Abstract

We propose a design for a novel broadband polarization splitter based on an asymmetric dual-core square-lattice photonic-crystal fiber. The fiber is designed such that index-matched coupling between the two cores can be achieved for one polarization state, while only a part of the energy could be coupled for the other polarization state. Numerical results demonstrate that a device length of 5.9mm shows extinction ratios as low as 20dB with bandwidths as great as 101nm.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Saitoh, Y. Sato, and M. Koshiba, “Coupling characteristics of dual-core photonic crystal fiber couplers,” Opt. Express 11, 3188–3195 (2003).
    [CrossRef] [PubMed]
  2. Y. Yue, G. Kai, Z. Wang, C. Zhang, Y. Lu, Y. Li, T. Sun, L. Jin, J. Liu, Y. Liu, S. Yuan, and X. Dong, “Broadband single-polarization single-mode photonic crystal fiber coupler,” IEEE Photon. Technol. Lett. 18, 2032–2034 (2006).
    [CrossRef]
  3. N. Florous, K. Saitoh, and M. Koshiba, “A novel approach for designing photonic crystal fiber splitters with polarization-independent propagation characteristics,” Opt. Express 13, 7365–7373 (2005).
    [CrossRef] [PubMed]
  4. X. Sun, “Wavelength-selective coupling of dual-core photonic crystal fiber with a hybrid light-guiding mechanism,” Opt. Lett. 32, 2484–2486 (2007).
    [CrossRef] [PubMed]
  5. J. Lægsgaard, O. Bang, and A. Bjarklev, “Photonic crystal fiber design for broadband directional coupling,” Opt. Lett. 29, 2473–2475 (2004).
    [CrossRef] [PubMed]
  6. L. Zhang and C. Yang, “Polarization splitter based on photonic crystal fibers,” Opt. Express 11, 1015–1020 (2003).
    [CrossRef] [PubMed]
  7. M. Y. Chen and R. J. Yu, “Coupling characteristics of dual-core rectangular lattice photonic crystal fibres,” J. Opt. A: Pure Appl. Opt. 6, 805–808 (2004).
    [CrossRef]
  8. L. Zhang and C. Yang, “A novel polarization splitter based on the photonic crystal fiber with nonidentical dual cores,” IEEE Photon. Technol. Lett. 16, 1670–1672 (2004).
    [CrossRef]
  9. K. Saitoh, Y. Sato, and M. Koshiba, “Polarization splitter in three-core photonic crystal fibers,” Opt. Express 12, 3940–3946 (2004).
    [CrossRef] [PubMed]
  10. L. Rosa, F. Poli, M. Foroni, A. Cucinotta, and S. Selleri, “Polarization splitter based on a square-lattice photonic crystal fiber,” Opt. Lett. 31, 441–443 (2006).
    [CrossRef] [PubMed]
  11. W. P. Huang and C. L. Xu, “Simulation of three-dimensional optical waveguides by a full-vector beam propagation method,” IEEE J. Quantum. Electron. 29, 2639–2649(1993).
    [CrossRef]
  12. A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum. Electron. 9, 919–933 (1973).
    [CrossRef]
  13. M.-Y. Chen, J. Zhou, and E. Pun, “A novel WDM component based on a three-core photonic crystal fiber,” J. Lightwave Technol. 27, 2343–2347 (2009).
    [CrossRef]

2009

2007

2006

L. Rosa, F. Poli, M. Foroni, A. Cucinotta, and S. Selleri, “Polarization splitter based on a square-lattice photonic crystal fiber,” Opt. Lett. 31, 441–443 (2006).
[CrossRef] [PubMed]

Y. Yue, G. Kai, Z. Wang, C. Zhang, Y. Lu, Y. Li, T. Sun, L. Jin, J. Liu, Y. Liu, S. Yuan, and X. Dong, “Broadband single-polarization single-mode photonic crystal fiber coupler,” IEEE Photon. Technol. Lett. 18, 2032–2034 (2006).
[CrossRef]

2005

2004

M. Y. Chen and R. J. Yu, “Coupling characteristics of dual-core rectangular lattice photonic crystal fibres,” J. Opt. A: Pure Appl. Opt. 6, 805–808 (2004).
[CrossRef]

L. Zhang and C. Yang, “A novel polarization splitter based on the photonic crystal fiber with nonidentical dual cores,” IEEE Photon. Technol. Lett. 16, 1670–1672 (2004).
[CrossRef]

K. Saitoh, Y. Sato, and M. Koshiba, “Polarization splitter in three-core photonic crystal fibers,” Opt. Express 12, 3940–3946 (2004).
[CrossRef] [PubMed]

J. Lægsgaard, O. Bang, and A. Bjarklev, “Photonic crystal fiber design for broadband directional coupling,” Opt. Lett. 29, 2473–2475 (2004).
[CrossRef] [PubMed]

2003

1993

W. P. Huang and C. L. Xu, “Simulation of three-dimensional optical waveguides by a full-vector beam propagation method,” IEEE J. Quantum. Electron. 29, 2639–2649(1993).
[CrossRef]

1973

A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum. Electron. 9, 919–933 (1973).
[CrossRef]

Bang, O.

Bjarklev, A.

Chen, M. Y.

M. Y. Chen and R. J. Yu, “Coupling characteristics of dual-core rectangular lattice photonic crystal fibres,” J. Opt. A: Pure Appl. Opt. 6, 805–808 (2004).
[CrossRef]

Chen, M.-Y.

Cucinotta, A.

Dong, X.

Y. Yue, G. Kai, Z. Wang, C. Zhang, Y. Lu, Y. Li, T. Sun, L. Jin, J. Liu, Y. Liu, S. Yuan, and X. Dong, “Broadband single-polarization single-mode photonic crystal fiber coupler,” IEEE Photon. Technol. Lett. 18, 2032–2034 (2006).
[CrossRef]

Florous, N.

Foroni, M.

Huang, W. P.

W. P. Huang and C. L. Xu, “Simulation of three-dimensional optical waveguides by a full-vector beam propagation method,” IEEE J. Quantum. Electron. 29, 2639–2649(1993).
[CrossRef]

Jin, L.

Y. Yue, G. Kai, Z. Wang, C. Zhang, Y. Lu, Y. Li, T. Sun, L. Jin, J. Liu, Y. Liu, S. Yuan, and X. Dong, “Broadband single-polarization single-mode photonic crystal fiber coupler,” IEEE Photon. Technol. Lett. 18, 2032–2034 (2006).
[CrossRef]

Kai, G.

Y. Yue, G. Kai, Z. Wang, C. Zhang, Y. Lu, Y. Li, T. Sun, L. Jin, J. Liu, Y. Liu, S. Yuan, and X. Dong, “Broadband single-polarization single-mode photonic crystal fiber coupler,” IEEE Photon. Technol. Lett. 18, 2032–2034 (2006).
[CrossRef]

Koshiba, M.

Lægsgaard, J.

Li, Y.

Y. Yue, G. Kai, Z. Wang, C. Zhang, Y. Lu, Y. Li, T. Sun, L. Jin, J. Liu, Y. Liu, S. Yuan, and X. Dong, “Broadband single-polarization single-mode photonic crystal fiber coupler,” IEEE Photon. Technol. Lett. 18, 2032–2034 (2006).
[CrossRef]

Liu, J.

Y. Yue, G. Kai, Z. Wang, C. Zhang, Y. Lu, Y. Li, T. Sun, L. Jin, J. Liu, Y. Liu, S. Yuan, and X. Dong, “Broadband single-polarization single-mode photonic crystal fiber coupler,” IEEE Photon. Technol. Lett. 18, 2032–2034 (2006).
[CrossRef]

Liu, Y.

Y. Yue, G. Kai, Z. Wang, C. Zhang, Y. Lu, Y. Li, T. Sun, L. Jin, J. Liu, Y. Liu, S. Yuan, and X. Dong, “Broadband single-polarization single-mode photonic crystal fiber coupler,” IEEE Photon. Technol. Lett. 18, 2032–2034 (2006).
[CrossRef]

Lu, Y.

Y. Yue, G. Kai, Z. Wang, C. Zhang, Y. Lu, Y. Li, T. Sun, L. Jin, J. Liu, Y. Liu, S. Yuan, and X. Dong, “Broadband single-polarization single-mode photonic crystal fiber coupler,” IEEE Photon. Technol. Lett. 18, 2032–2034 (2006).
[CrossRef]

Poli, F.

Pun, E.

Rosa, L.

Saitoh, K.

Sato, Y.

Selleri, S.

Sun, T.

Y. Yue, G. Kai, Z. Wang, C. Zhang, Y. Lu, Y. Li, T. Sun, L. Jin, J. Liu, Y. Liu, S. Yuan, and X. Dong, “Broadband single-polarization single-mode photonic crystal fiber coupler,” IEEE Photon. Technol. Lett. 18, 2032–2034 (2006).
[CrossRef]

Sun, X.

Wang, Z.

Y. Yue, G. Kai, Z. Wang, C. Zhang, Y. Lu, Y. Li, T. Sun, L. Jin, J. Liu, Y. Liu, S. Yuan, and X. Dong, “Broadband single-polarization single-mode photonic crystal fiber coupler,” IEEE Photon. Technol. Lett. 18, 2032–2034 (2006).
[CrossRef]

Xu, C. L.

W. P. Huang and C. L. Xu, “Simulation of three-dimensional optical waveguides by a full-vector beam propagation method,” IEEE J. Quantum. Electron. 29, 2639–2649(1993).
[CrossRef]

Yang, C.

L. Zhang and C. Yang, “A novel polarization splitter based on the photonic crystal fiber with nonidentical dual cores,” IEEE Photon. Technol. Lett. 16, 1670–1672 (2004).
[CrossRef]

L. Zhang and C. Yang, “Polarization splitter based on photonic crystal fibers,” Opt. Express 11, 1015–1020 (2003).
[CrossRef] [PubMed]

Yariv, A.

A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum. Electron. 9, 919–933 (1973).
[CrossRef]

Yu, R. J.

M. Y. Chen and R. J. Yu, “Coupling characteristics of dual-core rectangular lattice photonic crystal fibres,” J. Opt. A: Pure Appl. Opt. 6, 805–808 (2004).
[CrossRef]

Yuan, S.

Y. Yue, G. Kai, Z. Wang, C. Zhang, Y. Lu, Y. Li, T. Sun, L. Jin, J. Liu, Y. Liu, S. Yuan, and X. Dong, “Broadband single-polarization single-mode photonic crystal fiber coupler,” IEEE Photon. Technol. Lett. 18, 2032–2034 (2006).
[CrossRef]

Yue, Y.

Y. Yue, G. Kai, Z. Wang, C. Zhang, Y. Lu, Y. Li, T. Sun, L. Jin, J. Liu, Y. Liu, S. Yuan, and X. Dong, “Broadband single-polarization single-mode photonic crystal fiber coupler,” IEEE Photon. Technol. Lett. 18, 2032–2034 (2006).
[CrossRef]

Zhang, C.

Y. Yue, G. Kai, Z. Wang, C. Zhang, Y. Lu, Y. Li, T. Sun, L. Jin, J. Liu, Y. Liu, S. Yuan, and X. Dong, “Broadband single-polarization single-mode photonic crystal fiber coupler,” IEEE Photon. Technol. Lett. 18, 2032–2034 (2006).
[CrossRef]

Zhang, L.

L. Zhang and C. Yang, “A novel polarization splitter based on the photonic crystal fiber with nonidentical dual cores,” IEEE Photon. Technol. Lett. 16, 1670–1672 (2004).
[CrossRef]

L. Zhang and C. Yang, “Polarization splitter based on photonic crystal fibers,” Opt. Express 11, 1015–1020 (2003).
[CrossRef] [PubMed]

Zhou, J.

IEEE J. Quantum. Electron.

W. P. Huang and C. L. Xu, “Simulation of three-dimensional optical waveguides by a full-vector beam propagation method,” IEEE J. Quantum. Electron. 29, 2639–2649(1993).
[CrossRef]

A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum. Electron. 9, 919–933 (1973).
[CrossRef]

IEEE Photon. Technol. Lett.

Y. Yue, G. Kai, Z. Wang, C. Zhang, Y. Lu, Y. Li, T. Sun, L. Jin, J. Liu, Y. Liu, S. Yuan, and X. Dong, “Broadband single-polarization single-mode photonic crystal fiber coupler,” IEEE Photon. Technol. Lett. 18, 2032–2034 (2006).
[CrossRef]

L. Zhang and C. Yang, “A novel polarization splitter based on the photonic crystal fiber with nonidentical dual cores,” IEEE Photon. Technol. Lett. 16, 1670–1672 (2004).
[CrossRef]

J. Lightwave Technol.

J. Opt. A: Pure Appl. Opt.

M. Y. Chen and R. J. Yu, “Coupling characteristics of dual-core rectangular lattice photonic crystal fibres,” J. Opt. A: Pure Appl. Opt. 6, 805–808 (2004).
[CrossRef]

Opt. Express

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Cross section of a dual-core SQ-PCF.

Fig. 2
Fig. 2

Effective indices of the fundamental modes of core A and core B.

Fig. 3
Fig. 3

Cross section of the modified dual-core SQ-PCF.

Fig. 4
Fig. 4

Effective indices of the fundamental modes of core A and core B of the modified dual-core SQ-PCF.

Fig. 5
Fig. 5

Normalized power transfer of the x- and y-polarized states as functions of fiber length for the proposed fiber with d 1 / Λ = 0.54 , d 2 / Λ = 0.60 , d 3 / Λ = 0.50 , and Λ = 4 μm .

Fig. 6
Fig. 6

Field distributions of the x-polarized mode in the modified dual-core SQ-PCF at propagation distances (a) z = 0 mm , (b) z = 2 mm , (c) z = 4 mm , and (d) z = 5.9 mm .

Fig. 7
Fig. 7

Field distributions of the y-polarized mode in the modified dual-core SQ-PCF at propagation distances (a) z = 0 mm , (b) z = 2 mm , (c) z = 4 mm , and (d) z = 5.9 mm .

Fig. 8
Fig. 8

Wavelength dependence of extinction ratios for the proposed polarization splitter.

Fig. 9
Fig. 9

Effective indices of the y-polarized fundamental modes for the proposed fiber with (a) d 3 / Λ = 0.51 , (b) d 3 / Λ = 0.50 , and (c) d 3 / Λ = 0.49 .

Fig. 10
Fig. 10

Normalized power transfer of the x- and y-polarized states as functions of fiber length for (a) fiber A, (b) fiber B, and (c) fiber C, respectively.

Fig. 11
Fig. 11

Index difference between the x-polarized states of core A and core B for the three types of fibers.

Fig. 12
Fig. 12

Wavelength dependence of extinction ratios for the proposed polarization splitter with d 1 / Λ = 0.54 , d 2 / Λ = 0.60 , d 3 / Λ = 0.50 , and H = 5.9 mm . (a) Λ = 3.96 μm and (b) Λ = 4.04 μm .

Tables (1)

Tables Icon

Table 1 Coupling Lengths of Three Types of Proposed Fibers

Metrics