Abstract

The skeletonization of optical fringes with high density and high noise has been an open problem. We describe a skeletonization process for gray-scale optical fringe patterns with high density and high noise based on the gradient vector fields (GVFs). We derive the new oriented couple governing partial differential equations (PDEs) for calculating the GVFs of dense, noisy optical fringes based on the variational methods, in which the fringe orientation is taken into account fully. We test the proposed PDEs on a computer simulation and experimentally obtained fringe patterns, in which the fringes contain obvious high density regions and heavy noise, and compare them with related PDEs and the fringe extreme tracking method, respectively. The experimental results demonstrate that the new governing PDEs perform favorably.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (2)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (36)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription