Abstract

Virtual deposition runs have been performed to estimate the production yield of selected oxide optical interference coatings when plasma ion-assisted deposition with an advanced plasma source is applied. Thereby, deposition of each layer can be terminated either by broadband optical monitoring or quartz crystal monitoring. Numerous deposition runs of single-layer coatings have been performed to investigate the reproducibility of coating properties and to quantify deposition errors for the simulation. Variations of the following parameters are considered in the simulation: refractive index, extinction coefficient, and film thickness. The refractive index and the extinction coefficient are simulated in terms of the oscillator model. The parameters are varied using an apodized normal distribution with known mean value and standard deviation. Simulation of variations in the film thickness is performed specific to the selected monitoring strategy. Several deposition runs of the selected oxide interference coatings have been performed to verify the simulation results by experimental data.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. R. Willey, Practical Design and Production of Optical Thin Films (Marcel Dekker, 2002).
  2. B. T. Sullivan and J. A. Dobrowolski, “Deposition error compensation for optical multilayer coatings. I. Theoretical description,” Appl. Opt. 31, 3821–3835 (1992).
    [CrossRef]
  3. C. Holm, “Optical thin film production with continuous reoptimization of layer thicknesses,” Appl. Opt. 18, 1978–1982(1979).
    [CrossRef]
  4. L. Li and Y. Yen, “Wideband monitoring and measuring system for optical coatings,” Appl. Opt. 28, 2889–2894 (1989).
    [CrossRef]
  5. J. A. Dobrowolski, “Modern computational methods for optical thin film systems,” Thin Solid Films 34, 313–321 (1976).
    [CrossRef]
  6. A. V. Tikhonravov and M. K. Trubetskov, “Computational manufacturing as a bridge between design and production,” Appl. Opt. 44, 6877–6884 (2005).
    [CrossRef]
  7. A. V. Tikhonravov, M. K. Trubetskov, M. A. Kokarev, T. V. Amotchkina, A. Duparré, E. Quesnel, D. Ristau, and S. Günster, “Effect of systematic errors in spectral photometric data on the accuracy of determination of optical parameters of dielectric thin films,” Appl. Opt. 41, 2555–2560 (2002).
    [CrossRef]
  8. A. V. Tikhonravov, M. K. Trubetskov, and T. V. Amotchkina, “Investigation of the effect of accumulation of thickness errors in optical coating production by broadband optical monitoring,” Appl. Opt. 45, 7026–7034 (2006).
    [CrossRef]
  9. E.-S. S. Aziz and C. Chassapis, “A decision-making framework model for design and manufacturing of mechanical transmission system development,” Eng. Comput. 21, 164–176 (2005).
    [CrossRef]
  10. N. A. Langrana, D. Qiu, E. Bossett, S. C. Danforth, M. Jafari, and A. Safari, “Virtual simulation and video microscopy for fused deposition methods,” Mater. Des. 21, 75–82 (2000).
    [CrossRef]
  11. S. Wilbrandt, O. Stenzel, N. Kaiser, M. K. Trubetskov, and A. V. Tikhonravov, “In situ optical characterization and reengineering of interference coatings,” Appl. Opt. 47, C49–C54 (2008).
    [CrossRef]
  12. http://www.optilayer.com.
  13. J. P. Borgogno, P. Bousquet, F. Flory, B. Lazarides, E. Pelletier, and P. Roche, “Inhomogeneity in films: limitation of the accuracy of optical monitoring of thin films,” Appl. Opt. 20, 90–94 (1981).
    [CrossRef]
  14. W. P. Theoni, “Deposition of optical coatings: process control and automation,” Thin Solid Films 88, 385–397 (1982).
    [CrossRef]
  15. B. Badoil, F. Lemarchand, M. Cathelinaud, and M. Lequime, “Interest of broadband optical monitoring for thin-film filter manufacturing,” Appl. Opt. 46, 4294–4303 (2007).
    [CrossRef]
  16. A. V. Tikhonravov and M. K. Trubetskov, “OptiMon.dll,” for details contact steffen.wilbrandt@iof.fraunhofer.de.
  17. H. A. Macleod, “Monitoring of optical coatings,” Appl. Opt. 20, 82–89 (1981).
    [CrossRef]
  18. O. Stenzel, The Physics of Thin Film Optical Spectra, Vol. 44 of Springer Series in Surface Sciences (Springer2005).
  19. http://www.sci-soft.com/Film%20Wizard.htm.
  20. http://www.wtheiss.com/?c=2&content=applications_scout.
  21. http://www.ftgsoftware.com/.
  22. http://www.jawoollam.com/software.html.
  23. http://www.thinfilmcenter.com.
  24. J. H. Dobrowolski, F. C. Ho, and A. Waldorf, “Determination of optical constants of thin film coating materials based on inverse synthesis,” Appl. Opt. 22, 3191–3200 (1983).
    [CrossRef]
  25. S. Wilbrandt, O. Stenzel, and N. Kaiser, “All-optical in-situ analysis of PIAD deposition processes,” Proc. SPIE 7101, 71010D (2008).
    [CrossRef]
  26. O. Stenzel, S. Wilbrandt, K. Friedrich, and N. Kaiser, “ Realistische Modellierung der NIR/VIS/UV-optischen Konstanten dünner optischer Schichten im Rahmen des Oszillatormodells,” Vakuum in Forschung und Praxis 21, 15 (2009).
    [CrossRef]
  27. O. Stenzel, S. Wilbrandt, D. Fasold, and N. Kaiser, “A hybrid in situ monitoring strategy for optical coating deposition: application to the preparation of chirped dielectric mirrors,” J. Opt. A Pure Appl. Opt. 10, 085305 (2008).
    [CrossRef]

2009 (1)

O. Stenzel, S. Wilbrandt, K. Friedrich, and N. Kaiser, “ Realistische Modellierung der NIR/VIS/UV-optischen Konstanten dünner optischer Schichten im Rahmen des Oszillatormodells,” Vakuum in Forschung und Praxis 21, 15 (2009).
[CrossRef]

2008 (3)

O. Stenzel, S. Wilbrandt, D. Fasold, and N. Kaiser, “A hybrid in situ monitoring strategy for optical coating deposition: application to the preparation of chirped dielectric mirrors,” J. Opt. A Pure Appl. Opt. 10, 085305 (2008).
[CrossRef]

S. Wilbrandt, O. Stenzel, and N. Kaiser, “All-optical in-situ analysis of PIAD deposition processes,” Proc. SPIE 7101, 71010D (2008).
[CrossRef]

S. Wilbrandt, O. Stenzel, N. Kaiser, M. K. Trubetskov, and A. V. Tikhonravov, “In situ optical characterization and reengineering of interference coatings,” Appl. Opt. 47, C49–C54 (2008).
[CrossRef]

2007 (1)

2006 (1)

2005 (2)

A. V. Tikhonravov and M. K. Trubetskov, “Computational manufacturing as a bridge between design and production,” Appl. Opt. 44, 6877–6884 (2005).
[CrossRef]

E.-S. S. Aziz and C. Chassapis, “A decision-making framework model for design and manufacturing of mechanical transmission system development,” Eng. Comput. 21, 164–176 (2005).
[CrossRef]

2002 (1)

2000 (1)

N. A. Langrana, D. Qiu, E. Bossett, S. C. Danforth, M. Jafari, and A. Safari, “Virtual simulation and video microscopy for fused deposition methods,” Mater. Des. 21, 75–82 (2000).
[CrossRef]

1992 (1)

1989 (1)

1983 (1)

1982 (1)

W. P. Theoni, “Deposition of optical coatings: process control and automation,” Thin Solid Films 88, 385–397 (1982).
[CrossRef]

1981 (2)

1979 (1)

1976 (1)

J. A. Dobrowolski, “Modern computational methods for optical thin film systems,” Thin Solid Films 34, 313–321 (1976).
[CrossRef]

Amotchkina, T. V.

Aziz, E.-S. S.

E.-S. S. Aziz and C. Chassapis, “A decision-making framework model for design and manufacturing of mechanical transmission system development,” Eng. Comput. 21, 164–176 (2005).
[CrossRef]

Badoil, B.

Borgogno, J. P.

Bossett, E.

N. A. Langrana, D. Qiu, E. Bossett, S. C. Danforth, M. Jafari, and A. Safari, “Virtual simulation and video microscopy for fused deposition methods,” Mater. Des. 21, 75–82 (2000).
[CrossRef]

Bousquet, P.

Cathelinaud, M.

Chassapis, C.

E.-S. S. Aziz and C. Chassapis, “A decision-making framework model for design and manufacturing of mechanical transmission system development,” Eng. Comput. 21, 164–176 (2005).
[CrossRef]

Danforth, S. C.

N. A. Langrana, D. Qiu, E. Bossett, S. C. Danforth, M. Jafari, and A. Safari, “Virtual simulation and video microscopy for fused deposition methods,” Mater. Des. 21, 75–82 (2000).
[CrossRef]

Dobrowolski, J. A.

Dobrowolski, J. H.

Duparré, A.

Fasold, D.

O. Stenzel, S. Wilbrandt, D. Fasold, and N. Kaiser, “A hybrid in situ monitoring strategy for optical coating deposition: application to the preparation of chirped dielectric mirrors,” J. Opt. A Pure Appl. Opt. 10, 085305 (2008).
[CrossRef]

Flory, F.

Friedrich, K.

O. Stenzel, S. Wilbrandt, K. Friedrich, and N. Kaiser, “ Realistische Modellierung der NIR/VIS/UV-optischen Konstanten dünner optischer Schichten im Rahmen des Oszillatormodells,” Vakuum in Forschung und Praxis 21, 15 (2009).
[CrossRef]

Günster, S.

Ho, F. C.

Holm, C.

Jafari, M.

N. A. Langrana, D. Qiu, E. Bossett, S. C. Danforth, M. Jafari, and A. Safari, “Virtual simulation and video microscopy for fused deposition methods,” Mater. Des. 21, 75–82 (2000).
[CrossRef]

Kaiser, N.

O. Stenzel, S. Wilbrandt, K. Friedrich, and N. Kaiser, “ Realistische Modellierung der NIR/VIS/UV-optischen Konstanten dünner optischer Schichten im Rahmen des Oszillatormodells,” Vakuum in Forschung und Praxis 21, 15 (2009).
[CrossRef]

S. Wilbrandt, O. Stenzel, N. Kaiser, M. K. Trubetskov, and A. V. Tikhonravov, “In situ optical characterization and reengineering of interference coatings,” Appl. Opt. 47, C49–C54 (2008).
[CrossRef]

O. Stenzel, S. Wilbrandt, D. Fasold, and N. Kaiser, “A hybrid in situ monitoring strategy for optical coating deposition: application to the preparation of chirped dielectric mirrors,” J. Opt. A Pure Appl. Opt. 10, 085305 (2008).
[CrossRef]

S. Wilbrandt, O. Stenzel, and N. Kaiser, “All-optical in-situ analysis of PIAD deposition processes,” Proc. SPIE 7101, 71010D (2008).
[CrossRef]

Kokarev, M. A.

Langrana, N. A.

N. A. Langrana, D. Qiu, E. Bossett, S. C. Danforth, M. Jafari, and A. Safari, “Virtual simulation and video microscopy for fused deposition methods,” Mater. Des. 21, 75–82 (2000).
[CrossRef]

Lazarides, B.

Lemarchand, F.

Lequime, M.

Li, L.

Macleod, H. A.

Pelletier, E.

Qiu, D.

N. A. Langrana, D. Qiu, E. Bossett, S. C. Danforth, M. Jafari, and A. Safari, “Virtual simulation and video microscopy for fused deposition methods,” Mater. Des. 21, 75–82 (2000).
[CrossRef]

Quesnel, E.

Ristau, D.

Roche, P.

Safari, A.

N. A. Langrana, D. Qiu, E. Bossett, S. C. Danforth, M. Jafari, and A. Safari, “Virtual simulation and video microscopy for fused deposition methods,” Mater. Des. 21, 75–82 (2000).
[CrossRef]

Stenzel, O.

O. Stenzel, S. Wilbrandt, K. Friedrich, and N. Kaiser, “ Realistische Modellierung der NIR/VIS/UV-optischen Konstanten dünner optischer Schichten im Rahmen des Oszillatormodells,” Vakuum in Forschung und Praxis 21, 15 (2009).
[CrossRef]

S. Wilbrandt, O. Stenzel, N. Kaiser, M. K. Trubetskov, and A. V. Tikhonravov, “In situ optical characterization and reengineering of interference coatings,” Appl. Opt. 47, C49–C54 (2008).
[CrossRef]

O. Stenzel, S. Wilbrandt, D. Fasold, and N. Kaiser, “A hybrid in situ monitoring strategy for optical coating deposition: application to the preparation of chirped dielectric mirrors,” J. Opt. A Pure Appl. Opt. 10, 085305 (2008).
[CrossRef]

S. Wilbrandt, O. Stenzel, and N. Kaiser, “All-optical in-situ analysis of PIAD deposition processes,” Proc. SPIE 7101, 71010D (2008).
[CrossRef]

O. Stenzel, The Physics of Thin Film Optical Spectra, Vol. 44 of Springer Series in Surface Sciences (Springer2005).

Sullivan, B. T.

Theoni, W. P.

W. P. Theoni, “Deposition of optical coatings: process control and automation,” Thin Solid Films 88, 385–397 (1982).
[CrossRef]

Tikhonravov, A. V.

Trubetskov, M. K.

Waldorf, A.

Wilbrandt, S.

O. Stenzel, S. Wilbrandt, K. Friedrich, and N. Kaiser, “ Realistische Modellierung der NIR/VIS/UV-optischen Konstanten dünner optischer Schichten im Rahmen des Oszillatormodells,” Vakuum in Forschung und Praxis 21, 15 (2009).
[CrossRef]

S. Wilbrandt, O. Stenzel, N. Kaiser, M. K. Trubetskov, and A. V. Tikhonravov, “In situ optical characterization and reengineering of interference coatings,” Appl. Opt. 47, C49–C54 (2008).
[CrossRef]

S. Wilbrandt, O. Stenzel, and N. Kaiser, “All-optical in-situ analysis of PIAD deposition processes,” Proc. SPIE 7101, 71010D (2008).
[CrossRef]

O. Stenzel, S. Wilbrandt, D. Fasold, and N. Kaiser, “A hybrid in situ monitoring strategy for optical coating deposition: application to the preparation of chirped dielectric mirrors,” J. Opt. A Pure Appl. Opt. 10, 085305 (2008).
[CrossRef]

Willey, R. R.

R. R. Willey, Practical Design and Production of Optical Thin Films (Marcel Dekker, 2002).

Yen, Y.

Appl. Opt. (11)

C. Holm, “Optical thin film production with continuous reoptimization of layer thicknesses,” Appl. Opt. 18, 1978–1982(1979).
[CrossRef]

H. A. Macleod, “Monitoring of optical coatings,” Appl. Opt. 20, 82–89 (1981).
[CrossRef]

J. P. Borgogno, P. Bousquet, F. Flory, B. Lazarides, E. Pelletier, and P. Roche, “Inhomogeneity in films: limitation of the accuracy of optical monitoring of thin films,” Appl. Opt. 20, 90–94 (1981).
[CrossRef]

J. H. Dobrowolski, F. C. Ho, and A. Waldorf, “Determination of optical constants of thin film coating materials based on inverse synthesis,” Appl. Opt. 22, 3191–3200 (1983).
[CrossRef]

L. Li and Y. Yen, “Wideband monitoring and measuring system for optical coatings,” Appl. Opt. 28, 2889–2894 (1989).
[CrossRef]

B. T. Sullivan and J. A. Dobrowolski, “Deposition error compensation for optical multilayer coatings. I. Theoretical description,” Appl. Opt. 31, 3821–3835 (1992).
[CrossRef]

A. V. Tikhonravov, M. K. Trubetskov, M. A. Kokarev, T. V. Amotchkina, A. Duparré, E. Quesnel, D. Ristau, and S. Günster, “Effect of systematic errors in spectral photometric data on the accuracy of determination of optical parameters of dielectric thin films,” Appl. Opt. 41, 2555–2560 (2002).
[CrossRef]

A. V. Tikhonravov and M. K. Trubetskov, “Computational manufacturing as a bridge between design and production,” Appl. Opt. 44, 6877–6884 (2005).
[CrossRef]

A. V. Tikhonravov, M. K. Trubetskov, and T. V. Amotchkina, “Investigation of the effect of accumulation of thickness errors in optical coating production by broadband optical monitoring,” Appl. Opt. 45, 7026–7034 (2006).
[CrossRef]

B. Badoil, F. Lemarchand, M. Cathelinaud, and M. Lequime, “Interest of broadband optical monitoring for thin-film filter manufacturing,” Appl. Opt. 46, 4294–4303 (2007).
[CrossRef]

S. Wilbrandt, O. Stenzel, N. Kaiser, M. K. Trubetskov, and A. V. Tikhonravov, “In situ optical characterization and reengineering of interference coatings,” Appl. Opt. 47, C49–C54 (2008).
[CrossRef]

Eng. Comput. (1)

E.-S. S. Aziz and C. Chassapis, “A decision-making framework model for design and manufacturing of mechanical transmission system development,” Eng. Comput. 21, 164–176 (2005).
[CrossRef]

J. Opt. A Pure Appl. Opt. (1)

O. Stenzel, S. Wilbrandt, D. Fasold, and N. Kaiser, “A hybrid in situ monitoring strategy for optical coating deposition: application to the preparation of chirped dielectric mirrors,” J. Opt. A Pure Appl. Opt. 10, 085305 (2008).
[CrossRef]

Mater. Des. (1)

N. A. Langrana, D. Qiu, E. Bossett, S. C. Danforth, M. Jafari, and A. Safari, “Virtual simulation and video microscopy for fused deposition methods,” Mater. Des. 21, 75–82 (2000).
[CrossRef]

Proc. SPIE (1)

S. Wilbrandt, O. Stenzel, and N. Kaiser, “All-optical in-situ analysis of PIAD deposition processes,” Proc. SPIE 7101, 71010D (2008).
[CrossRef]

Thin Solid Films (2)

J. A. Dobrowolski, “Modern computational methods for optical thin film systems,” Thin Solid Films 34, 313–321 (1976).
[CrossRef]

W. P. Theoni, “Deposition of optical coatings: process control and automation,” Thin Solid Films 88, 385–397 (1982).
[CrossRef]

Vakuum in Forschung und Praxis (1)

O. Stenzel, S. Wilbrandt, K. Friedrich, and N. Kaiser, “ Realistische Modellierung der NIR/VIS/UV-optischen Konstanten dünner optischer Schichten im Rahmen des Oszillatormodells,” Vakuum in Forschung und Praxis 21, 15 (2009).
[CrossRef]

Other (9)

R. R. Willey, Practical Design and Production of Optical Thin Films (Marcel Dekker, 2002).

http://www.optilayer.com.

A. V. Tikhonravov and M. K. Trubetskov, “OptiMon.dll,” for details contact steffen.wilbrandt@iof.fraunhofer.de.

O. Stenzel, The Physics of Thin Film Optical Spectra, Vol. 44 of Springer Series in Surface Sciences (Springer2005).

http://www.sci-soft.com/Film%20Wizard.htm.

http://www.wtheiss.com/?c=2&content=applications_scout.

http://www.ftgsoftware.com/.

http://www.jawoollam.com/software.html.

http://www.thinfilmcenter.com.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Wave number dependence of the real and imaginary part of the dielectric function and the complex refractive index to define the oscillator parameter: resonance frequency v 0 , spectral line width 2 Γ , and amplitude parameter J.

Fig. 2
Fig. 2

Interaction among the virtual “control,” “deposition,” and “measurement” units in the computational manufacturing procedure. Virtual quality control is automatically performed by commercial OptiLayer design software.

Fig. 3
Fig. 3

Simplified scheme of the interplay of simulation parameters for virtual deposition in the cases of quartz crystal and broadband optical monitoring. The scheme summarizes the amount of model parameters introduced and refers to the corresponding equations that describe their function in the model. In addition, the scheme illustrates all input parameters for the simulation. Particularly, each model parameter gives rise to two simulation input parameters (its mean value and its standard deviation).

Fig. 4
Fig. 4

Reproducibility experiments: the transmittance according to the wavelength is shown for (a) Si O 2 with required film thickness 300 nm (here on SF10), (b) Nb 2 O 5 with required film thickness 200 nm (here on SQ1), (c) Ta 2 O 5 with required film thickness 200 nm (here on BK7), and (d) Ti O 2 with required film thickness 100 nm (here on B270).

Fig. 5
Fig. 5

Refractive index profiles of the two selected designs are shown for (a) design 1 and (b) design 2 at 1000 nm wavelength; the theoretical spectra are illustrated for (c) design 1 and (d) design 2.

Fig. 6
Fig. 6

Spectra fit for a 200 nm thick Nb 2 O 5 sample (left on bottom). Corresponding refractive index and extinction coefficient (left on top). Spectra fit for a 100 nm thick Ti O 2 sample (right on bottom). Corresponding refractive index and extinction coefficient (right on top). Symbols, experiment; curves, calculation.

Fig. 7
Fig. 7

Simulation results (gray) for design 1. Fifty simulated reflectance spectra are exemplarily shown for (a) spec 1 and (b) spec 2 in the case of broadband optical monitoring, and for (c) spec 1 and (d) spec 2 for simulation of quartz crystal monitoring. The corresponding specification violation thresholds are shown by dotted curves. The symbols represent the results of the experiments. In the case of crystal quartz monitoring, we show the results of three ex situ (triangles) and one in situ (squares) calibrated experiments. Additionally, the design curves are pictured by the bold solid curves.

Fig. 8
Fig. 8

Simulation results of design 2. Fifty simulated reflectance spectra are exemplarily shown for broadband optical monitoring for (a) spec 1 and (b) spec 2. The simulation assuming quartz crystal monitoring is shown for (c) spec 1 and (d) spec 2. The dotted curves represent the specification violation thresholds. The symbols show the results of the experiments. Additionally, the experiments of ex situ (triangles) and in situ (squares) calibrated quartz crystal monitoring are illustrated. For each strategy, three experiments were done. The design curves are shown by the bold solid curve.

Fig. 9
Fig. 9

Simulation results for the gain flattening filter. Twenty simulated transmittance spectra (gray) are exemplarily shown for quartz monitoring (on left) and optical monitoring (on right). The symbols show the results of the experiments. The designed transmittance is shown by the bold solid curve.

Tables (5)

Tables Icon

Table 1 Summary of the Effects Considered in Virtual Deposition Runs

Tables Icon

Table 2 Process Parameters for the Reproducibility Experiments, With U Bias as BIAS Voltage, Emission Current I Em , the Deposition Rate, and the Oxygen Flow

Tables Icon

Table 3 Standard Deviations of Single Film Thicknesses of the Four Materials According to the Monitoring Strategy a

Tables Icon

Table 4 Mean Values Osz and Percent Standard Deviations Δ Osz of the Oscillator Parameters of Each Material

Tables Icon

Table 5 Mean Values and Standard Deviations for n and k for Each Material at Selected Wavelength Points, as Calculated from Data in Table 4

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

d sim = A + B · d req .
I sample , sim = C + ( I lamp · T theo ) · D ,
I lamp , sim = C + I lamp · D .
T sim = I sample , sim I lamp , sim .
ε ( v ) = 1 + l = 1 N J l π ( 1 v 01 v i Γ l + 1 v 01 + v + i Γ l ) .
n ^ ( v ) = n ( v ) + i k ( v ) = ε ( v ) .
Osz 1 ( Osz 2 ) = α + β * Osz 2 .
J 1 ( v 01 ) = ( 11400 ± 1900 ) cm 1 + ( 1.94 ± 0.02 ) · v 01 .
J 1 ( Γ 1 ) = ( 970 ± 230 ) cm 1 + ( 2.52 ± 0.29 ) · Γ 1 .

Metrics