Abstract

Irradiation of a high-power laser pulse (above 109W/cm2) on thin metal foil causes ablation, which is characterized by a strong plasma-shock formation followed by a rapid expulsion of surface matter. The shock propagates through the foil and reverberates on the rear side causing instant deformation of the metal foil, whose surface is treated with microparticles prior to ablation. Based on this principle of microparticle ejection, we develop a laser-based injector that features controllability and stability. We also perform characterization of the penetration depths at varying confinements and energy levels. The confinement media include glass (BK7), water, and ultrasound gel. Biological tissue was replicated by a gelatin–water solution at a 3% weight ratio. Present data show that the confinement effect results in a significant enhancement of penetration depth reached by 5μm cobalt microparticles. Also, there exists an optimal thickness at each energy level when using liquid confinement for enhanced particle delivery.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription