Abstract

We develop a design theory for a temperature-independent arrayed waveguide grating (TI-AWG) based on the combination of multiple types of waveguide. Each type of waveguide has a path-length difference between adjacent arrayed waveguides, and the path-length difference ratio is introduced as tuning parameter. A TI-AWG with Si wire and slot waveguides is given as an example. The thermal spectra shift of the TI-AWG can be tuned from redshift to blueshift in an ultralarge range, and the modified interference order can be reduced or enhanced. The device size is about one-fifth that of the narrow–wide-wire design that uses a combination of narrow and wide Si wire waveguides. The results are verified by the simulation of prototype devices via a two-dimensional finite-difference time-domain program.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Kamei, “Recent progress on athermal AWG wavelength multiplexer,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OWO1.
  2. S. Kamei, Y. Inoue, A. Kaneko, T. Shibata, and H. Takahashi, “Recent progress on athermal AWG wavelength multiplexer,” Proc. SPIE 6014, 60140H (2005).
    [CrossRef]
  3. W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12, 1394–1401 (2006).
    [CrossRef]
  4. K. Sasaki, F. Ohno, A. Motegi, and T. Baba, “Arrayed waveguide grating of 70×60μm2 size based on Si photonic wire waveguides,” Electron. Lett. 41, 801–802 (2005).
    [CrossRef]
  5. D. Dai, L. Liu, L. Wosinski, and S. He, “Design and fabrication of ultra-small overlapped AWG demultiplexer based on α-Si nanowire waveguides,” Electron. Lett. 42, 400–402 (2006).
    [CrossRef]
  6. J.-M. Lee, D.-J. Kim, H. Ahn, S.-H. Park, and G. Kim, “Temperature dependence of silicon nanophotonic ring resonator with a polymeric overlayer,” J. Lightwave Technol. 25, 2236–2243 (2007).
    [CrossRef]
  7. W. N. Ye, J. Michel, and L. C. Kimerling, “Athermal high-index-contrast waveguide design,” IEEE Photonics Technol. Lett. 20, 885–887 (2008).
    [CrossRef]
  8. J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, X. Han, M. Zhao, G. Morthier, and R. Baets, “Athermal silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides,” Opt. Express 17, 14627–14633(2009).
    [CrossRef] [PubMed]
  9. C. Karnutsch, C. L. C. Smith, A. Graham, S. Tomljenovic-Hanic, R. McPhedran, B. J. Eggleton, L. O’Faolain, T. F. Krauss, S. Xiao, and N. A. Mortensen, “Temperature stabilization of optofluidic photonic crystal cavities,” Appl. Phys. Lett. 94, 231114 (2009).
    [CrossRef]
  10. J.-M. Lee, D.-J. Kim, G.-H. Kim, O. K. Kwon, K.-J. Kim, and G. Kim, “Controlling temperature dependence of silicon waveguide using slot structure,” Opt. Express 16, 1645–1652(2008).
    [CrossRef] [PubMed]
  11. L. Zhou, K. Okamoto, and S. J. B. Yoo, “Athermalizing and trimming of slotted silicon microring resonators with UV-sensitive PMMA upper-cladding,” IEEE Photonics Technol. Lett. 21, 1175–1177 (2009).
    [CrossRef]
  12. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29, 1209–1211 (2004).
    [CrossRef] [PubMed]
  13. X. Wang, S. Xiao, W. Zheng, F. Wang, Y. Li, Y. Hao, X. Jiang, M. Wang, and J. Yang, “Athermal silicon arrayed waveguide grating with polymer-filled slot structure,” Opt. Commun. 282, 2841–2844 (2009).
    [CrossRef]
  14. M. Uenuma and T. Motooka, “Design of a temperature-independent arrayed waveguide grating on SOI substrates,” in 4th IEEE International Conference Group IV Photonics, 2007 (IEEE, 2007), pp. 1–3.
  15. M. Uenuma and T. Motooka, “Temperature-independent silicon waveguide optical filter,” Opt. Lett. 34, 599–601(2009).
    [CrossRef] [PubMed]
  16. O. M. Matos, M. L. Calvo, P. Cheben, S. Janz, J. A. Rodrigo, D. X. Xu, and A. Delage, “Arrayed waveguide grating based on group-index modification,” J. Lightwave Technol. 24, 1551–1557 (2006).
    [CrossRef]
  17. Z. Wang, N. Zhu, Y. Tang, L. Wosinski, D. Dai, and S. He, “Ultracompact low-loss coupler between strip and slot waveguides,” Opt. Lett. 34, 1498–1500 (2009).
    [CrossRef] [PubMed]
  18. T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, S. Uchiyama, and S. Itabashi, “Low-loss Si wire waveguides and their application to thermooptic switches,” Jpn. J. Appl. Phys. 45, 6658–6662 (2006).
    [CrossRef]
  19. T. Baehr-Jones, M. Hochberg, C. Walker, and A. Scherer, “High-Q optical resonators in silicon-on-insulator-based slot waveguides,” Appl. Phys. Lett. 86, 081101 (2005).
    [CrossRef]

2009 (6)

C. Karnutsch, C. L. C. Smith, A. Graham, S. Tomljenovic-Hanic, R. McPhedran, B. J. Eggleton, L. O’Faolain, T. F. Krauss, S. Xiao, and N. A. Mortensen, “Temperature stabilization of optofluidic photonic crystal cavities,” Appl. Phys. Lett. 94, 231114 (2009).
[CrossRef]

L. Zhou, K. Okamoto, and S. J. B. Yoo, “Athermalizing and trimming of slotted silicon microring resonators with UV-sensitive PMMA upper-cladding,” IEEE Photonics Technol. Lett. 21, 1175–1177 (2009).
[CrossRef]

X. Wang, S. Xiao, W. Zheng, F. Wang, Y. Li, Y. Hao, X. Jiang, M. Wang, and J. Yang, “Athermal silicon arrayed waveguide grating with polymer-filled slot structure,” Opt. Commun. 282, 2841–2844 (2009).
[CrossRef]

M. Uenuma and T. Motooka, “Temperature-independent silicon waveguide optical filter,” Opt. Lett. 34, 599–601(2009).
[CrossRef] [PubMed]

Z. Wang, N. Zhu, Y. Tang, L. Wosinski, D. Dai, and S. He, “Ultracompact low-loss coupler between strip and slot waveguides,” Opt. Lett. 34, 1498–1500 (2009).
[CrossRef] [PubMed]

J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, X. Han, M. Zhao, G. Morthier, and R. Baets, “Athermal silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides,” Opt. Express 17, 14627–14633(2009).
[CrossRef] [PubMed]

2008 (2)

W. N. Ye, J. Michel, and L. C. Kimerling, “Athermal high-index-contrast waveguide design,” IEEE Photonics Technol. Lett. 20, 885–887 (2008).
[CrossRef]

J.-M. Lee, D.-J. Kim, G.-H. Kim, O. K. Kwon, K.-J. Kim, and G. Kim, “Controlling temperature dependence of silicon waveguide using slot structure,” Opt. Express 16, 1645–1652(2008).
[CrossRef] [PubMed]

2007 (1)

2006 (4)

O. M. Matos, M. L. Calvo, P. Cheben, S. Janz, J. A. Rodrigo, D. X. Xu, and A. Delage, “Arrayed waveguide grating based on group-index modification,” J. Lightwave Technol. 24, 1551–1557 (2006).
[CrossRef]

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, S. Uchiyama, and S. Itabashi, “Low-loss Si wire waveguides and their application to thermooptic switches,” Jpn. J. Appl. Phys. 45, 6658–6662 (2006).
[CrossRef]

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12, 1394–1401 (2006).
[CrossRef]

D. Dai, L. Liu, L. Wosinski, and S. He, “Design and fabrication of ultra-small overlapped AWG demultiplexer based on α-Si nanowire waveguides,” Electron. Lett. 42, 400–402 (2006).
[CrossRef]

2005 (3)

S. Kamei, Y. Inoue, A. Kaneko, T. Shibata, and H. Takahashi, “Recent progress on athermal AWG wavelength multiplexer,” Proc. SPIE 6014, 60140H (2005).
[CrossRef]

K. Sasaki, F. Ohno, A. Motegi, and T. Baba, “Arrayed waveguide grating of 70×60μm2 size based on Si photonic wire waveguides,” Electron. Lett. 41, 801–802 (2005).
[CrossRef]

T. Baehr-Jones, M. Hochberg, C. Walker, and A. Scherer, “High-Q optical resonators in silicon-on-insulator-based slot waveguides,” Appl. Phys. Lett. 86, 081101 (2005).
[CrossRef]

2004 (1)

Ahn, H.

Almeida, V. R.

Baba, T.

K. Sasaki, F. Ohno, A. Motegi, and T. Baba, “Arrayed waveguide grating of 70×60μm2 size based on Si photonic wire waveguides,” Electron. Lett. 41, 801–802 (2005).
[CrossRef]

Baehr-Jones, T.

T. Baehr-Jones, M. Hochberg, C. Walker, and A. Scherer, “High-Q optical resonators in silicon-on-insulator-based slot waveguides,” Appl. Phys. Lett. 86, 081101 (2005).
[CrossRef]

Baets, R.

J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, X. Han, M. Zhao, G. Morthier, and R. Baets, “Athermal silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides,” Opt. Express 17, 14627–14633(2009).
[CrossRef] [PubMed]

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12, 1394–1401 (2006).
[CrossRef]

Barrios, C. A.

Beckx, S.

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12, 1394–1401 (2006).
[CrossRef]

Bogaerts, W.

J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, X. Han, M. Zhao, G. Morthier, and R. Baets, “Athermal silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides,” Opt. Express 17, 14627–14633(2009).
[CrossRef] [PubMed]

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12, 1394–1401 (2006).
[CrossRef]

Calvo, M. L.

Cheben, P.

Dai, D.

Z. Wang, N. Zhu, Y. Tang, L. Wosinski, D. Dai, and S. He, “Ultracompact low-loss coupler between strip and slot waveguides,” Opt. Lett. 34, 1498–1500 (2009).
[CrossRef] [PubMed]

D. Dai, L. Liu, L. Wosinski, and S. He, “Design and fabrication of ultra-small overlapped AWG demultiplexer based on α-Si nanowire waveguides,” Electron. Lett. 42, 400–402 (2006).
[CrossRef]

Delage, A.

Dumon, P.

J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, X. Han, M. Zhao, G. Morthier, and R. Baets, “Athermal silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides,” Opt. Express 17, 14627–14633(2009).
[CrossRef] [PubMed]

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12, 1394–1401 (2006).
[CrossRef]

Eggleton, B. J.

C. Karnutsch, C. L. C. Smith, A. Graham, S. Tomljenovic-Hanic, R. McPhedran, B. J. Eggleton, L. O’Faolain, T. F. Krauss, S. Xiao, and N. A. Mortensen, “Temperature stabilization of optofluidic photonic crystal cavities,” Appl. Phys. Lett. 94, 231114 (2009).
[CrossRef]

Fukuda, H.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, S. Uchiyama, and S. Itabashi, “Low-loss Si wire waveguides and their application to thermooptic switches,” Jpn. J. Appl. Phys. 45, 6658–6662 (2006).
[CrossRef]

Graham, A.

C. Karnutsch, C. L. C. Smith, A. Graham, S. Tomljenovic-Hanic, R. McPhedran, B. J. Eggleton, L. O’Faolain, T. F. Krauss, S. Xiao, and N. A. Mortensen, “Temperature stabilization of optofluidic photonic crystal cavities,” Appl. Phys. Lett. 94, 231114 (2009).
[CrossRef]

Han, X.

Hao, Y.

X. Wang, S. Xiao, W. Zheng, F. Wang, Y. Li, Y. Hao, X. Jiang, M. Wang, and J. Yang, “Athermal silicon arrayed waveguide grating with polymer-filled slot structure,” Opt. Commun. 282, 2841–2844 (2009).
[CrossRef]

He, S.

Z. Wang, N. Zhu, Y. Tang, L. Wosinski, D. Dai, and S. He, “Ultracompact low-loss coupler between strip and slot waveguides,” Opt. Lett. 34, 1498–1500 (2009).
[CrossRef] [PubMed]

D. Dai, L. Liu, L. Wosinski, and S. He, “Design and fabrication of ultra-small overlapped AWG demultiplexer based on α-Si nanowire waveguides,” Electron. Lett. 42, 400–402 (2006).
[CrossRef]

Hochberg, M.

T. Baehr-Jones, M. Hochberg, C. Walker, and A. Scherer, “High-Q optical resonators in silicon-on-insulator-based slot waveguides,” Appl. Phys. Lett. 86, 081101 (2005).
[CrossRef]

Inoue, Y.

S. Kamei, Y. Inoue, A. Kaneko, T. Shibata, and H. Takahashi, “Recent progress on athermal AWG wavelength multiplexer,” Proc. SPIE 6014, 60140H (2005).
[CrossRef]

Itabashi, S.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, S. Uchiyama, and S. Itabashi, “Low-loss Si wire waveguides and their application to thermooptic switches,” Jpn. J. Appl. Phys. 45, 6658–6662 (2006).
[CrossRef]

Jaenen, P.

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12, 1394–1401 (2006).
[CrossRef]

Janz, S.

Jian, X.

Jiang, X.

X. Wang, S. Xiao, W. Zheng, F. Wang, Y. Li, Y. Hao, X. Jiang, M. Wang, and J. Yang, “Athermal silicon arrayed waveguide grating with polymer-filled slot structure,” Opt. Commun. 282, 2841–2844 (2009).
[CrossRef]

Kamei, S.

S. Kamei, Y. Inoue, A. Kaneko, T. Shibata, and H. Takahashi, “Recent progress on athermal AWG wavelength multiplexer,” Proc. SPIE 6014, 60140H (2005).
[CrossRef]

S. Kamei, “Recent progress on athermal AWG wavelength multiplexer,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OWO1.

Kaneko, A.

S. Kamei, Y. Inoue, A. Kaneko, T. Shibata, and H. Takahashi, “Recent progress on athermal AWG wavelength multiplexer,” Proc. SPIE 6014, 60140H (2005).
[CrossRef]

Karnutsch, C.

C. Karnutsch, C. L. C. Smith, A. Graham, S. Tomljenovic-Hanic, R. McPhedran, B. J. Eggleton, L. O’Faolain, T. F. Krauss, S. Xiao, and N. A. Mortensen, “Temperature stabilization of optofluidic photonic crystal cavities,” Appl. Phys. Lett. 94, 231114 (2009).
[CrossRef]

Kim, D.-J.

Kim, G.

Kim, G.-H.

Kim, K.-J.

Kimerling, L. C.

W. N. Ye, J. Michel, and L. C. Kimerling, “Athermal high-index-contrast waveguide design,” IEEE Photonics Technol. Lett. 20, 885–887 (2008).
[CrossRef]

Krauss, T. F.

C. Karnutsch, C. L. C. Smith, A. Graham, S. Tomljenovic-Hanic, R. McPhedran, B. J. Eggleton, L. O’Faolain, T. F. Krauss, S. Xiao, and N. A. Mortensen, “Temperature stabilization of optofluidic photonic crystal cavities,” Appl. Phys. Lett. 94, 231114 (2009).
[CrossRef]

Kwon, O. K.

Lee, J.-M.

Li, Y.

X. Wang, S. Xiao, W. Zheng, F. Wang, Y. Li, Y. Hao, X. Jiang, M. Wang, and J. Yang, “Athermal silicon arrayed waveguide grating with polymer-filled slot structure,” Opt. Commun. 282, 2841–2844 (2009).
[CrossRef]

Lipson, M.

Liu, L.

D. Dai, L. Liu, L. Wosinski, and S. He, “Design and fabrication of ultra-small overlapped AWG demultiplexer based on α-Si nanowire waveguides,” Electron. Lett. 42, 400–402 (2006).
[CrossRef]

Matos, O. M.

McPhedran, R.

C. Karnutsch, C. L. C. Smith, A. Graham, S. Tomljenovic-Hanic, R. McPhedran, B. J. Eggleton, L. O’Faolain, T. F. Krauss, S. Xiao, and N. A. Mortensen, “Temperature stabilization of optofluidic photonic crystal cavities,” Appl. Phys. Lett. 94, 231114 (2009).
[CrossRef]

Michel, J.

W. N. Ye, J. Michel, and L. C. Kimerling, “Athermal high-index-contrast waveguide design,” IEEE Photonics Technol. Lett. 20, 885–887 (2008).
[CrossRef]

Mortensen, N. A.

C. Karnutsch, C. L. C. Smith, A. Graham, S. Tomljenovic-Hanic, R. McPhedran, B. J. Eggleton, L. O’Faolain, T. F. Krauss, S. Xiao, and N. A. Mortensen, “Temperature stabilization of optofluidic photonic crystal cavities,” Appl. Phys. Lett. 94, 231114 (2009).
[CrossRef]

Morthier, G.

Motegi, A.

K. Sasaki, F. Ohno, A. Motegi, and T. Baba, “Arrayed waveguide grating of 70×60μm2 size based on Si photonic wire waveguides,” Electron. Lett. 41, 801–802 (2005).
[CrossRef]

Motooka, T.

M. Uenuma and T. Motooka, “Temperature-independent silicon waveguide optical filter,” Opt. Lett. 34, 599–601(2009).
[CrossRef] [PubMed]

M. Uenuma and T. Motooka, “Design of a temperature-independent arrayed waveguide grating on SOI substrates,” in 4th IEEE International Conference Group IV Photonics, 2007 (IEEE, 2007), pp. 1–3.

O’Faolain, L.

C. Karnutsch, C. L. C. Smith, A. Graham, S. Tomljenovic-Hanic, R. McPhedran, B. J. Eggleton, L. O’Faolain, T. F. Krauss, S. Xiao, and N. A. Mortensen, “Temperature stabilization of optofluidic photonic crystal cavities,” Appl. Phys. Lett. 94, 231114 (2009).
[CrossRef]

Ohno, F.

K. Sasaki, F. Ohno, A. Motegi, and T. Baba, “Arrayed waveguide grating of 70×60μm2 size based on Si photonic wire waveguides,” Electron. Lett. 41, 801–802 (2005).
[CrossRef]

Okamoto, K.

L. Zhou, K. Okamoto, and S. J. B. Yoo, “Athermalizing and trimming of slotted silicon microring resonators with UV-sensitive PMMA upper-cladding,” IEEE Photonics Technol. Lett. 21, 1175–1177 (2009).
[CrossRef]

Park, S.-H.

Rodrigo, J. A.

Sasaki, K.

K. Sasaki, F. Ohno, A. Motegi, and T. Baba, “Arrayed waveguide grating of 70×60μm2 size based on Si photonic wire waveguides,” Electron. Lett. 41, 801–802 (2005).
[CrossRef]

Scherer, A.

T. Baehr-Jones, M. Hochberg, C. Walker, and A. Scherer, “High-Q optical resonators in silicon-on-insulator-based slot waveguides,” Appl. Phys. Lett. 86, 081101 (2005).
[CrossRef]

Shibata, T.

S. Kamei, Y. Inoue, A. Kaneko, T. Shibata, and H. Takahashi, “Recent progress on athermal AWG wavelength multiplexer,” Proc. SPIE 6014, 60140H (2005).
[CrossRef]

Smith, C. L. C.

C. Karnutsch, C. L. C. Smith, A. Graham, S. Tomljenovic-Hanic, R. McPhedran, B. J. Eggleton, L. O’Faolain, T. F. Krauss, S. Xiao, and N. A. Mortensen, “Temperature stabilization of optofluidic photonic crystal cavities,” Appl. Phys. Lett. 94, 231114 (2009).
[CrossRef]

Taillaert, D.

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12, 1394–1401 (2006).
[CrossRef]

Takahashi, H.

S. Kamei, Y. Inoue, A. Kaneko, T. Shibata, and H. Takahashi, “Recent progress on athermal AWG wavelength multiplexer,” Proc. SPIE 6014, 60140H (2005).
[CrossRef]

Tang, Y.

Teng, J.

Thourhout, D. V.

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12, 1394–1401 (2006).
[CrossRef]

Tomljenovic-Hanic, S.

C. Karnutsch, C. L. C. Smith, A. Graham, S. Tomljenovic-Hanic, R. McPhedran, B. J. Eggleton, L. O’Faolain, T. F. Krauss, S. Xiao, and N. A. Mortensen, “Temperature stabilization of optofluidic photonic crystal cavities,” Appl. Phys. Lett. 94, 231114 (2009).
[CrossRef]

Tsuchizawa, T.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, S. Uchiyama, and S. Itabashi, “Low-loss Si wire waveguides and their application to thermooptic switches,” Jpn. J. Appl. Phys. 45, 6658–6662 (2006).
[CrossRef]

Uchiyama, S.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, S. Uchiyama, and S. Itabashi, “Low-loss Si wire waveguides and their application to thermooptic switches,” Jpn. J. Appl. Phys. 45, 6658–6662 (2006).
[CrossRef]

Uenuma, M.

M. Uenuma and T. Motooka, “Temperature-independent silicon waveguide optical filter,” Opt. Lett. 34, 599–601(2009).
[CrossRef] [PubMed]

M. Uenuma and T. Motooka, “Design of a temperature-independent arrayed waveguide grating on SOI substrates,” in 4th IEEE International Conference Group IV Photonics, 2007 (IEEE, 2007), pp. 1–3.

Walker, C.

T. Baehr-Jones, M. Hochberg, C. Walker, and A. Scherer, “High-Q optical resonators in silicon-on-insulator-based slot waveguides,” Appl. Phys. Lett. 86, 081101 (2005).
[CrossRef]

Wang, F.

X. Wang, S. Xiao, W. Zheng, F. Wang, Y. Li, Y. Hao, X. Jiang, M. Wang, and J. Yang, “Athermal silicon arrayed waveguide grating with polymer-filled slot structure,” Opt. Commun. 282, 2841–2844 (2009).
[CrossRef]

Wang, M.

X. Wang, S. Xiao, W. Zheng, F. Wang, Y. Li, Y. Hao, X. Jiang, M. Wang, and J. Yang, “Athermal silicon arrayed waveguide grating with polymer-filled slot structure,” Opt. Commun. 282, 2841–2844 (2009).
[CrossRef]

Wang, X.

X. Wang, S. Xiao, W. Zheng, F. Wang, Y. Li, Y. Hao, X. Jiang, M. Wang, and J. Yang, “Athermal silicon arrayed waveguide grating with polymer-filled slot structure,” Opt. Commun. 282, 2841–2844 (2009).
[CrossRef]

Wang, Z.

Watanabe, T.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, S. Uchiyama, and S. Itabashi, “Low-loss Si wire waveguides and their application to thermooptic switches,” Jpn. J. Appl. Phys. 45, 6658–6662 (2006).
[CrossRef]

Wosinski, L.

Z. Wang, N. Zhu, Y. Tang, L. Wosinski, D. Dai, and S. He, “Ultracompact low-loss coupler between strip and slot waveguides,” Opt. Lett. 34, 1498–1500 (2009).
[CrossRef] [PubMed]

D. Dai, L. Liu, L. Wosinski, and S. He, “Design and fabrication of ultra-small overlapped AWG demultiplexer based on α-Si nanowire waveguides,” Electron. Lett. 42, 400–402 (2006).
[CrossRef]

Wouters, J.

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12, 1394–1401 (2006).
[CrossRef]

Xiao, S.

X. Wang, S. Xiao, W. Zheng, F. Wang, Y. Li, Y. Hao, X. Jiang, M. Wang, and J. Yang, “Athermal silicon arrayed waveguide grating with polymer-filled slot structure,” Opt. Commun. 282, 2841–2844 (2009).
[CrossRef]

C. Karnutsch, C. L. C. Smith, A. Graham, S. Tomljenovic-Hanic, R. McPhedran, B. J. Eggleton, L. O’Faolain, T. F. Krauss, S. Xiao, and N. A. Mortensen, “Temperature stabilization of optofluidic photonic crystal cavities,” Appl. Phys. Lett. 94, 231114 (2009).
[CrossRef]

Xu, D. X.

Xu, Q.

Yamada, K.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, S. Uchiyama, and S. Itabashi, “Low-loss Si wire waveguides and their application to thermooptic switches,” Jpn. J. Appl. Phys. 45, 6658–6662 (2006).
[CrossRef]

Yang, J.

X. Wang, S. Xiao, W. Zheng, F. Wang, Y. Li, Y. Hao, X. Jiang, M. Wang, and J. Yang, “Athermal silicon arrayed waveguide grating with polymer-filled slot structure,” Opt. Commun. 282, 2841–2844 (2009).
[CrossRef]

Ye, W. N.

W. N. Ye, J. Michel, and L. C. Kimerling, “Athermal high-index-contrast waveguide design,” IEEE Photonics Technol. Lett. 20, 885–887 (2008).
[CrossRef]

Yoo, S. J. B.

L. Zhou, K. Okamoto, and S. J. B. Yoo, “Athermalizing and trimming of slotted silicon microring resonators with UV-sensitive PMMA upper-cladding,” IEEE Photonics Technol. Lett. 21, 1175–1177 (2009).
[CrossRef]

Zhang, H.

Zhao, M.

Zheng, W.

X. Wang, S. Xiao, W. Zheng, F. Wang, Y. Li, Y. Hao, X. Jiang, M. Wang, and J. Yang, “Athermal silicon arrayed waveguide grating with polymer-filled slot structure,” Opt. Commun. 282, 2841–2844 (2009).
[CrossRef]

Zhou, L.

L. Zhou, K. Okamoto, and S. J. B. Yoo, “Athermalizing and trimming of slotted silicon microring resonators with UV-sensitive PMMA upper-cladding,” IEEE Photonics Technol. Lett. 21, 1175–1177 (2009).
[CrossRef]

Zhu, N.

Appl. Phys. Lett. (2)

C. Karnutsch, C. L. C. Smith, A. Graham, S. Tomljenovic-Hanic, R. McPhedran, B. J. Eggleton, L. O’Faolain, T. F. Krauss, S. Xiao, and N. A. Mortensen, “Temperature stabilization of optofluidic photonic crystal cavities,” Appl. Phys. Lett. 94, 231114 (2009).
[CrossRef]

T. Baehr-Jones, M. Hochberg, C. Walker, and A. Scherer, “High-Q optical resonators in silicon-on-insulator-based slot waveguides,” Appl. Phys. Lett. 86, 081101 (2005).
[CrossRef]

Electron. Lett. (2)

K. Sasaki, F. Ohno, A. Motegi, and T. Baba, “Arrayed waveguide grating of 70×60μm2 size based on Si photonic wire waveguides,” Electron. Lett. 41, 801–802 (2005).
[CrossRef]

D. Dai, L. Liu, L. Wosinski, and S. He, “Design and fabrication of ultra-small overlapped AWG demultiplexer based on α-Si nanowire waveguides,” Electron. Lett. 42, 400–402 (2006).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12, 1394–1401 (2006).
[CrossRef]

IEEE Photonics Technol. Lett. (2)

W. N. Ye, J. Michel, and L. C. Kimerling, “Athermal high-index-contrast waveguide design,” IEEE Photonics Technol. Lett. 20, 885–887 (2008).
[CrossRef]

L. Zhou, K. Okamoto, and S. J. B. Yoo, “Athermalizing and trimming of slotted silicon microring resonators with UV-sensitive PMMA upper-cladding,” IEEE Photonics Technol. Lett. 21, 1175–1177 (2009).
[CrossRef]

J. Lightwave Technol. (2)

Jpn. J. Appl. Phys. (1)

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, S. Uchiyama, and S. Itabashi, “Low-loss Si wire waveguides and their application to thermooptic switches,” Jpn. J. Appl. Phys. 45, 6658–6662 (2006).
[CrossRef]

Opt. Commun. (1)

X. Wang, S. Xiao, W. Zheng, F. Wang, Y. Li, Y. Hao, X. Jiang, M. Wang, and J. Yang, “Athermal silicon arrayed waveguide grating with polymer-filled slot structure,” Opt. Commun. 282, 2841–2844 (2009).
[CrossRef]

Opt. Express (2)

Opt. Lett. (3)

Proc. SPIE (1)

S. Kamei, Y. Inoue, A. Kaneko, T. Shibata, and H. Takahashi, “Recent progress on athermal AWG wavelength multiplexer,” Proc. SPIE 6014, 60140H (2005).
[CrossRef]

Other (2)

S. Kamei, “Recent progress on athermal AWG wavelength multiplexer,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OWO1.

M. Uenuma and T. Motooka, “Design of a temperature-independent arrayed waveguide grating on SOI substrates,” in 4th IEEE International Conference Group IV Photonics, 2007 (IEEE, 2007), pp. 1–3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Design example: the temperature-independent arrayed waveguide gratings based on silicon wire and slot waveguides. (a) The entire structure, (b) the schematic of the arrayed waveguides, (c) the cross section of Si wire waveguides, (d) the cross section of Si slot waveguides, and (e) the mode converter between Si wire waveguides and slot waveguides [17].

Fig. 2
Fig. 2

Tuning effects of r on the performance of the wire–slot-hybrid example. (a) λ / T , (b) 1 / F , (c) Δ L w 2 , and (d) Δ L total . The dashed curves, solid curves, and dashed-dotted curves are results for λ is 1.5, 1.55, and 1.6 μm , respectively. The corresponding theoretical temperature-independent points are indicated by circles, diamonds, and pentagrams. The insets show the details in the vicinity of temperature-independent points. For comparison, the results calculated from the m before the arithmetic operation round (x), i.e., m = M ( n e w 2 r n e w 1 ) / ( n g w 2 r n g w 1 ) , are also shown in the insets.

Fig. 3
Fig. 3

Spectra distributions (simulated by 2D-FDTD program) of three AWGs with r are (a) 0.184, (b) 0.222, and (c) 0.26. The solid curves and dashed-dotted curves are for Δ T = 0 K and Δ T = 100 K , respectively.

Tables (2)

Tables Icon

Table 1 Material Parameters

Tables Icon

Table 2 Compromised Parameters

Equations (42)

Equations on this page are rendered with MathJax. Learn more.

Δ Φ = k 0 n e s Δ L in + k 0 n e b Δ L b + k 0 n e w 1 Δ L w 1 + k 0 n e w 2 Δ L w 2 + k 0 n e s Δ L out ,
Δ L i , i + 1 in = l p , i + 1 in l p , i in , Δ L i , i + 1 b = 2 R ( φ i + 1 φ i ) , Δ L i , i + 1 w 1 = 2 [ ( h i + 1 w 1 + l i + 1 w 1 ) ( h i w 1 + l i w 1 ) ] , Δ L i , i + 1 w 2 = 2 [ ( h i + 1 w 2 + l i + 1 w 2 ) ( h i w 2 + l i w 2 ) ] , Δ L i , i + 1 out = l i + 1 , q out l i , q out .
Δ L i , i + 1 b = { 2 R Δ ϕ , i ( N 1 ) / 2 2 R ( 2 i N ) Δ ϕ , ( N 1 ) / 2 < i < ( N 1 ) / 2 + 1 2 R Δ ϕ , i ( N 1 ) / 2 + 1 ,
Δ ϕ = 2 arcsin ( d a / 2 L f ) ,
n e s Δ L in + n e b Δ L b + n e w 1 Δ L w 1 + n e w 2 Δ L w 2 + n e s Δ L out = m λ ,
λ T = 1 M [ ( n e s T + n e s α s ) ( Δ L in + Δ L out ) + ( n e b T + n e b α b ) Δ L b + ( n e w 1 T + n e w 1 α w 1 ) Δ L w 1 + ( n e w 2 T + n e w 2 α w 2 ) Δ L w 2 ] ,
M = m n g s Δ L in + n g b Δ L b + n g w 1 Δ L w 1 + n g w 2 Δ L w 2 + n g s Δ L out n e s Δ L in + n e b Δ L b + n e w 1 Δ L w 1 + n e w 2 Δ L w 2 + n e s Δ L out ,
n g s Δ L in + n g b Δ L b + n g w 1 Δ L w 1 + n g w 2 Δ L w 2 + n g s Δ L out = M λ .
Δ L out λ = M n e s .
L f = n e s d a d i o M Δ λ ,
Δ λ FSR = λ M 1 .
n e b Δ L b + n e w 1 Δ L w 1 + n e w 2 Δ L w 2 = m λ c ,
M = m n g b Δ L b + n g w 1 Δ L w 1 + n g w 2 Δ L w 2 n e b Δ L b + n e w 1 Δ L w 1 + n e w 2 Δ L w 2 ,
n g b Δ L b + n g w 1 Δ L w 1 + n g w 2 Δ L w 2 = M λ c ,
λ c T = 1 M [ n e b T Δ L b + n e w 1 T Δ L w 1 + n e w 2 T Δ L w 2 ] .
n e b T Δ L b + n e w 1 T Δ L w 1 + n e w 2 T Δ L w 2 = 0.
{ ( Δ L w 1 ) given = n e w 2 T M given λ c ( n g b n e w 2 T n g w 2 n e b T ) Δ L b n g w 2 n e w 1 T n g w 1 n e w 2 T ( Δ L w 2 ) given = n e w 1 T M given λ c ( n g b n e w 1 T n g w 1 n e b T ) Δ L b n g w 2 n e w 1 T n g w 1 n e w 2 T .
m = round [ n e b Δ L b + n e w 1 ( Δ L w 1 ) given + n e w 2 ( Δ L w 2 ) given λ c ] ,
{ Δ L w 1 = n e w 2 T m λ c ( n e b n e w 2 T n e w 2 n e b T ) Δ L b n e w 2 n e w 1 T n e w 1 n e w 2 T Δ L w 2 = n e w 1 T m λ c ( n e b n e w 1 T n e w 1 n e b T ) Δ L b n e w 2 n e w 1 T n e w 1 n e w 2 T .
L i = L 0 + 2 R φ i + S i w 1 + S i w 2 ,
S i j = 2 ( h i j + l i j ) ,
S i j = S 1 j + Δ L 1 , 2 j + · · · + Δ L i 1 , i j .
{ S N w 1 = S 1 w 1 | Δ L 1 , 2 w 1 | | Δ L N 1 , N w 1 | S N w 2 = S 1 w 2 + | Δ L 1 , 2 w 2 | + + | Δ L N 1 , N w 2 | .
{ S i w 1 = | Δ L i , i + 1 w 1 | + + | Δ L N 1 , N w 1 | S i w 2 = Δ L 1 , 2 w 2 + + Δ L i 1 , i w 2 .
{ Δ L w 2 = m λ c n e w 2 r A n e w 1 Δ L w 1 = r A Δ L w 2 Δ L b ,
{ S i w 1 = r A ( N i ) Δ L w 2 + 2 R ( φ N φ i ) S i w 2 = ( i 1 ) Δ L w 2 ,
r A = n e w 2 T / n e w 1 T .
m = round ( M given n e w 2 r A n e w 1 n g w 2 r A n g w 1 ) .
M = m n g w 2 r A n g w 1 n e w 2 r A n e w 1 .
r = Δ L w 1 + Δ L b Δ L w 2 .
λ c T = Δ L w 2 M ( n e w 2 T r n e w 1 T ) .
r j = Δ L w j / Δ L w J ,
m = round ( M given j = 1 J r j n e w j j = 1 J r j n g w j ) ,
Δ L w J = m λ c j = 1 J ( r j n e w j ) ,
Δ L total = j = 1 J Δ L w j ,
S i w j = { ( i 1 ) Δ L w j , Δ L w j > 0 ( N i ) | Δ L w j | , Δ L w j < 0 ,
L i = L 0 + j = 1 J S i w j ,
M = m j = 1 J r j n g w j j = 1 J r j n e w j ,
λ c T = Δ L w J M j = 1 J ( r j n e w j T ) .
F = M / m .
L N = L 0 + 2 R φ N + ( N 1 ) Δ L w 2 .
Δ B = j = 1 J B w j Δ L w j ,

Metrics