Abstract

There has been recently a considerable interest in simultaneously reconstructing yield and lifetime distributions of fluorescent imaging agents inside a bulky tissue, since combined monitoring of these two parameters provides a potential means of in vivo interrogating quantitative and environmental information of specific molecules, as well as accessing interactions among them. It is widely accepted that an advantageous way of accomplishing the task in the context of small-animal imaging is to use a time-domain (TD) modality. In this paper, we present a full three-dimensional, featured-data algorithm for TD diffuse fluorescence tomography, which inverts the Laplace-transformed TD coupled photon diffusion equations and employs a pair of real-domain transform-factors to effectively separate the fluorescent yield and lifetime parameters. By use of a specifically designed 16×16 channel time-correlated single photon counting system and a normalized Born formulation for the inversion, the proposed scheme in a transmission mode is experimentally validated to achieve simultaneous reconstruction of the fluorescent yield and lifetime distributions with reasonable accuracy.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (11)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription