Abstract

There has been recently a considerable interest in simultaneously reconstructing yield and lifetime distributions of fluorescent imaging agents inside a bulky tissue, since combined monitoring of these two parameters provides a potential means of in vivo interrogating quantitative and environmental information of specific molecules, as well as accessing interactions among them. It is widely accepted that an advantageous way of accomplishing the task in the context of small-animal imaging is to use a time-domain (TD) modality. In this paper, we present a full three-dimensional, featured-data algorithm for TD diffuse fluorescence tomography, which inverts the Laplace-transformed TD coupled photon diffusion equations and employs a pair of real-domain transform-factors to effectively separate the fluorescent yield and lifetime parameters. By use of a specifically designed 16×16 channel time-correlated single photon counting system and a normalized Born formulation for the inversion, the proposed scheme in a transmission mode is experimentally validated to achieve simultaneous reconstruction of the fluorescent yield and lifetime distributions with reasonable accuracy.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Ntziachristos, C.-H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nature Med. 8, 757–760 (2002).
    [CrossRef] [PubMed]
  2. X. L. Song, D. F. Wang, N. G. Chen, J. Bai, and H. K. Wang, “Reconstruction for free-space fluorescence tomography using a novel hybrid adaptive finite element algorithm,” Opt. Express 15, 18300–18317 (2007).
    [CrossRef] [PubMed]
  3. V. Gaind, K. J. Webb, S. Kularatne, and C. A. Bouman, “Towards in vivo imaging of intramolecular fluorescence resonance energy transfer parameters,” J. Opt. Soc. Am. A 26, 1805 (2009).
    [CrossRef]
  4. J. McGinty, V. Y. Soloviev, K. B. Tahir, R. Laine, D. W. Stuckey, J. V. Hajnal, A. Sardini, P. M. W. French, and S. R. Arridge, “Three-dimensional imaging of Forster resonance energy transfer in heterogeneous turbid media by tomographic fluorescent lifetime imaging,” Opt. Lett. 34, 2772–2774 (2009).
    [CrossRef] [PubMed]
  5. H.-B. Jiang, “Frequency-domain fluorescent diffusion tomography: a finite-element-based algorithm and simulations,” Appl. Opt. 37, 5337–5343 (1998).
    [CrossRef]
  6. A. B. Thompson, D. J. Hawrysz, and E. M. Sevick-Muraca, “Near-infrared fluorescence contrast-enhanced imaging with area illumination and area detection: the forward imaging problem,” Appl. Opt. 42, 4125–4136 (2003).
    [CrossRef] [PubMed]
  7. A. B. Milstein, S. Oh, K. J. Webb, C. A. Bouman, Q. Zhang, D. A. Boas, and R. P. Millane, “Fluorescence optical diffusion tomography,” Appl. Opt. 42, 3081–3094 (2003).
    [CrossRef] [PubMed]
  8. S. Lam, F. Lesage, and X. Intes, “Time domain fluorescent diffuse optical tomography: analytical expressions,” Opt. Express 13, 2263–2275 (2005).
    [CrossRef] [PubMed]
  9. F. Gao, H.-J. Zhao, Y. Tanikawa, and Y. Yamada, “A linear, featured-data scheme for image reconstruction in time-domain fluorescence molecular tomography,” Opt. Express 14, 7109–7124 (2006).
    [CrossRef] [PubMed]
  10. L.-M. Zhang, F. Gao, H.-Y. He, and H.-J. Zhao, “Three-dimensional scheme for time-domain fluorescence molecular tomography based on Laplace transforms with noise-robust factors,” Opt. Express 16, 7214–7223 (2008).
    [CrossRef] [PubMed]
  11. A. T. N. Kumar, S. B. Raymond, G. Boverman, D. A. Boas, and B. J. Bacskai, “Time resolved fluorescence tomography of turbid media based on lifetime contrast,” Opt. Express 14, 12255–12270 (2006).
    [CrossRef] [PubMed]
  12. V. Y. Soloviev, J. McGinty, K. B. Tahir, M. A. Neil, A. Sardini, J. V. Hajnal, S. R. Arridge, and P. M. French, “Fluorescence lifetime tomography of live cells expressing enhanced green fluorescent protein embedded in a scattering medium exhibiting background autofluorescence,” Opt. Lett. 32, 2034–2036(2007).
    [CrossRef] [PubMed]
  13. V. Y. Soloviev, K. B. Tahir, J. McGinty, D. S. Elson, M. A. A. Neil, P. M. W. French, and S. R. Arridge, “Fluorescence lifetime imaging by using time-gated data acquisition,” Appl. Opt. 46, 7384–7391 (2007).
    [CrossRef] [PubMed]
  14. V. Y. Soloviev, C. D’Andrea, G. Valentini, R. Cubeddu, and S. R. Arridge, “Combined reconstruction of fluorescent and optical parameters using time-resolved data,” Appl. Opt. 48, 28–36 (2009).
    [CrossRef]
  15. F. Leblond, S. C. Davis, P. A. Valdes, and B. W. Pogue, “Pre-clinical whole body fluorescence imaging: Review of instruments, methods and applications,” J. Photochem. Photobiol. B: Biol. 98, 77–94 (2010).
    [CrossRef]
  16. S.-H. Han and D. J. Hall, “Estimating the depth and lifetime of a fluorescent inclusion in a turbid medium using a simple time-domain optical method,” Opt. Lett. 33, 1035–1037 (2008).
    [CrossRef] [PubMed]
  17. F. Gao, H.-J. Zhao, L.-M. Zhang, Y. Tanikawa, A. Marjono, and Y. Yamada, “A self-normalized, full time-resolved method for fluorescence diffuse optical tomography,” Opt. Express 16, 13104–13121 (2008).
    [CrossRef] [PubMed]
  18. R. E. Nothdurft, S. V. Patwardhan, W. Akers, Y.-P. Ye, S. Achilefu, and J. P. Culver, “In vivo fluorescence lifetime tomography,” J. Biomed. Opt. 14, 024004 (2009).
    [CrossRef] [PubMed]
  19. H.-J. Zhao, F. Gao, Y. Tanikawa, and Y. Yamada, “Time-resolved diffuse optical tomography and its application to in vitro and in vivo imaging,” J. Biomed. Opt. 12, 062107(2007).
    [CrossRef]
  20. M. Brambilla, L. Spinelli, A. Pifferi, A. Torricelli, and R. Cubeddu, “Time-resolved scanning system for double reflectance and transmittance fluorescence imaging of diffusive media,” Rev. Sci. Instrum. 79, 013103 (2008).
    [CrossRef] [PubMed]
  21. D. Kepshire, N. Mincu, M. Hutchins, J. Gruber, H. Dehghani, J. Hypnarowski, F. Leblond, M. Khayat, and B. W. Pogue, “A microcomupter tomography guided fluorescence tomography system for small animal molecular imaging,” Rev. Sci. Instrum. 80043701 (2009).
    [CrossRef] [PubMed]
  22. F. Leblond, D. Kepshire, J. A. Ohara, H. Dehghani, S. Srinivasan, N. Mincu, M. Hutchins, M. Khayat, and B. W. Pogue, “Imaging protoporphyrin IX fluorescence with a time-domain FMT/microCT system,” Proc. SPIE 7171, 717106 (2009).
    [CrossRef]
  23. E. E. Graves, J. Rapoll, R. Weissleder, and V. Ntziachristos, “A submillimeter resolution fluorescence molecular imaging system for small animal imaging,” Med. Phys. 30, 901–911(2003).
    [CrossRef] [PubMed]
  24. W. Becker, Advanced Time-Correlated Single Photon Counting Techniques (Springer, 2005).
    [CrossRef]
  25. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999).
    [CrossRef]
  26. F. Gao, H.-J Zhao, L.-M. Zhang, Y. Tanikawa, A. Marjono, and Y. Yamada, “A self-normalized, full time-resolved method for fluorescence diffuse optical tomography,” Opt. Express 16, 13104–13121 (2008).
    [CrossRef] [PubMed]
  27. A. T. N. Kumar, S. B. Raymond, A. K. Dunn, B. J. Bacskai, and D. A. Boas, “A time domain fluorescence tomography system for small animal imaging,” IEEE Trans. Med. Imag. 27, 1152–1163 (2008).
    [CrossRef]
  28. J. Wu, “Convolution picture of the boundary conditions in photon migration and implications in time-resolved optical imaging of biological tissues,” J. Opt. Soc. Am. A 14, 280–287 (1997).
    [CrossRef]
  29. A. Soubret, J. Ripoll, and V. Ntziachristos, “Accuracy of fluorescent tomography in the presence of heterogeneities: study of the normalized Born ratio,” IEEE Trans. Med. Imaging 24, 1377–1386 (2005).
    [CrossRef] [PubMed]
  30. X. Intes, V. Ntziachristos, J. P., A. Yodh, and B. Chance, “Projection access order in algebraic reconstruction technique for diffuse optical tomography,” Phys. Med. Biol. 47, N1–N10(2002).
    [CrossRef] [PubMed]
  31. E. M. C. Hillman, J. C. C, F. E. W. Schmidt, S. R. Arridge, M. Schweiger, H. Dehgani, and D. Deply, “Calibration techniques and datatyoe extraction for time-resolved optical tomography,” Rev. Sci. Instrum. 71, 3415–3427 (2000).
    [CrossRef]
  32. F. Gao, H.-J. Zhao, Y. Tanikawa, K. Homma, and Y. Yamada, “Influences of target size and contrast on near infrared diffuse optical tomography—a comparison between featured-data and full time-resolved schemes,” Opt. Quant. Elect. 37, 1287–1304 (2005).
    [CrossRef]
  33. J. Riley, M. Hessen, V. Chernomordik, and A. Gandjbakhche, “Choice of data types in time resolved fluorescence enhanced diffuse optical tomography,” Med. Phys. 34, 4890–4900 (2007).
    [CrossRef]
  34. N. Ducros, L. Hervé, A. Da Silva, J. Dinten, and F. Peyrin, “A comprehensive study of the use of temporal moments in time-resolved diffuse optical tomography: part I. theoretical material,” Phys. Med. Biol. 54, 7089–7105 (2009).
    [CrossRef] [PubMed]
  35. N. Ducros, A. Da Silva, L. Hervé, J.-M. Dinten, and F. Peyrin, “A comprehensive study of the use of temporal moments in time-resolved diffuse optical tomography: part II. three-dimensional reconstructions,” Phys. Med. Biol. 54, 7107–7119(2009).
    [CrossRef] [PubMed]

2010

F. Leblond, S. C. Davis, P. A. Valdes, and B. W. Pogue, “Pre-clinical whole body fluorescence imaging: Review of instruments, methods and applications,” J. Photochem. Photobiol. B: Biol. 98, 77–94 (2010).
[CrossRef]

2009

R. E. Nothdurft, S. V. Patwardhan, W. Akers, Y.-P. Ye, S. Achilefu, and J. P. Culver, “In vivo fluorescence lifetime tomography,” J. Biomed. Opt. 14, 024004 (2009).
[CrossRef] [PubMed]

V. Gaind, K. J. Webb, S. Kularatne, and C. A. Bouman, “Towards in vivo imaging of intramolecular fluorescence resonance energy transfer parameters,” J. Opt. Soc. Am. A 26, 1805 (2009).
[CrossRef]

J. McGinty, V. Y. Soloviev, K. B. Tahir, R. Laine, D. W. Stuckey, J. V. Hajnal, A. Sardini, P. M. W. French, and S. R. Arridge, “Three-dimensional imaging of Forster resonance energy transfer in heterogeneous turbid media by tomographic fluorescent lifetime imaging,” Opt. Lett. 34, 2772–2774 (2009).
[CrossRef] [PubMed]

D. Kepshire, N. Mincu, M. Hutchins, J. Gruber, H. Dehghani, J. Hypnarowski, F. Leblond, M. Khayat, and B. W. Pogue, “A microcomupter tomography guided fluorescence tomography system for small animal molecular imaging,” Rev. Sci. Instrum. 80043701 (2009).
[CrossRef] [PubMed]

F. Leblond, D. Kepshire, J. A. Ohara, H. Dehghani, S. Srinivasan, N. Mincu, M. Hutchins, M. Khayat, and B. W. Pogue, “Imaging protoporphyrin IX fluorescence with a time-domain FMT/microCT system,” Proc. SPIE 7171, 717106 (2009).
[CrossRef]

V. Y. Soloviev, C. D’Andrea, G. Valentini, R. Cubeddu, and S. R. Arridge, “Combined reconstruction of fluorescent and optical parameters using time-resolved data,” Appl. Opt. 48, 28–36 (2009).
[CrossRef]

N. Ducros, L. Hervé, A. Da Silva, J. Dinten, and F. Peyrin, “A comprehensive study of the use of temporal moments in time-resolved diffuse optical tomography: part I. theoretical material,” Phys. Med. Biol. 54, 7089–7105 (2009).
[CrossRef] [PubMed]

N. Ducros, A. Da Silva, L. Hervé, J.-M. Dinten, and F. Peyrin, “A comprehensive study of the use of temporal moments in time-resolved diffuse optical tomography: part II. three-dimensional reconstructions,” Phys. Med. Biol. 54, 7107–7119(2009).
[CrossRef] [PubMed]

2008

2007

2006

2005

S. Lam, F. Lesage, and X. Intes, “Time domain fluorescent diffuse optical tomography: analytical expressions,” Opt. Express 13, 2263–2275 (2005).
[CrossRef] [PubMed]

F. Gao, H.-J. Zhao, Y. Tanikawa, K. Homma, and Y. Yamada, “Influences of target size and contrast on near infrared diffuse optical tomography—a comparison between featured-data and full time-resolved schemes,” Opt. Quant. Elect. 37, 1287–1304 (2005).
[CrossRef]

A. Soubret, J. Ripoll, and V. Ntziachristos, “Accuracy of fluorescent tomography in the presence of heterogeneities: study of the normalized Born ratio,” IEEE Trans. Med. Imaging 24, 1377–1386 (2005).
[CrossRef] [PubMed]

2003

2002

V. Ntziachristos, C.-H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nature Med. 8, 757–760 (2002).
[CrossRef] [PubMed]

X. Intes, V. Ntziachristos, J. P., A. Yodh, and B. Chance, “Projection access order in algebraic reconstruction technique for diffuse optical tomography,” Phys. Med. Biol. 47, N1–N10(2002).
[CrossRef] [PubMed]

2000

E. M. C. Hillman, J. C. C, F. E. W. Schmidt, S. R. Arridge, M. Schweiger, H. Dehgani, and D. Deply, “Calibration techniques and datatyoe extraction for time-resolved optical tomography,” Rev. Sci. Instrum. 71, 3415–3427 (2000).
[CrossRef]

1999

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999).
[CrossRef]

1998

1997

Achilefu, S.

R. E. Nothdurft, S. V. Patwardhan, W. Akers, Y.-P. Ye, S. Achilefu, and J. P. Culver, “In vivo fluorescence lifetime tomography,” J. Biomed. Opt. 14, 024004 (2009).
[CrossRef] [PubMed]

Akers, W.

R. E. Nothdurft, S. V. Patwardhan, W. Akers, Y.-P. Ye, S. Achilefu, and J. P. Culver, “In vivo fluorescence lifetime tomography,” J. Biomed. Opt. 14, 024004 (2009).
[CrossRef] [PubMed]

Arridge, S. R.

Bacskai, B. J.

A. T. N. Kumar, S. B. Raymond, A. K. Dunn, B. J. Bacskai, and D. A. Boas, “A time domain fluorescence tomography system for small animal imaging,” IEEE Trans. Med. Imag. 27, 1152–1163 (2008).
[CrossRef]

A. T. N. Kumar, S. B. Raymond, G. Boverman, D. A. Boas, and B. J. Bacskai, “Time resolved fluorescence tomography of turbid media based on lifetime contrast,” Opt. Express 14, 12255–12270 (2006).
[CrossRef] [PubMed]

Bai, J.

Becker, W.

W. Becker, Advanced Time-Correlated Single Photon Counting Techniques (Springer, 2005).
[CrossRef]

Boas, D. A.

Bouman, C. A.

Boverman, G.

Brambilla, M.

M. Brambilla, L. Spinelli, A. Pifferi, A. Torricelli, and R. Cubeddu, “Time-resolved scanning system for double reflectance and transmittance fluorescence imaging of diffusive media,” Rev. Sci. Instrum. 79, 013103 (2008).
[CrossRef] [PubMed]

Bremer, C.

V. Ntziachristos, C.-H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nature Med. 8, 757–760 (2002).
[CrossRef] [PubMed]

C, J. C.

E. M. C. Hillman, J. C. C, F. E. W. Schmidt, S. R. Arridge, M. Schweiger, H. Dehgani, and D. Deply, “Calibration techniques and datatyoe extraction for time-resolved optical tomography,” Rev. Sci. Instrum. 71, 3415–3427 (2000).
[CrossRef]

Chance, B.

X. Intes, V. Ntziachristos, J. P., A. Yodh, and B. Chance, “Projection access order in algebraic reconstruction technique for diffuse optical tomography,” Phys. Med. Biol. 47, N1–N10(2002).
[CrossRef] [PubMed]

Chen, N. G.

Chernomordik, V.

J. Riley, M. Hessen, V. Chernomordik, and A. Gandjbakhche, “Choice of data types in time resolved fluorescence enhanced diffuse optical tomography,” Med. Phys. 34, 4890–4900 (2007).
[CrossRef]

Cubeddu, R.

V. Y. Soloviev, C. D’Andrea, G. Valentini, R. Cubeddu, and S. R. Arridge, “Combined reconstruction of fluorescent and optical parameters using time-resolved data,” Appl. Opt. 48, 28–36 (2009).
[CrossRef]

M. Brambilla, L. Spinelli, A. Pifferi, A. Torricelli, and R. Cubeddu, “Time-resolved scanning system for double reflectance and transmittance fluorescence imaging of diffusive media,” Rev. Sci. Instrum. 79, 013103 (2008).
[CrossRef] [PubMed]

Culver, J. P.

R. E. Nothdurft, S. V. Patwardhan, W. Akers, Y.-P. Ye, S. Achilefu, and J. P. Culver, “In vivo fluorescence lifetime tomography,” J. Biomed. Opt. 14, 024004 (2009).
[CrossRef] [PubMed]

D’Andrea, C.

Da Silva, A.

N. Ducros, L. Hervé, A. Da Silva, J. Dinten, and F. Peyrin, “A comprehensive study of the use of temporal moments in time-resolved diffuse optical tomography: part I. theoretical material,” Phys. Med. Biol. 54, 7089–7105 (2009).
[CrossRef] [PubMed]

N. Ducros, A. Da Silva, L. Hervé, J.-M. Dinten, and F. Peyrin, “A comprehensive study of the use of temporal moments in time-resolved diffuse optical tomography: part II. three-dimensional reconstructions,” Phys. Med. Biol. 54, 7107–7119(2009).
[CrossRef] [PubMed]

Davis, S. C.

F. Leblond, S. C. Davis, P. A. Valdes, and B. W. Pogue, “Pre-clinical whole body fluorescence imaging: Review of instruments, methods and applications,” J. Photochem. Photobiol. B: Biol. 98, 77–94 (2010).
[CrossRef]

Dehgani, H.

E. M. C. Hillman, J. C. C, F. E. W. Schmidt, S. R. Arridge, M. Schweiger, H. Dehgani, and D. Deply, “Calibration techniques and datatyoe extraction for time-resolved optical tomography,” Rev. Sci. Instrum. 71, 3415–3427 (2000).
[CrossRef]

Dehghani, H.

F. Leblond, D. Kepshire, J. A. Ohara, H. Dehghani, S. Srinivasan, N. Mincu, M. Hutchins, M. Khayat, and B. W. Pogue, “Imaging protoporphyrin IX fluorescence with a time-domain FMT/microCT system,” Proc. SPIE 7171, 717106 (2009).
[CrossRef]

D. Kepshire, N. Mincu, M. Hutchins, J. Gruber, H. Dehghani, J. Hypnarowski, F. Leblond, M. Khayat, and B. W. Pogue, “A microcomupter tomography guided fluorescence tomography system for small animal molecular imaging,” Rev. Sci. Instrum. 80043701 (2009).
[CrossRef] [PubMed]

Deply, D.

E. M. C. Hillman, J. C. C, F. E. W. Schmidt, S. R. Arridge, M. Schweiger, H. Dehgani, and D. Deply, “Calibration techniques and datatyoe extraction for time-resolved optical tomography,” Rev. Sci. Instrum. 71, 3415–3427 (2000).
[CrossRef]

Dinten, J.

N. Ducros, L. Hervé, A. Da Silva, J. Dinten, and F. Peyrin, “A comprehensive study of the use of temporal moments in time-resolved diffuse optical tomography: part I. theoretical material,” Phys. Med. Biol. 54, 7089–7105 (2009).
[CrossRef] [PubMed]

Dinten, J.-M.

N. Ducros, A. Da Silva, L. Hervé, J.-M. Dinten, and F. Peyrin, “A comprehensive study of the use of temporal moments in time-resolved diffuse optical tomography: part II. three-dimensional reconstructions,” Phys. Med. Biol. 54, 7107–7119(2009).
[CrossRef] [PubMed]

Ducros, N.

N. Ducros, A. Da Silva, L. Hervé, J.-M. Dinten, and F. Peyrin, “A comprehensive study of the use of temporal moments in time-resolved diffuse optical tomography: part II. three-dimensional reconstructions,” Phys. Med. Biol. 54, 7107–7119(2009).
[CrossRef] [PubMed]

N. Ducros, L. Hervé, A. Da Silva, J. Dinten, and F. Peyrin, “A comprehensive study of the use of temporal moments in time-resolved diffuse optical tomography: part I. theoretical material,” Phys. Med. Biol. 54, 7089–7105 (2009).
[CrossRef] [PubMed]

Dunn, A. K.

A. T. N. Kumar, S. B. Raymond, A. K. Dunn, B. J. Bacskai, and D. A. Boas, “A time domain fluorescence tomography system for small animal imaging,” IEEE Trans. Med. Imag. 27, 1152–1163 (2008).
[CrossRef]

Elson, D. S.

French, P. M.

French, P. M. W.

Gaind, V.

Gandjbakhche, A.

J. Riley, M. Hessen, V. Chernomordik, and A. Gandjbakhche, “Choice of data types in time resolved fluorescence enhanced diffuse optical tomography,” Med. Phys. 34, 4890–4900 (2007).
[CrossRef]

Gao, F.

Graves, E. E.

E. E. Graves, J. Rapoll, R. Weissleder, and V. Ntziachristos, “A submillimeter resolution fluorescence molecular imaging system for small animal imaging,” Med. Phys. 30, 901–911(2003).
[CrossRef] [PubMed]

Gruber, J.

D. Kepshire, N. Mincu, M. Hutchins, J. Gruber, H. Dehghani, J. Hypnarowski, F. Leblond, M. Khayat, and B. W. Pogue, “A microcomupter tomography guided fluorescence tomography system for small animal molecular imaging,” Rev. Sci. Instrum. 80043701 (2009).
[CrossRef] [PubMed]

Hajnal, J. V.

Hall, D. J.

Han, S.-H.

Hawrysz, D. J.

He, H.-Y.

Hervé, L.

N. Ducros, L. Hervé, A. Da Silva, J. Dinten, and F. Peyrin, “A comprehensive study of the use of temporal moments in time-resolved diffuse optical tomography: part I. theoretical material,” Phys. Med. Biol. 54, 7089–7105 (2009).
[CrossRef] [PubMed]

N. Ducros, A. Da Silva, L. Hervé, J.-M. Dinten, and F. Peyrin, “A comprehensive study of the use of temporal moments in time-resolved diffuse optical tomography: part II. three-dimensional reconstructions,” Phys. Med. Biol. 54, 7107–7119(2009).
[CrossRef] [PubMed]

Hessen, M.

J. Riley, M. Hessen, V. Chernomordik, and A. Gandjbakhche, “Choice of data types in time resolved fluorescence enhanced diffuse optical tomography,” Med. Phys. 34, 4890–4900 (2007).
[CrossRef]

Hillman, E. M. C.

E. M. C. Hillman, J. C. C, F. E. W. Schmidt, S. R. Arridge, M. Schweiger, H. Dehgani, and D. Deply, “Calibration techniques and datatyoe extraction for time-resolved optical tomography,” Rev. Sci. Instrum. 71, 3415–3427 (2000).
[CrossRef]

Homma, K.

F. Gao, H.-J. Zhao, Y. Tanikawa, K. Homma, and Y. Yamada, “Influences of target size and contrast on near infrared diffuse optical tomography—a comparison between featured-data and full time-resolved schemes,” Opt. Quant. Elect. 37, 1287–1304 (2005).
[CrossRef]

Hutchins, M.

D. Kepshire, N. Mincu, M. Hutchins, J. Gruber, H. Dehghani, J. Hypnarowski, F. Leblond, M. Khayat, and B. W. Pogue, “A microcomupter tomography guided fluorescence tomography system for small animal molecular imaging,” Rev. Sci. Instrum. 80043701 (2009).
[CrossRef] [PubMed]

F. Leblond, D. Kepshire, J. A. Ohara, H. Dehghani, S. Srinivasan, N. Mincu, M. Hutchins, M. Khayat, and B. W. Pogue, “Imaging protoporphyrin IX fluorescence with a time-domain FMT/microCT system,” Proc. SPIE 7171, 717106 (2009).
[CrossRef]

Hypnarowski, J.

D. Kepshire, N. Mincu, M. Hutchins, J. Gruber, H. Dehghani, J. Hypnarowski, F. Leblond, M. Khayat, and B. W. Pogue, “A microcomupter tomography guided fluorescence tomography system for small animal molecular imaging,” Rev. Sci. Instrum. 80043701 (2009).
[CrossRef] [PubMed]

Intes, X.

S. Lam, F. Lesage, and X. Intes, “Time domain fluorescent diffuse optical tomography: analytical expressions,” Opt. Express 13, 2263–2275 (2005).
[CrossRef] [PubMed]

X. Intes, V. Ntziachristos, J. P., A. Yodh, and B. Chance, “Projection access order in algebraic reconstruction technique for diffuse optical tomography,” Phys. Med. Biol. 47, N1–N10(2002).
[CrossRef] [PubMed]

Jiang, H.-B.

Kepshire, D.

F. Leblond, D. Kepshire, J. A. Ohara, H. Dehghani, S. Srinivasan, N. Mincu, M. Hutchins, M. Khayat, and B. W. Pogue, “Imaging protoporphyrin IX fluorescence with a time-domain FMT/microCT system,” Proc. SPIE 7171, 717106 (2009).
[CrossRef]

D. Kepshire, N. Mincu, M. Hutchins, J. Gruber, H. Dehghani, J. Hypnarowski, F. Leblond, M. Khayat, and B. W. Pogue, “A microcomupter tomography guided fluorescence tomography system for small animal molecular imaging,” Rev. Sci. Instrum. 80043701 (2009).
[CrossRef] [PubMed]

Khayat, M.

D. Kepshire, N. Mincu, M. Hutchins, J. Gruber, H. Dehghani, J. Hypnarowski, F. Leblond, M. Khayat, and B. W. Pogue, “A microcomupter tomography guided fluorescence tomography system for small animal molecular imaging,” Rev. Sci. Instrum. 80043701 (2009).
[CrossRef] [PubMed]

F. Leblond, D. Kepshire, J. A. Ohara, H. Dehghani, S. Srinivasan, N. Mincu, M. Hutchins, M. Khayat, and B. W. Pogue, “Imaging protoporphyrin IX fluorescence with a time-domain FMT/microCT system,” Proc. SPIE 7171, 717106 (2009).
[CrossRef]

Kularatne, S.

Kumar, A. T. N.

A. T. N. Kumar, S. B. Raymond, A. K. Dunn, B. J. Bacskai, and D. A. Boas, “A time domain fluorescence tomography system for small animal imaging,” IEEE Trans. Med. Imag. 27, 1152–1163 (2008).
[CrossRef]

A. T. N. Kumar, S. B. Raymond, G. Boverman, D. A. Boas, and B. J. Bacskai, “Time resolved fluorescence tomography of turbid media based on lifetime contrast,” Opt. Express 14, 12255–12270 (2006).
[CrossRef] [PubMed]

Laine, R.

Lam, S.

Leblond, F.

F. Leblond, S. C. Davis, P. A. Valdes, and B. W. Pogue, “Pre-clinical whole body fluorescence imaging: Review of instruments, methods and applications,” J. Photochem. Photobiol. B: Biol. 98, 77–94 (2010).
[CrossRef]

D. Kepshire, N. Mincu, M. Hutchins, J. Gruber, H. Dehghani, J. Hypnarowski, F. Leblond, M. Khayat, and B. W. Pogue, “A microcomupter tomography guided fluorescence tomography system for small animal molecular imaging,” Rev. Sci. Instrum. 80043701 (2009).
[CrossRef] [PubMed]

F. Leblond, D. Kepshire, J. A. Ohara, H. Dehghani, S. Srinivasan, N. Mincu, M. Hutchins, M. Khayat, and B. W. Pogue, “Imaging protoporphyrin IX fluorescence with a time-domain FMT/microCT system,” Proc. SPIE 7171, 717106 (2009).
[CrossRef]

Lesage, F.

Marjono, A.

McGinty, J.

Millane, R. P.

Milstein, A. B.

Mincu, N.

D. Kepshire, N. Mincu, M. Hutchins, J. Gruber, H. Dehghani, J. Hypnarowski, F. Leblond, M. Khayat, and B. W. Pogue, “A microcomupter tomography guided fluorescence tomography system for small animal molecular imaging,” Rev. Sci. Instrum. 80043701 (2009).
[CrossRef] [PubMed]

F. Leblond, D. Kepshire, J. A. Ohara, H. Dehghani, S. Srinivasan, N. Mincu, M. Hutchins, M. Khayat, and B. W. Pogue, “Imaging protoporphyrin IX fluorescence with a time-domain FMT/microCT system,” Proc. SPIE 7171, 717106 (2009).
[CrossRef]

Neil, M. A.

Neil, M. A. A.

Nothdurft, R. E.

R. E. Nothdurft, S. V. Patwardhan, W. Akers, Y.-P. Ye, S. Achilefu, and J. P. Culver, “In vivo fluorescence lifetime tomography,” J. Biomed. Opt. 14, 024004 (2009).
[CrossRef] [PubMed]

Ntziachristos, V.

A. Soubret, J. Ripoll, and V. Ntziachristos, “Accuracy of fluorescent tomography in the presence of heterogeneities: study of the normalized Born ratio,” IEEE Trans. Med. Imaging 24, 1377–1386 (2005).
[CrossRef] [PubMed]

E. E. Graves, J. Rapoll, R. Weissleder, and V. Ntziachristos, “A submillimeter resolution fluorescence molecular imaging system for small animal imaging,” Med. Phys. 30, 901–911(2003).
[CrossRef] [PubMed]

X. Intes, V. Ntziachristos, J. P., A. Yodh, and B. Chance, “Projection access order in algebraic reconstruction technique for diffuse optical tomography,” Phys. Med. Biol. 47, N1–N10(2002).
[CrossRef] [PubMed]

V. Ntziachristos, C.-H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nature Med. 8, 757–760 (2002).
[CrossRef] [PubMed]

Oh, S.

Ohara, J. A.

F. Leblond, D. Kepshire, J. A. Ohara, H. Dehghani, S. Srinivasan, N. Mincu, M. Hutchins, M. Khayat, and B. W. Pogue, “Imaging protoporphyrin IX fluorescence with a time-domain FMT/microCT system,” Proc. SPIE 7171, 717106 (2009).
[CrossRef]

P., J.

X. Intes, V. Ntziachristos, J. P., A. Yodh, and B. Chance, “Projection access order in algebraic reconstruction technique for diffuse optical tomography,” Phys. Med. Biol. 47, N1–N10(2002).
[CrossRef] [PubMed]

Patwardhan, S. V.

R. E. Nothdurft, S. V. Patwardhan, W. Akers, Y.-P. Ye, S. Achilefu, and J. P. Culver, “In vivo fluorescence lifetime tomography,” J. Biomed. Opt. 14, 024004 (2009).
[CrossRef] [PubMed]

Peyrin, F.

N. Ducros, A. Da Silva, L. Hervé, J.-M. Dinten, and F. Peyrin, “A comprehensive study of the use of temporal moments in time-resolved diffuse optical tomography: part II. three-dimensional reconstructions,” Phys. Med. Biol. 54, 7107–7119(2009).
[CrossRef] [PubMed]

N. Ducros, L. Hervé, A. Da Silva, J. Dinten, and F. Peyrin, “A comprehensive study of the use of temporal moments in time-resolved diffuse optical tomography: part I. theoretical material,” Phys. Med. Biol. 54, 7089–7105 (2009).
[CrossRef] [PubMed]

Pifferi, A.

M. Brambilla, L. Spinelli, A. Pifferi, A. Torricelli, and R. Cubeddu, “Time-resolved scanning system for double reflectance and transmittance fluorescence imaging of diffusive media,” Rev. Sci. Instrum. 79, 013103 (2008).
[CrossRef] [PubMed]

Pogue, B. W.

F. Leblond, S. C. Davis, P. A. Valdes, and B. W. Pogue, “Pre-clinical whole body fluorescence imaging: Review of instruments, methods and applications,” J. Photochem. Photobiol. B: Biol. 98, 77–94 (2010).
[CrossRef]

D. Kepshire, N. Mincu, M. Hutchins, J. Gruber, H. Dehghani, J. Hypnarowski, F. Leblond, M. Khayat, and B. W. Pogue, “A microcomupter tomography guided fluorescence tomography system for small animal molecular imaging,” Rev. Sci. Instrum. 80043701 (2009).
[CrossRef] [PubMed]

F. Leblond, D. Kepshire, J. A. Ohara, H. Dehghani, S. Srinivasan, N. Mincu, M. Hutchins, M. Khayat, and B. W. Pogue, “Imaging protoporphyrin IX fluorescence with a time-domain FMT/microCT system,” Proc. SPIE 7171, 717106 (2009).
[CrossRef]

Rapoll, J.

E. E. Graves, J. Rapoll, R. Weissleder, and V. Ntziachristos, “A submillimeter resolution fluorescence molecular imaging system for small animal imaging,” Med. Phys. 30, 901–911(2003).
[CrossRef] [PubMed]

Raymond, S. B.

A. T. N. Kumar, S. B. Raymond, A. K. Dunn, B. J. Bacskai, and D. A. Boas, “A time domain fluorescence tomography system for small animal imaging,” IEEE Trans. Med. Imag. 27, 1152–1163 (2008).
[CrossRef]

A. T. N. Kumar, S. B. Raymond, G. Boverman, D. A. Boas, and B. J. Bacskai, “Time resolved fluorescence tomography of turbid media based on lifetime contrast,” Opt. Express 14, 12255–12270 (2006).
[CrossRef] [PubMed]

Riley, J.

J. Riley, M. Hessen, V. Chernomordik, and A. Gandjbakhche, “Choice of data types in time resolved fluorescence enhanced diffuse optical tomography,” Med. Phys. 34, 4890–4900 (2007).
[CrossRef]

Ripoll, J.

A. Soubret, J. Ripoll, and V. Ntziachristos, “Accuracy of fluorescent tomography in the presence of heterogeneities: study of the normalized Born ratio,” IEEE Trans. Med. Imaging 24, 1377–1386 (2005).
[CrossRef] [PubMed]

Sardini, A.

Schmidt, F. E. W.

E. M. C. Hillman, J. C. C, F. E. W. Schmidt, S. R. Arridge, M. Schweiger, H. Dehgani, and D. Deply, “Calibration techniques and datatyoe extraction for time-resolved optical tomography,” Rev. Sci. Instrum. 71, 3415–3427 (2000).
[CrossRef]

Schweiger, M.

E. M. C. Hillman, J. C. C, F. E. W. Schmidt, S. R. Arridge, M. Schweiger, H. Dehgani, and D. Deply, “Calibration techniques and datatyoe extraction for time-resolved optical tomography,” Rev. Sci. Instrum. 71, 3415–3427 (2000).
[CrossRef]

Sevick-Muraca, E. M.

Soloviev, V. Y.

Song, X. L.

Soubret, A.

A. Soubret, J. Ripoll, and V. Ntziachristos, “Accuracy of fluorescent tomography in the presence of heterogeneities: study of the normalized Born ratio,” IEEE Trans. Med. Imaging 24, 1377–1386 (2005).
[CrossRef] [PubMed]

Spinelli, L.

M. Brambilla, L. Spinelli, A. Pifferi, A. Torricelli, and R. Cubeddu, “Time-resolved scanning system for double reflectance and transmittance fluorescence imaging of diffusive media,” Rev. Sci. Instrum. 79, 013103 (2008).
[CrossRef] [PubMed]

Srinivasan, S.

F. Leblond, D. Kepshire, J. A. Ohara, H. Dehghani, S. Srinivasan, N. Mincu, M. Hutchins, M. Khayat, and B. W. Pogue, “Imaging protoporphyrin IX fluorescence with a time-domain FMT/microCT system,” Proc. SPIE 7171, 717106 (2009).
[CrossRef]

Stuckey, D. W.

Tahir, K. B.

Tanikawa, Y.

Thompson, A. B.

Torricelli, A.

M. Brambilla, L. Spinelli, A. Pifferi, A. Torricelli, and R. Cubeddu, “Time-resolved scanning system for double reflectance and transmittance fluorescence imaging of diffusive media,” Rev. Sci. Instrum. 79, 013103 (2008).
[CrossRef] [PubMed]

Tung, C.-H.

V. Ntziachristos, C.-H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nature Med. 8, 757–760 (2002).
[CrossRef] [PubMed]

Valdes, P. A.

F. Leblond, S. C. Davis, P. A. Valdes, and B. W. Pogue, “Pre-clinical whole body fluorescence imaging: Review of instruments, methods and applications,” J. Photochem. Photobiol. B: Biol. 98, 77–94 (2010).
[CrossRef]

Valentini, G.

Wang, D. F.

Wang, H. K.

Webb, K. J.

Weissleder, R.

E. E. Graves, J. Rapoll, R. Weissleder, and V. Ntziachristos, “A submillimeter resolution fluorescence molecular imaging system for small animal imaging,” Med. Phys. 30, 901–911(2003).
[CrossRef] [PubMed]

V. Ntziachristos, C.-H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nature Med. 8, 757–760 (2002).
[CrossRef] [PubMed]

Wu, J.

Yamada, Y.

Ye, Y.-P.

R. E. Nothdurft, S. V. Patwardhan, W. Akers, Y.-P. Ye, S. Achilefu, and J. P. Culver, “In vivo fluorescence lifetime tomography,” J. Biomed. Opt. 14, 024004 (2009).
[CrossRef] [PubMed]

Yodh, A.

X. Intes, V. Ntziachristos, J. P., A. Yodh, and B. Chance, “Projection access order in algebraic reconstruction technique for diffuse optical tomography,” Phys. Med. Biol. 47, N1–N10(2002).
[CrossRef] [PubMed]

Zhang, L.-M.

Zhang, Q.

Zhao, H.-J

Zhao, H.-J.

Appl. Opt.

IEEE Trans. Med. Imag.

A. T. N. Kumar, S. B. Raymond, A. K. Dunn, B. J. Bacskai, and D. A. Boas, “A time domain fluorescence tomography system for small animal imaging,” IEEE Trans. Med. Imag. 27, 1152–1163 (2008).
[CrossRef]

IEEE Trans. Med. Imaging

A. Soubret, J. Ripoll, and V. Ntziachristos, “Accuracy of fluorescent tomography in the presence of heterogeneities: study of the normalized Born ratio,” IEEE Trans. Med. Imaging 24, 1377–1386 (2005).
[CrossRef] [PubMed]

Inverse Probl.

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999).
[CrossRef]

J. Biomed. Opt.

R. E. Nothdurft, S. V. Patwardhan, W. Akers, Y.-P. Ye, S. Achilefu, and J. P. Culver, “In vivo fluorescence lifetime tomography,” J. Biomed. Opt. 14, 024004 (2009).
[CrossRef] [PubMed]

H.-J. Zhao, F. Gao, Y. Tanikawa, and Y. Yamada, “Time-resolved diffuse optical tomography and its application to in vitro and in vivo imaging,” J. Biomed. Opt. 12, 062107(2007).
[CrossRef]

J. Opt. Soc. Am. A

J. Photochem. Photobiol. B: Biol.

F. Leblond, S. C. Davis, P. A. Valdes, and B. W. Pogue, “Pre-clinical whole body fluorescence imaging: Review of instruments, methods and applications,” J. Photochem. Photobiol. B: Biol. 98, 77–94 (2010).
[CrossRef]

Med. Phys.

E. E. Graves, J. Rapoll, R. Weissleder, and V. Ntziachristos, “A submillimeter resolution fluorescence molecular imaging system for small animal imaging,” Med. Phys. 30, 901–911(2003).
[CrossRef] [PubMed]

J. Riley, M. Hessen, V. Chernomordik, and A. Gandjbakhche, “Choice of data types in time resolved fluorescence enhanced diffuse optical tomography,” Med. Phys. 34, 4890–4900 (2007).
[CrossRef]

Nature Med.

V. Ntziachristos, C.-H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nature Med. 8, 757–760 (2002).
[CrossRef] [PubMed]

Opt. Express

X. L. Song, D. F. Wang, N. G. Chen, J. Bai, and H. K. Wang, “Reconstruction for free-space fluorescence tomography using a novel hybrid adaptive finite element algorithm,” Opt. Express 15, 18300–18317 (2007).
[CrossRef] [PubMed]

L.-M. Zhang, F. Gao, H.-Y. He, and H.-J. Zhao, “Three-dimensional scheme for time-domain fluorescence molecular tomography based on Laplace transforms with noise-robust factors,” Opt. Express 16, 7214–7223 (2008).
[CrossRef] [PubMed]

F. Gao, H.-J. Zhao, L.-M. Zhang, Y. Tanikawa, A. Marjono, and Y. Yamada, “A self-normalized, full time-resolved method for fluorescence diffuse optical tomography,” Opt. Express 16, 13104–13121 (2008).
[CrossRef] [PubMed]

F. Gao, H.-J Zhao, L.-M. Zhang, Y. Tanikawa, A. Marjono, and Y. Yamada, “A self-normalized, full time-resolved method for fluorescence diffuse optical tomography,” Opt. Express 16, 13104–13121 (2008).
[CrossRef] [PubMed]

S. Lam, F. Lesage, and X. Intes, “Time domain fluorescent diffuse optical tomography: analytical expressions,” Opt. Express 13, 2263–2275 (2005).
[CrossRef] [PubMed]

F. Gao, H.-J. Zhao, Y. Tanikawa, and Y. Yamada, “A linear, featured-data scheme for image reconstruction in time-domain fluorescence molecular tomography,” Opt. Express 14, 7109–7124 (2006).
[CrossRef] [PubMed]

A. T. N. Kumar, S. B. Raymond, G. Boverman, D. A. Boas, and B. J. Bacskai, “Time resolved fluorescence tomography of turbid media based on lifetime contrast,” Opt. Express 14, 12255–12270 (2006).
[CrossRef] [PubMed]

Opt. Lett.

Opt. Quant. Elect.

F. Gao, H.-J. Zhao, Y. Tanikawa, K. Homma, and Y. Yamada, “Influences of target size and contrast on near infrared diffuse optical tomography—a comparison between featured-data and full time-resolved schemes,” Opt. Quant. Elect. 37, 1287–1304 (2005).
[CrossRef]

Phys. Med. Biol.

N. Ducros, L. Hervé, A. Da Silva, J. Dinten, and F. Peyrin, “A comprehensive study of the use of temporal moments in time-resolved diffuse optical tomography: part I. theoretical material,” Phys. Med. Biol. 54, 7089–7105 (2009).
[CrossRef] [PubMed]

N. Ducros, A. Da Silva, L. Hervé, J.-M. Dinten, and F. Peyrin, “A comprehensive study of the use of temporal moments in time-resolved diffuse optical tomography: part II. three-dimensional reconstructions,” Phys. Med. Biol. 54, 7107–7119(2009).
[CrossRef] [PubMed]

X. Intes, V. Ntziachristos, J. P., A. Yodh, and B. Chance, “Projection access order in algebraic reconstruction technique for diffuse optical tomography,” Phys. Med. Biol. 47, N1–N10(2002).
[CrossRef] [PubMed]

Proc. SPIE

F. Leblond, D. Kepshire, J. A. Ohara, H. Dehghani, S. Srinivasan, N. Mincu, M. Hutchins, M. Khayat, and B. W. Pogue, “Imaging protoporphyrin IX fluorescence with a time-domain FMT/microCT system,” Proc. SPIE 7171, 717106 (2009).
[CrossRef]

Rev. Sci. Instrum.

E. M. C. Hillman, J. C. C, F. E. W. Schmidt, S. R. Arridge, M. Schweiger, H. Dehgani, and D. Deply, “Calibration techniques and datatyoe extraction for time-resolved optical tomography,” Rev. Sci. Instrum. 71, 3415–3427 (2000).
[CrossRef]

M. Brambilla, L. Spinelli, A. Pifferi, A. Torricelli, and R. Cubeddu, “Time-resolved scanning system for double reflectance and transmittance fluorescence imaging of diffusive media,” Rev. Sci. Instrum. 79, 013103 (2008).
[CrossRef] [PubMed]

D. Kepshire, N. Mincu, M. Hutchins, J. Gruber, H. Dehghani, J. Hypnarowski, F. Leblond, M. Khayat, and B. W. Pogue, “A microcomupter tomography guided fluorescence tomography system for small animal molecular imaging,” Rev. Sci. Instrum. 80043701 (2009).
[CrossRef] [PubMed]

Other

W. Becker, Advanced Time-Correlated Single Photon Counting Techniques (Springer, 2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental setup based on a fiber-switched multichannel TCSPC system: (a) schematic diagram and (b) photo of the system (note that the TCSPC module and laser system are not displayed, due to the limited FOV).

Fig. 2
Fig. 2

Calibration tool used for the time-origin determination of the TCSPC channels for the 256 source–detector pairs: (a) sketch and (b) photo of the setup.

Fig. 3
Fig. 3

Sketch of phantom, computational model, and deployment of the optodes.

Fig. 4
Fig. 4

Normalized temporal profiles measured at both the excitation and emission wavelengths, along detection channels for the first source.

Fig. 5
Fig. 5

Fluorescent yield and lifetime images reconstructed from the simulated data for the experimental scenario, with fluorescent properties of the two targets being η μ af ( 1 ) = η μ af ( 2 ) = 0.0021 mm 1 and τ ( 1 ) = τ ( 2 ) = 1000 ps : (a) vertical slice at z = 15 mm , and (b) horizontal slice at y = 30 mm . The dashed rectangles and circles indicate the presumed locations and sizes of the targets.

Fig. 6
Fig. 6

Fluorescent yield and lifetime images reconstructed from the simulated data for the experimental scenario with the fluorescent properties of the two targets being η μ af ( 1 ) = η μ af ( 2 ) = 0.0021 mm 1 and τ ( 1 ) = τ ( 2 ) = 600 ps : (a) vertical slice at z = 15 mm , and (b) horizontal slice at y = 30 mm . The dashed rectangles and circles indicate the presumed locations and sizes of the targets.

Fig. 7
Fig. 7

Fluorescent yield and lifetime images reconstructed from the measured data: (a) vertical slice at z = 15 mm and (b) horizontal slice at y = 30 mm . Units: mm 1 for the yield and ps for the lifetime. The dashed rectangles and circles indicate the original locations and sizes of the targets.

Tables (1)

Tables Icon

Table 1 Comparison of Geometric and Fluorescent Properties of Realistic and Reconstructed Targets

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

{ [ · κ x ( r ) + ( μ ax ( r ) c + β ) ] Φ x ( r , ζ s , β ) = δ ( r ζ s ) [ · κ m ( r ) + ( μ am ( r ) c + β ) ] Φ m ( r , ζ s , β ) = c Φ x ( r , ζ s , β ) η μ af ( r ) / [ 1 + β τ ( r ) ] ,
I ^ m ( ξ d , ζ s , β ) I ^ x ( ξ d , ζ s , β ) = Θ I x ( ξ d , ζ s , β ) c G m ( ξ d , r , β ) Φ x ( r , ζ s , β ) x ( r , β ) d Ω ,
{ [ · D m ( r ) μ a m ( r ) c p ] Φ m ( r , r , p ) = δ ( r r ) G m ( ζ d , r , p ) = κ m ( ζ d ) n ^ ( ζ d ) · [ Φ m ( r , r , p ) ] | r = ζ d ,
I ^ n b ( β ) = W ( β ) x ( β ) ,
W d s , n ( β ) = Ω e c G ¯ m ( Ω e ) ( ξ d , β ) Φ x ( Ω e ) ( ζ s , β ) Ω e u n ( r ) d Ω ,
{ η μ af ( r ) = ( β + β ) x ( r , β + ) x ( r , β ) / [ β + x ( r , β + ) β x ( r , β ) ] τ ( r ) = [ x ( r , β + ) x ( r , β ) ] / [ β + x ( r , β + ) β x ( r , β ) ] .
β ± = ± 1 / [ 1 / ( μ ax ( B ) c ) + 1 / ( μ am ( B ) c ) + τ ( B ) ] ,
I ^ ν ( t ) = A I ν ( t ) h ( t τ ) + n ν ( t ) ,
I ^ m ( β ) I ^ x ( β ) A I m ( β ) h ( β ) e τ β A I x ( β ) h ( β ) e τ β = I m ( β ) I x ( β ) .
t s , d = t s , 1 + t 1 , d t 1 , 1 .
I ^ ν ( ξ d , ζ s , β ± ) Δ t n = 0 N tc [ I ^ ν ( ξ d , ζ s , t 2 n ) + I ^ ν ( ξ d , ζ s , t 2 n + 1 ) + I ^ ν ( ξ d , ζ s , t 2 n + 1 ) ] e β ± t n

Metrics