W. Mo, T. Chan, L. Chen, and N. Chen, “Quantitative characterization of optical and physiological parameters in normal breasts using time-resolved spectroscopy: in vivo results of 19 Singapore women,” J. Biomed. Opt. 14, 064004 (2009).

[CrossRef]

B. Kanmani, “Diffuse optical tomography through solving a system of quadratic equations: theory and simulations,” Phys. Med. Biol. 51, 981–998 (2006).

[CrossRef]
[PubMed]

K. Kwon, B. Yazici, and M. Guven, “Two-level domain decomposition methods for diffuse tomography,” Inverse Probl. 22, 1533–1559 (2006).

[CrossRef]

K. Kwon, I. Son, and B. Yazici, “Two-level domain decomposition algorithm for a nonlinear inverse DOT problem,” Proc. SPIE 5693, 459–468 (2005).

[CrossRef]

F. Gao, H. Zhao, Y. Tanikawa, K. Homma, and Y. Yamada, “Influences of target size and contrast on near infrared diffuse optical tomography-a comparison between featured-data and full time-resolved schemes,” Opt. Quantum Electron. 37, 1287–1304 (2005).

[CrossRef]

A. H. Hielscher and S. Bartel, “Parallel programming of gradient-based iterative image reconstruction schemes for optical tomography,” Comput. Methods Programs Biomed. 73, 101–113 (2004).

[CrossRef]
[PubMed]

F. Gao, H. Zhao, Y. Yanikawa, and Y. Yamada, “Optical tomographic mapping of cerebral haemodynamics by means of time-domain detection: methodology and phantom validation,” Phys. Med. Biol. 49, 1055–1078 (2004).

[CrossRef]
[PubMed]

X. Intes, J. Ripoll, and Y. Chen, “In vivo continuous-wave optical breast imaging enhanced with Indocyanine Green,” Med. Phys. 30, 1039–1047 (2003).

[CrossRef]
[PubMed]

D. Grosenick, T. Moesta, and H. Wabnitz, “Time-domain optical mammography: initial clinical results on detection and characterization of breast tumor,” Appl. Opt. 42, 3170–3186(2003).

[CrossRef]
[PubMed]

G. Strangman, D. Boas, and J. Sutton, “Non-invasive neuroimaging using near-infrared light,” Biol. Psychiatry 52, 679–693 (2002).

[CrossRef]
[PubMed]

F. Gao, H. Zhao, and Y. Tanikawa, “Time-resolved diffuse optical tomography using a modified generalized spectrum technique,” IEICE Trans. Inf. & Syst. E85-D, 133–142 (2002).

M. J. Eppstein, D. E. Dougherty, D. J. Hawrysz, and E. M. Servick-Muraca, “Three-dimensional Bayesian optical image reconstruction with domain decomposition,” IEEE Trans. Med. Imaging 20, 147–163 (2001).

[CrossRef]
[PubMed]

S. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999).

[CrossRef]

W. Zhu and Y. Wang, “A wavelet-based multiresolution regularized least squares reconstruction approach for optical tomography,” IEEE Trans. Med. Imaging 16, 210–217(1997).

[CrossRef]
[PubMed]

A. Villringer and B. Chance, “Non-invasive optical spectroscopy and imaging of human brain function,” Trends Neurosci. 20, 435–442 (1997).

[CrossRef]
[PubMed]

S. G. Mallat, “A theory for multiresolution signal decomposition: The wavelet representation,” IEEE Trans. Pattern Anal. Machine Intell. 11, 674–693 (1989).

[CrossRef]

H. A. Schwarz, “über einen Grenz bergang durch alternirendes Verfahren,” Ges. Math. Abhandlungen 1, 133–143(1870).

S. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999).

[CrossRef]

A. H. Hielscher and S. Bartel, “Parallel programming of gradient-based iterative image reconstruction schemes for optical tomography,” Comput. Methods Programs Biomed. 73, 101–113 (2004).

[CrossRef]
[PubMed]

M. Bertero and P. Boccacci, Introduction to Inverse Problems in Imaging (IOP Publishing, 1998).

[CrossRef]

G. Strangman, D. Boas, and J. Sutton, “Non-invasive neuroimaging using near-infrared light,” Biol. Psychiatry 52, 679–693 (2002).

[CrossRef]
[PubMed]

M. Bertero and P. Boccacci, Introduction to Inverse Problems in Imaging (IOP Publishing, 1998).

[CrossRef]

W. L. Briggs, A Multigrid Tutorial (SIAM, 1987).

W. Mo, T. Chan, L. Chen, and N. Chen, “Quantitative characterization of optical and physiological parameters in normal breasts using time-resolved spectroscopy: in vivo results of 19 Singapore women,” J. Biomed. Opt. 14, 064004 (2009).

[CrossRef]

A. Villringer and B. Chance, “Non-invasive optical spectroscopy and imaging of human brain function,” Trends Neurosci. 20, 435–442 (1997).

[CrossRef]
[PubMed]

W. Mo, T. Chan, L. Chen, and N. Chen, “Quantitative characterization of optical and physiological parameters in normal breasts using time-resolved spectroscopy: in vivo results of 19 Singapore women,” J. Biomed. Opt. 14, 064004 (2009).

[CrossRef]

W. Mo, T. Chan, L. Chen, and N. Chen, “Quantitative characterization of optical and physiological parameters in normal breasts using time-resolved spectroscopy: in vivo results of 19 Singapore women,” J. Biomed. Opt. 14, 064004 (2009).

[CrossRef]

X. Intes, J. Ripoll, and Y. Chen, “In vivo continuous-wave optical breast imaging enhanced with Indocyanine Green,” Med. Phys. 30, 1039–1047 (2003).

[CrossRef]
[PubMed]

M. J. Eppstein, D. E. Dougherty, D. J. Hawrysz, and E. M. Servick-Muraca, “Three-dimensional Bayesian optical image reconstruction with domain decomposition,” IEEE Trans. Med. Imaging 20, 147–163 (2001).

[CrossRef]
[PubMed]

M. J. Eppstein, D. E. Dougherty, D. J. Hawrysz, and E. M. Servick-Muraca, “Three-dimensional Bayesian optical image reconstruction with domain decomposition,” IEEE Trans. Med. Imaging 20, 147–163 (2001).

[CrossRef]
[PubMed]

F. Gao, Y. Xue, and H. Zhao, “Two-dimensional optical tomography of hemodynamic changes in a preterm infant brain,” Chin. Opt. Lett. 5, 472–474 (2007).

F. Gao, H. Zhao, Y. Tanikawa, K. Homma, and Y. Yamada, “Influences of target size and contrast on near infrared diffuse optical tomography-a comparison between featured-data and full time-resolved schemes,” Opt. Quantum Electron. 37, 1287–1304 (2005).

[CrossRef]

F. Gao, H. Zhao, Y. Yanikawa, and Y. Yamada, “Optical tomographic mapping of cerebral haemodynamics by means of time-domain detection: methodology and phantom validation,” Phys. Med. Biol. 49, 1055–1078 (2004).

[CrossRef]
[PubMed]

F. Gao, H. Zhao, and Y. Tanikawa, “Time-resolved diffuse optical tomography using a modified generalized spectrum technique,” IEICE Trans. Inf. & Syst. E85-D, 133–142 (2002).

X. Gu and A. Hielscher, “Parallelization of transport-theory based optical tomography algorithms by domain decomposition,” in Biomedical Optics, OSA Technical Digest (CD) (Optical Society of America, 2008), p. BSuE40.

K. Kwon, B. Yazici, and M. Guven, “Two-level domain decomposition methods for diffuse tomography,” Inverse Probl. 22, 1533–1559 (2006).

[CrossRef]

W. Hackbusch, Multi-Grid Methods and Applications(Springer-Verlag, 1985).

M. J. Eppstein, D. E. Dougherty, D. J. Hawrysz, and E. M. Servick-Muraca, “Three-dimensional Bayesian optical image reconstruction with domain decomposition,” IEEE Trans. Med. Imaging 20, 147–163 (2001).

[CrossRef]
[PubMed]

X. Gu and A. Hielscher, “Parallelization of transport-theory based optical tomography algorithms by domain decomposition,” in Biomedical Optics, OSA Technical Digest (CD) (Optical Society of America, 2008), p. BSuE40.

A. H. Hielscher and S. Bartel, “Parallel programming of gradient-based iterative image reconstruction schemes for optical tomography,” Comput. Methods Programs Biomed. 73, 101–113 (2004).

[CrossRef]
[PubMed]

F. Gao, H. Zhao, Y. Tanikawa, K. Homma, and Y. Yamada, “Influences of target size and contrast on near infrared diffuse optical tomography-a comparison between featured-data and full time-resolved schemes,” Opt. Quantum Electron. 37, 1287–1304 (2005).

[CrossRef]

X. Intes, J. Ripoll, and Y. Chen, “In vivo continuous-wave optical breast imaging enhanced with Indocyanine Green,” Med. Phys. 30, 1039–1047 (2003).

[CrossRef]
[PubMed]

I.-Y. Son and X. Intes, “A 2-level domain decomposition algorithm for inverse diffuse optical tomography,” in Proceedings of the International Conference on Image Processing (IEEE, 2004), pp. 3315–3318.

B. Kanmani, “Diffuse optical tomography through solving a system of quadratic equations: theory and simulations,” Phys. Med. Biol. 51, 981–998 (2006).

[CrossRef]
[PubMed]

K. Kwon, B. Yazici, and M. Guven, “Two-level domain decomposition methods for diffuse tomography,” Inverse Probl. 22, 1533–1559 (2006).

[CrossRef]

K. Kwon, I. Son, and B. Yazici, “Two-level domain decomposition algorithm for a nonlinear inverse DOT problem,” Proc. SPIE 5693, 459–468 (2005).

[CrossRef]

S. G. Mallat, “A theory for multiresolution signal decomposition: The wavelet representation,” IEEE Trans. Pattern Anal. Machine Intell. 11, 674–693 (1989).

[CrossRef]

W. Mo, T. Chan, L. Chen, and N. Chen, “Quantitative characterization of optical and physiological parameters in normal breasts using time-resolved spectroscopy: in vivo results of 19 Singapore women,” J. Biomed. Opt. 14, 064004 (2009).

[CrossRef]

J. Nocedal and S. J. Wright, Numerical Optimization(Springer, 1999).

[CrossRef]

U. Trottenberg, C. Oosterlee, and A. Schüller, Multigrid(Academic, 2001).

X. Intes, J. Ripoll, and Y. Chen, “In vivo continuous-wave optical breast imaging enhanced with Indocyanine Green,” Med. Phys. 30, 1039–1047 (2003).

[CrossRef]
[PubMed]

U. Trottenberg, C. Oosterlee, and A. Schüller, Multigrid(Academic, 2001).

H. A. Schwarz, “über einen Grenz bergang durch alternirendes Verfahren,” Ges. Math. Abhandlungen 1, 133–143(1870).

M. J. Eppstein, D. E. Dougherty, D. J. Hawrysz, and E. M. Servick-Muraca, “Three-dimensional Bayesian optical image reconstruction with domain decomposition,” IEEE Trans. Med. Imaging 20, 147–163 (2001).

[CrossRef]
[PubMed]

K. Kwon, I. Son, and B. Yazici, “Two-level domain decomposition algorithm for a nonlinear inverse DOT problem,” Proc. SPIE 5693, 459–468 (2005).

[CrossRef]

I.-Y. Son and X. Intes, “A 2-level domain decomposition algorithm for inverse diffuse optical tomography,” in Proceedings of the International Conference on Image Processing (IEEE, 2004), pp. 3315–3318.

G. Strangman, D. Boas, and J. Sutton, “Non-invasive neuroimaging using near-infrared light,” Biol. Psychiatry 52, 679–693 (2002).

[CrossRef]
[PubMed]

G. Strangman, D. Boas, and J. Sutton, “Non-invasive neuroimaging using near-infrared light,” Biol. Psychiatry 52, 679–693 (2002).

[CrossRef]
[PubMed]

F. Gao, H. Zhao, Y. Tanikawa, K. Homma, and Y. Yamada, “Influences of target size and contrast on near infrared diffuse optical tomography-a comparison between featured-data and full time-resolved schemes,” Opt. Quantum Electron. 37, 1287–1304 (2005).

[CrossRef]

F. Gao, H. Zhao, and Y. Tanikawa, “Time-resolved diffuse optical tomography using a modified generalized spectrum technique,” IEICE Trans. Inf. & Syst. E85-D, 133–142 (2002).

U. Trottenberg, C. Oosterlee, and A. Schüller, Multigrid(Academic, 2001).

A. Villringer and B. Chance, “Non-invasive optical spectroscopy and imaging of human brain function,” Trends Neurosci. 20, 435–442 (1997).

[CrossRef]
[PubMed]

J. Nocedal and S. J. Wright, Numerical Optimization(Springer, 1999).

[CrossRef]

F. Gao, H. Zhao, Y. Tanikawa, K. Homma, and Y. Yamada, “Influences of target size and contrast on near infrared diffuse optical tomography-a comparison between featured-data and full time-resolved schemes,” Opt. Quantum Electron. 37, 1287–1304 (2005).

[CrossRef]

F. Gao, H. Zhao, Y. Yanikawa, and Y. Yamada, “Optical tomographic mapping of cerebral haemodynamics by means of time-domain detection: methodology and phantom validation,” Phys. Med. Biol. 49, 1055–1078 (2004).

[CrossRef]
[PubMed]

F. Gao, H. Zhao, Y. Yanikawa, and Y. Yamada, “Optical tomographic mapping of cerebral haemodynamics by means of time-domain detection: methodology and phantom validation,” Phys. Med. Biol. 49, 1055–1078 (2004).

[CrossRef]
[PubMed]

K. Kwon, B. Yazici, and M. Guven, “Two-level domain decomposition methods for diffuse tomography,” Inverse Probl. 22, 1533–1559 (2006).

[CrossRef]

K. Kwon, I. Son, and B. Yazici, “Two-level domain decomposition algorithm for a nonlinear inverse DOT problem,” Proc. SPIE 5693, 459–468 (2005).

[CrossRef]

F. Gao, Y. Xue, and H. Zhao, “Two-dimensional optical tomography of hemodynamic changes in a preterm infant brain,” Chin. Opt. Lett. 5, 472–474 (2007).

F. Gao, H. Zhao, Y. Tanikawa, K. Homma, and Y. Yamada, “Influences of target size and contrast on near infrared diffuse optical tomography-a comparison between featured-data and full time-resolved schemes,” Opt. Quantum Electron. 37, 1287–1304 (2005).

[CrossRef]

F. Gao, H. Zhao, Y. Yanikawa, and Y. Yamada, “Optical tomographic mapping of cerebral haemodynamics by means of time-domain detection: methodology and phantom validation,” Phys. Med. Biol. 49, 1055–1078 (2004).

[CrossRef]
[PubMed]

F. Gao, H. Zhao, and Y. Tanikawa, “Time-resolved diffuse optical tomography using a modified generalized spectrum technique,” IEICE Trans. Inf. & Syst. E85-D, 133–142 (2002).

G. Strangman, D. Boas, and J. Sutton, “Non-invasive neuroimaging using near-infrared light,” Biol. Psychiatry 52, 679–693 (2002).

[CrossRef]
[PubMed]

A. H. Hielscher and S. Bartel, “Parallel programming of gradient-based iterative image reconstruction schemes for optical tomography,” Comput. Methods Programs Biomed. 73, 101–113 (2004).

[CrossRef]
[PubMed]

H. A. Schwarz, “über einen Grenz bergang durch alternirendes Verfahren,” Ges. Math. Abhandlungen 1, 133–143(1870).

M. J. Eppstein, D. E. Dougherty, D. J. Hawrysz, and E. M. Servick-Muraca, “Three-dimensional Bayesian optical image reconstruction with domain decomposition,” IEEE Trans. Med. Imaging 20, 147–163 (2001).

[CrossRef]
[PubMed]

W. Zhu and Y. Wang, “A wavelet-based multiresolution regularized least squares reconstruction approach for optical tomography,” IEEE Trans. Med. Imaging 16, 210–217(1997).

[CrossRef]
[PubMed]

S. G. Mallat, “A theory for multiresolution signal decomposition: The wavelet representation,” IEEE Trans. Pattern Anal. Machine Intell. 11, 674–693 (1989).

[CrossRef]

F. Gao, H. Zhao, and Y. Tanikawa, “Time-resolved diffuse optical tomography using a modified generalized spectrum technique,” IEICE Trans. Inf. & Syst. E85-D, 133–142 (2002).

K. Kwon, B. Yazici, and M. Guven, “Two-level domain decomposition methods for diffuse tomography,” Inverse Probl. 22, 1533–1559 (2006).

[CrossRef]

S. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999).

[CrossRef]

W. Mo, T. Chan, L. Chen, and N. Chen, “Quantitative characterization of optical and physiological parameters in normal breasts using time-resolved spectroscopy: in vivo results of 19 Singapore women,” J. Biomed. Opt. 14, 064004 (2009).

[CrossRef]

X. Intes, J. Ripoll, and Y. Chen, “In vivo continuous-wave optical breast imaging enhanced with Indocyanine Green,” Med. Phys. 30, 1039–1047 (2003).

[CrossRef]
[PubMed]

F. Gao, H. Zhao, Y. Tanikawa, K. Homma, and Y. Yamada, “Influences of target size and contrast on near infrared diffuse optical tomography-a comparison between featured-data and full time-resolved schemes,” Opt. Quantum Electron. 37, 1287–1304 (2005).

[CrossRef]

B. Kanmani, “Diffuse optical tomography through solving a system of quadratic equations: theory and simulations,” Phys. Med. Biol. 51, 981–998 (2006).

[CrossRef]
[PubMed]

F. Gao, H. Zhao, Y. Yanikawa, and Y. Yamada, “Optical tomographic mapping of cerebral haemodynamics by means of time-domain detection: methodology and phantom validation,” Phys. Med. Biol. 49, 1055–1078 (2004).

[CrossRef]
[PubMed]

K. Kwon, I. Son, and B. Yazici, “Two-level domain decomposition algorithm for a nonlinear inverse DOT problem,” Proc. SPIE 5693, 459–468 (2005).

[CrossRef]

A. Villringer and B. Chance, “Non-invasive optical spectroscopy and imaging of human brain function,” Trends Neurosci. 20, 435–442 (1997).

[CrossRef]
[PubMed]

I.-Y. Son and X. Intes, “A 2-level domain decomposition algorithm for inverse diffuse optical tomography,” in Proceedings of the International Conference on Image Processing (IEEE, 2004), pp. 3315–3318.

X. Gu and A. Hielscher, “Parallelization of transport-theory based optical tomography algorithms by domain decomposition,” in Biomedical Optics, OSA Technical Digest (CD) (Optical Society of America, 2008), p. BSuE40.

U. Trottenberg, C. Oosterlee, and A. Schüller, Multigrid(Academic, 2001).

W. L. Briggs, A Multigrid Tutorial (SIAM, 1987).

W. Hackbusch, Multi-Grid Methods and Applications(Springer-Verlag, 1985).

M. Bertero and P. Boccacci, Introduction to Inverse Problems in Imaging (IOP Publishing, 1998).

[CrossRef]

J. Nocedal and S. J. Wright, Numerical Optimization(Springer, 1999).

[CrossRef]