2007).
[CrossRef]

Mitrofanov, A. V.

A. B. Fedotov, A. A. Voronin, E. E. Serebryannikov, I. V. Fedotov, A. V. Mitrofanov, A. A. Ivanov, D. A. Sidorov-Biryukov, and A. M. Zheltikov, “Multifrequency third-harmonic generation by red-shifting solitons in a multimode photonic-crystal fiber,” Phys. Rev. E 75, 016614 (2007).
[CrossRef]

Monro, T. M.

T. M. Monro and H. Ebendorff-Heidepriem, “Progress in microstructured optical fibers,” Ann. Rev. Mater. Res. 36, 467–495 (2006).
[CrossRef]

Ng, J.

X. Liu, X. Yang, F. Lu, J. Ng, X. Zhou, and C. Lu, “Stable and uniform dual-wavelength erbium-doped fiber laser based on fiber Bragg gratings and photonic crystal fiber,” Opt. Express 13, 142–147 (2005).
[CrossRef] [PubMed]

X. Liu, X. Zhou, X. Tang, J. Ng, J. Hao, T. Y. Chai, E. Leong, and C. Lu, “Switchable and tunable multiwavelength erbium-doped fiber laser with fiber Bragg gratings and photonic crystal fiber,” IEEE Photonics Technol. Lett. 17, 1626–1628(2005).
[CrossRef]

Nilsson, J.

O’Brien, J. L.

J. Fulconis, O. Alibart, J. L. O’Brien, W. J. Wadsworth, and J. G. Rarity, “Nonclassical interference and entanglement generation using a photonic crystal fiber pair photon source,” Phys. Rev. Lett. 99, 120501 (2007).
[CrossRef] [PubMed]

Ozeki, T.

T. Ozeki, “High-fidelity transmission of quantum polarization states through birefringent optical fibers,” Phys. Rev. A 74, 024302 (2006).
[CrossRef]

Payne, D. N.

Petrovich, M. N.

Poletti, F.

Poli, F.

F. Poli, A. Cucinotta, S. Selleri, and A. H. Bouk, “Tailoring of flattened dispersion in highly nonlinear photonic crystal fibers,” IEEE Photonics Technol. Lett. 16, 1065–1067(2004).
[CrossRef]

Radic, S.

Rarity, J. G.

J. Fulconis, O. Alibart, J. L. O’Brien, W. J. Wadsworth, and J. G. Rarity, “Nonclassical interference and entanglement generation using a photonic crystal fiber pair photon source,” Phys. Rev. Lett. 99, 120501 (2007).
[CrossRef] [PubMed]

Raymer, M. G.

Reeves, W. H.

Ren, L.

Y. Zhang, R. Miao, L. Ren, H. Wang, L. Wang, and W. Zhao, “Polarization properties of elliptical core non-hexagonal symmetry polymer photonic crystal fibre,” Chin. Phys. 16, 1719–1725 (2007).
[CrossRef]

Richardson, D. J.

Roberts, P.

Roy, R.

B. Khubchandani, P. N. Guzdar, and R. Roy, “Influence of stochasticity on multiple four-wave-mixing processes in an optical fiber,” Phys. Rev. E 66, 066609 (2002).
[CrossRef]

Russell, P. S. J.

F. Biancalana, D. V. Skryabin, and P. S. J. Russell, “Four-wave mixing instabilities in photonic-crystal and tapered fibers,” Phys. Rev. E 68, 046603 (2003).
[CrossRef]

Russell, P. St. J.

Saitoh, K.

Schenato, L.

Selleri, S.

F. Poli, A. Cucinotta, S. Selleri, and A. H. Bouk, “Tailoring of flattened dispersion in highly nonlinear photonic crystal fibers,” IEEE Photonics Technol. Lett. 16, 1065–1067(2004).
[CrossRef]

Serebryannikov, E. E.

A. B. Fedotov, A. A. Voronin, E. E. Serebryannikov, I. V. Fedotov, A. V. Mitrofanov, A. A. Ivanov, D. A. Sidorov-Biryukov, and A. M. Zheltikov, “Multifrequency third-harmonic generation by red-shifting solitons in a multimode photonic-crystal fiber,” Phys. Rev. E 75, 016614 (2007).
[CrossRef]

Shen, L. P.

L. P. Shen, W. P. Huang, G. X. Chen, and S. S. Jian, “Design and optimization of photonic crystal fibers for broad-band dispersion compensation,” IEEE Photonics Technol. Lett. 15, 540–542 (2003).
[CrossRef]

Shu, C.

K. K. Chow, C. Shu, C. Lin, and A. Bjarklev, “Polarization insensitive widely tunable wavelength converter based on four-wave mixing in a dispersion flattened nonlinear photonic crystal fiber,” IEEE Photonics Technol. Lett. 17, 624–626(2005).
[CrossRef]

Sidorov-Biryukov, D. A.

A. B. Fedotov, A. A. Voronin, E. E. Serebryannikov, I. V. Fedotov, A. V. Mitrofanov, A. A. Ivanov, D. A. Sidorov-Biryukov, and A. M. Zheltikov, “Multifrequency third-harmonic generation by red-shifting solitons in a multimode photonic-crystal fiber,” Phys. Rev. E 75, 016614 (2007).
[CrossRef]

Skryabin, D. V.

F. Biancalana, D. V. Skryabin, and P. S. J. Russell, “Four-wave mixing instabilities in photonic-crystal and tapered fibers,” Phys. Rev. E 68, 046603 (2003).
[CrossRef]

Takesue, H.

H. Takesue and K. Inoue, “Generation of polarization-entangled photon pairs and violation of Bell’s inequality using spontaneous four-wave mixing in a fiber loop,” Phys. Rev. A 70, 031802 (2004).
[CrossRef]

Tang, X.

X. Liu, X. Zhou, X. Tang, J. Ng, J. Hao, T. Y. Chai, E. Leong, and C. Lu, “Switchable and tunable multiwavelength erbium-doped fiber laser with fiber Bragg gratings and photonic crystal fiber,” IEEE Photonics Technol. Lett. 17, 1626–1628(2005).
[CrossRef]

Tonello, A.

Tsuji, Y.

Voronin, A. A.

A. B. Fedotov, A. A. Voronin, E. E. Serebryannikov, I. V. Fedotov, A. V. Mitrofanov, A. A. Ivanov, D. A. Sidorov-Biryukov, and A. M. Zheltikov, “Multifrequency third-harmonic generation by red-shifting solitons in a multimode photonic-crystal fiber,” Phys. Rev. E 75, 016614 (2007).
[CrossRef]

Wadsworth, W. J.

J. Fulconis, O. Alibart, J. L. O’Brien, W. J. Wadsworth, and J. G. Rarity, “Nonclassical interference and entanglement generation using a photonic crystal fiber pair photon source,” Phys. Rev. Lett. 99, 120501 (2007).
[CrossRef] [PubMed]

S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harver, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers,” J. Opt. Soc. Am. B 19, 753–764 (2002).
[CrossRef]

Wang, H.

Y. Zhang, R. Miao, L. Ren, H. Wang, L. Wang, and W. Zhao, “Polarization properties of elliptical core non-hexagonal symmetry polymer photonic crystal fibre,” Chin. Phys. 16, 1719–1725 (2007).
[CrossRef]

Wang, L.

Y. Zhang, R. Miao, L. Ren, H. Wang, L. Wang, and W. Zhao, “Polarization properties of elliptical core non-hexagonal symmetry polymer photonic crystal fibre,” Chin. Phys. 16, 1719–1725 (2007).
[CrossRef]

Yaman, F.

Q. Lin, F. Yaman, and G. P. Agrawal, “Photon-pair generation in optical fibers through four-wave mixing: role of Raman scattering and pump polarization,” Phys. Rev. A 75, 023803 (2007).
[CrossRef]

Yang, X.

Zhang, A.

Zhang, Y.

Y. Zhang, “High birefringence tunable effect of microstructured polymer optical fiber,” Acta Phys. Sin. 57, 5729–5734 (2008), in Chinese.

Y. Zhang, “Design of low-loss single-polarization single-mode photonic-crystal fiber based on polymer,” J. Mod. Opt. 55, 3563–3571 (2008).
[CrossRef]

Y. Zhang, R. Miao, L. Ren, H. Wang, L. Wang, and W. Zhao, “Polarization properties of elliptical core non-hexagonal symmetry polymer photonic crystal fibre,” Chin. Phys. 16, 1719–1725 (2007).
[CrossRef]

Zhao, W.

Y. Zhang, R. Miao, L. Ren, H. Wang, L. Wang, and W. Zhao, “Polarization properties of elliptical core non-hexagonal symmetry polymer photonic crystal fibre,” Chin. Phys. 16, 1719–1725 (2007).
[CrossRef]

Zheltikov, A. M.

A. B. Fedotov, A. A. Voronin, E. E. Serebryannikov, I. V. Fedotov, A. V. Mitrofanov, A. A. Ivanov, D. A. Sidorov-Biryukov, and A. M. Zheltikov, “Multifrequency third-harmonic generation by red-shifting solitons in a multimode photonic-crystal fiber,” Phys. Rev. E 75, 016614 (2007).
[CrossRef]

Zhou, X.

X. Liu, X. Zhou, and C. Lu, “Multiple four wave mixing self stability in optical fibers,” Phys. Rev. A 72, 013811 (2005).
[CrossRef]

X. Liu, X. Zhou, X. Tang, J. Ng, J. Hao, T. Y. Chai, E. Leong, and C. Lu, “Switchable and tunable multiwavelength erbium-doped fiber laser with fiber Bragg gratings and photonic crystal fiber,” IEEE Photonics Technol. Lett. 17, 1626–1628(2005).
[CrossRef]

X. Liu, X. Yang, F. Lu, J. Ng, X. Zhou, and C. Lu, “Stable and uniform dual-wavelength erbium-doped fiber laser based on fiber Bragg gratings and photonic crystal fiber,” Opt. Express 13, 142–147 (2005).
[CrossRef] [PubMed]

Acta Phys. Sin. (1)

Y. Zhang, “High birefringence tunable effect of microstructured polymer optical fiber,” Acta Phys. Sin. 57, 5729–5734 (2008), in Chinese.

Ann. Rev. Mater. Res. (1)

T. M. Monro and H. Ebendorff-Heidepriem, “Progress in microstructured optical fibers,” Ann. Rev. Mater. Res. 36, 467–495 (2006).
[CrossRef]

Chin. Phys. (1)

Y. Zhang, R. Miao, L. Ren, H. Wang, L. Wang, and W. Zhao, “Polarization properties of elliptical core non-hexagonal symmetry polymer photonic crystal fibre,” Chin. Phys. 16, 1719–1725 (2007).
[CrossRef]

IEEE Photonics Technol. Lett. (4)

K. K. Chow, C. Shu, C. Lin, and A. Bjarklev, “Polarization insensitive widely tunable wavelength converter based on four-wave mixing in a dispersion flattened nonlinear photonic crystal fiber,” IEEE Photonics Technol. Lett. 17, 624–626(2005).
[CrossRef]

X. Liu, X. Zhou, X. Tang, J. Ng, J. Hao, T. Y. Chai, E. Leong, and C. Lu, “Switchable and tunable multiwavelength erbium-doped fiber laser with fiber Bragg gratings and photonic crystal fiber,” IEEE Photonics Technol. Lett. 17, 1626–1628(2005).
[CrossRef]

L. P. Shen, W. P. Huang, G. X. Chen, and S. S. Jian, “Design and optimization of photonic crystal fibers for broad-band dispersion compensation,” IEEE Photonics Technol. Lett. 15, 540–542 (2003).
[CrossRef]

F. Poli, A. Cucinotta, S. Selleri, and A. H. Bouk, “Tailoring of flattened dispersion in highly nonlinear photonic crystal fibers,” IEEE Photonics Technol. Lett. 16, 1065–1067(2004).
[CrossRef]

J. Lightwave Technol. (1)

J. Mod. Opt. (1)

Y. Zhang, “Design of low-loss single-polarization single-mode photonic-crystal fiber based on polymer,” J. Mod. Opt. 55, 3563–3571 (2008).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Express (5)

Opt. Lett. (2)

Phys. Rev. A (5)

H. Takesue and K. Inoue, “Generation of polarization-entangled photon pairs and violation of Bell’s inequality using spontaneous four-wave mixing in a fiber loop,” Phys. Rev. A 70, 031802 (2004).
[CrossRef]

Q. Lin, F. Yaman, and G. P. Agrawal, “Photon-pair generation in optical fibers through four-wave mixing: role of Raman scattering and pump polarization,” Phys. Rev. A 75, 023803 (2007).
[CrossRef]

T. Ozeki, “High-fidelity transmission of quantum polarization states through birefringent optical fibers,” Phys. Rev. A 74, 024302 (2006).
[CrossRef]

X. Liu, X. Zhou, and C. Lu, “Multiple four wave mixing self stability in optical fibers,” Phys. Rev. A 72, 013811 (2005).
[CrossRef]

X. Liu, “Theory and experiments for multiple four-wave mixing processes with multifrequency pumps in optical fibers,” Phys. Rev. A 77, 043818 (2008).
[CrossRef]

Phys. Rev. E (3)

A. B. Fedotov, A. A. Voronin, E. E. Serebryannikov, I. V. Fedotov, A. V. Mitrofanov, A. A. Ivanov, D. A. Sidorov-Biryukov, and A. M. Zheltikov, “Multifrequency third-harmonic generation by red-shifting solitons in a multimode photonic-crystal fiber,” Phys. Rev. E 75, 016614 (2007).
[CrossRef]

B. Khubchandani, P. N. Guzdar, and R. Roy, “Influence of stochasticity on multiple four-wave-mixing processes in an optical fiber,” Phys. Rev. E 66, 066609 (2002).
[CrossRef]

F. Biancalana, D. V. Skryabin, and P. S. J. Russell, “Four-wave mixing instabilities in photonic-crystal and tapered fibers,” Phys. Rev. E 68, 046603 (2003).
[CrossRef]

Phys. Rev. Lett. (2)

J. Fulconis, O. Alibart, J. L. O’Brien, W. J. Wadsworth, and J. G. Rarity, “Nonclassical interference and entanglement generation using a photonic crystal fiber pair photon source,” Phys. Rev. Lett. 99, 120501 (2007).
[CrossRef] [PubMed]

D. Elser, U. L. Andersen, A. Korn, O. Glockl, S. Lorenz, C. Marquardt, and G. Leuchs, “Reduction of guided acoustic wave Brillouin scattering in photonic crystal fibers,” Phys. Rev. Lett. 97, 133901 (2006).
[CrossRef] [PubMed]

Other (1)

G. Agrawal, “Nonlinear Fiber Optics (Academic, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Curves for dispersion parameter D ( λ ) versus wavelength λ for (a) conventional single-mode fibers and (b) a type of PCF.

Fig. 2
Fig. 2

Schematic cross section of the proposed PCF and magnification of the core region.

Fig. 3
Fig. 3

(a) Waveguide dispersion D w ( λ ) and (b) nonlinearity coefficient γ ( λ ) versus wavelength for the proposed PCF with different values of pitch Λ x . f = 0.4 , η = 0.8 , and ξ = 1.0 .

Fig. 4
Fig. 4

(a) Waveguide dispersion D w ( λ ) and (b) nonlinearity coefficient γ ( λ ) versus wavelength for the proposed PCF with different values of ξ. f = 0.4 , η = 0.8 , and Λ x = 1.8 μm

Fig. 5
Fig. 5

(a) Waveguide dispersion D w ( λ ) and (b) nonlinearity coefficient γ ( λ ) versus wavelength for the proposed PCF with different values of f. ξ = 0.4 , η = 0.8 , and Λ x = 1.8 μm

Fig. 6
Fig. 6

(a) Waveguide dispersion D w ( λ ) and (b) nonlinearity coefficient γ ( λ ) versus wavelength for the proposed PCF with different values of η. f = 0.45 , ξ = 0.4 , and Λ x = 1.8 μm .

Fig. 7
Fig. 7

(a) Curves for D ( λ ) , D w ( λ ) , and D m ( λ ) versus wavelength for the optimized PCF when f = 0.45 , ξ = 0.4 , η = 0.8 , and Λ x = 1.2 μm . (b) D ( λ ) versus wavelength in a range from 1.43 to 1.8 μm

Fig. 8
Fig. 8

(a) Mode refractive index and (b) fundamental mode birefringence of the optimized PCF when f = 0.45 , ξ = 0.4 , η = 0.8 , and Λ x = 1.8 μm .

Fig. 9
Fig. 9

Contour plots of (a) x and (b) y polarized fundamental modes at the wavelength of 1.55 μm for the optimized PCF.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

a 1 = Λ x x ^ , a 2 = Λ x 2 x ^ + Λ y y ^ ,
f < min ( η 2 + 4 ξ 2 / 2 , η ) .
D w ( λ ) = λ c 2 | Re ( n eff ) | λ 2 ,
B ( λ ) = | Re ( n eff y ( λ ) ) Re ( n eff x ( λ ) ) | ,
× ( [ μ r ] 1 × E ) k 0 2 [ ε r ] E = 0 ,
[ K ] { E } = k 0 2 n eff 2 [ M ] { E } ,
D ( λ ) = D w ( λ ) + D m ( λ ) ,
γ ( λ ) = 2 π n 2 λ A eff ,
A eff = ( | E 2 | d x d y ) 2 | E | 4 d x d y .

Metrics