Abstract

We report on two effective methods, multiparameter optimization and local optimization combined with the diffraction bandwidth merit function, to design a broadband pulse compression grating (PCG), and we present broadband, high-efficiency PCGs based on both the multilayer dielectric grating (MDG) and metal-multilayer dielectric grating (MMDG) models. For MDG, the average diffraction efficiency is higher than 97.5% for TE polarization light over the 100nm bandwidth centered at 800nm. Moreover, a novel multilayer structure, which comprises higher index material in the high- reflectivity mirror and relatively lower index material on top, is first proposed to yield higher average efficiency, broader bandwidth, and excellent fabrication tolerance. For MMDG, it exhibits an ultra broadband top-hat diffraction spectrum with average efficiency exceeding 97% over the 200nm wavelength wide centered at 1053nm. In addition, the MMDG structure, which has the best tolerance for grating fabrication, is determined by investigating characteristics of MMDGs with different thin-film structures.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 55, 447–449 (1985).
    [CrossRef]
  2. M. Pessot, J. Squier, G. Mourou, and D. J. Harter, “Chirped-pulse amplification of 100fsec pulses,” Opt. Lett. 14, 797–799 (1989).
    [CrossRef]
  3. A. S. Svakhin, V. A. Sychugov, and A. E. Tikhomirov, “Diffraction gratings with high optical strength for laser resonators,” Quantum Electron. 24, 233–235 (1994).
    [CrossRef]
  4. M. D. Perry, R. D. Boyd, J. A. Britten, D. Decker, B. W. Shore, C. Shannon, and E. Shults, “High-efficiency multilayer dielectric diffraction gratings,” Opt. Lett. 20, 940–942 (1995).
    [CrossRef]
  5. L. Li and J. Hirsh, “All-dielectric high-efficiency reflection gratings made with multilayer thin-film coatings,” Opt. Lett. 20, 1349–1351 (1995).
    [CrossRef]
  6. B. W. Shore, M. D. Perry, J. A. Britten, R. D. Boyd, M. D. Feit, H. T. Nguyen, R. Chow, G. E. Loomis, and L. Li, “Design of high-efficiency dielectric reflection gratings,” J. Opt. Soc. Am. A 14, 1124–1136 (1997).
    [CrossRef]
  7. K. Hehl, J. Bischoff, U. Mohaupt, M. Palme, B. Schnabel, L. Wenke, R. Befeld, W. Theobald, E. Welsch, R. Sauerbrey, and H. Heyer, “High-efficiency dielectric reflection gratings: design, fabrication, and analysis,” Appl. Opt. 38, 6257–6271(1999).
    [CrossRef]
  8. N. Destouches, A. V. Tishchenko, J. C. Pommier, S. Reynaud, and O. Parriaux, “99% efficiency measured in the −1st order of a resonant grating,” Opt. Express 13, 3230–3235(2005).
    [CrossRef]
  9. P. P. Lu, K. X. Sun, R. L. Byer, J. A. Britten, H. T. Nguyen, J. D. Nissen, C. C. Larson, M. D. Aasen, T. C. Carlson, and C. R. Hoaglan, “Precise diffraction efficiency measurements of large-area greater-than-99%-efficient dielectric gratings at the Littrow angle,” Opt. Lett. 34, 1708–1710 (2009).
    [CrossRef]
  10. I. Jovanovic, C. G. Brown, B. C. Stuart, W. A. Molander, N. D. Nielsen, B. F. Wattellier, J. A. Britten, D. M. Pennington, and C. P. J. Barty, “Precision damage tests of multilayer dielectric gratings for high-energy petawatt lasers,” Proc. SPIE 5647, 34–42 (2005).
    [CrossRef]
  11. S. Liu, Z. Shen, W. Kong, J. Shen, Z. Deng, Y. Zhao, J. Shao, and Z. Fan, “Optimization of near-field optical field of multi-layer dielectric gratings for pulse compressor,” Opt. Commun. 267, 50–57 (2006).
    [CrossRef]
  12. N. Bonod and J. Neauport, “Optical performance and laser induced damage threshold improvement of diffraction gratings used as compressors in ultra high intensity lasers,” Opt. Commun. 260, 649–655 (2006).
    [CrossRef]
  13. J. Neauport, E. Lavastre, G. Razé, G. Dupuy, N. Bonod, M. Balas, G. de Villele, J. Flamand, S. Kaladgew, and F. Desserouer, “Effect of electric field on laser induced damage threshold of multilayer dielectric gratings,” Opt. Express 15, 12508–12522 (2007).
    [CrossRef]
  14. A. Hessel and A. A. Oliner, “A new theory of Wood’s anomalies on optical gratings,” Appl. Opt. 4, 1275–1297 (1965).
    [CrossRef]
  15. C. Wei, S. Liu, D. Deng, J. Shen, J. Shao, and Z. Fan, “Electric field enhancement in guided-mode resonance filters,” Opt. Lett. 31, 1223–1225 (2006).
    [CrossRef]
  16. N. Lyndin, M. Flury, S. Tonchev, R. Fechner, and O. Parriaux, “Design and fabrication of an all-dielectric grating with top-hat high diffraction efficiency over a broad spectral range,” J. Euro. Opt. Soc. Rap. Public. 2, 07019 (2007).
    [CrossRef]
  17. F. Canova, R. Clady, J.-P. Chambaret, M. Flury, S. Tonchev, R. Fechner, and O. Parriaux, “High-efficiency, broad band, high-damage threshold high-index gratings for femtosecond pulse compression,” Opt. Express 15, 15324–15334(2007).
    [CrossRef]
  18. D. H. Martz, H. T. Nguyen, D. Patel, J. A. Britten, D. Alessi, E. Krous, Y. Wang, M. A. Larotonda, J. George, B. Knollenberg, B. M. Luther, J. J. Rocca, and C. S. Menoni, “Large area high efficiency broad bandwidth 800nm dielectric gratings for high energy laser pulse compression,” Opt. Express 17, 23809–23816 (2009).
    [CrossRef]
  19. J. Neauport and N. Bonod, “Pulse compression gratings for the PETAL project: a review of various technologies,” Proc. SPIE 7132, 71320D (2008).
    [CrossRef]
  20. S. Palmier, J. Neauport, N. Baclet, E. Lavastre, and G. Dupuy, “High reflection mirrors for pulse compression gratings,” Opt. Express 17, 20430–20439 (2009).
    [CrossRef]
  21. H. Wei and L. Li, “All-dielectric reflection gratings: a study of the physical mechanism for achieving high efficiency,” Appl. Opt. 42, 6255–6260 (2003).
    [CrossRef]
  22. M. Flury, A. V. Tishchenko, and O. Parriaux, “The leaky mode resonance condition ensures 100% diffraction efficiency of mirror-based resonant gratings,” J. Lightwave Technol. 25, 1870–1878 (2007).
    [CrossRef]
  23. S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,” Science 220, 671–680 (1983).
    [CrossRef]
  24. J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of the Institute of Electrical and Electronics Engineers International Conference on Neural Networks (IEEE, 1995), pp. 1942–1948.
  25. M. Shokooh-Saremi and R. Magnusson, “Particle swarm optimization and its application to the design of diffraction grating filters,” Opt. Lett. 32, 894–896 (2007).
    [CrossRef]
  26. D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning (Addison-Wesley, 1989).
  27. J. Wang, Y. Jin, J. Ma, J. Shao, and Z. Fan, “Study on the guided-mode resonance characteristic of multilayer dielectric gratings with broadband and wide using-angle,” Chin. Phys. B 19, 054202 (2010).
  28. J. Wang, Y. Jin, J. Shao, and Z. Fan, “Optimization design of an ultra-broad band, high-efficiency all-dielectric grating,” Opt. Lett. 35, 187–189 (2010).
    [CrossRef]

2010

2009

2008

J. Neauport and N. Bonod, “Pulse compression gratings for the PETAL project: a review of various technologies,” Proc. SPIE 7132, 71320D (2008).
[CrossRef]

2007

2006

S. Liu, Z. Shen, W. Kong, J. Shen, Z. Deng, Y. Zhao, J. Shao, and Z. Fan, “Optimization of near-field optical field of multi-layer dielectric gratings for pulse compressor,” Opt. Commun. 267, 50–57 (2006).
[CrossRef]

N. Bonod and J. Neauport, “Optical performance and laser induced damage threshold improvement of diffraction gratings used as compressors in ultra high intensity lasers,” Opt. Commun. 260, 649–655 (2006).
[CrossRef]

C. Wei, S. Liu, D. Deng, J. Shen, J. Shao, and Z. Fan, “Electric field enhancement in guided-mode resonance filters,” Opt. Lett. 31, 1223–1225 (2006).
[CrossRef]

2005

I. Jovanovic, C. G. Brown, B. C. Stuart, W. A. Molander, N. D. Nielsen, B. F. Wattellier, J. A. Britten, D. M. Pennington, and C. P. J. Barty, “Precision damage tests of multilayer dielectric gratings for high-energy petawatt lasers,” Proc. SPIE 5647, 34–42 (2005).
[CrossRef]

N. Destouches, A. V. Tishchenko, J. C. Pommier, S. Reynaud, and O. Parriaux, “99% efficiency measured in the −1st order of a resonant grating,” Opt. Express 13, 3230–3235(2005).
[CrossRef]

2003

1999

1997

1995

1994

A. S. Svakhin, V. A. Sychugov, and A. E. Tikhomirov, “Diffraction gratings with high optical strength for laser resonators,” Quantum Electron. 24, 233–235 (1994).
[CrossRef]

1989

1985

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 55, 447–449 (1985).
[CrossRef]

1983

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,” Science 220, 671–680 (1983).
[CrossRef]

1965

Aasen, M. D.

Alessi, D.

Baclet, N.

Balas, M.

Barty, C. P. J.

I. Jovanovic, C. G. Brown, B. C. Stuart, W. A. Molander, N. D. Nielsen, B. F. Wattellier, J. A. Britten, D. M. Pennington, and C. P. J. Barty, “Precision damage tests of multilayer dielectric gratings for high-energy petawatt lasers,” Proc. SPIE 5647, 34–42 (2005).
[CrossRef]

Befeld, R.

Bischoff, J.

Bonod, N.

J. Neauport and N. Bonod, “Pulse compression gratings for the PETAL project: a review of various technologies,” Proc. SPIE 7132, 71320D (2008).
[CrossRef]

J. Neauport, E. Lavastre, G. Razé, G. Dupuy, N. Bonod, M. Balas, G. de Villele, J. Flamand, S. Kaladgew, and F. Desserouer, “Effect of electric field on laser induced damage threshold of multilayer dielectric gratings,” Opt. Express 15, 12508–12522 (2007).
[CrossRef]

N. Bonod and J. Neauport, “Optical performance and laser induced damage threshold improvement of diffraction gratings used as compressors in ultra high intensity lasers,” Opt. Commun. 260, 649–655 (2006).
[CrossRef]

Boyd, R. D.

Britten, J. A.

Brown, C. G.

I. Jovanovic, C. G. Brown, B. C. Stuart, W. A. Molander, N. D. Nielsen, B. F. Wattellier, J. A. Britten, D. M. Pennington, and C. P. J. Barty, “Precision damage tests of multilayer dielectric gratings for high-energy petawatt lasers,” Proc. SPIE 5647, 34–42 (2005).
[CrossRef]

Byer, R. L.

Canova, F.

Carlson, T. C.

Chambaret, J.-P.

Chow, R.

Clady, R.

de Villele, G.

Decker, D.

Deng, D.

Deng, Z.

S. Liu, Z. Shen, W. Kong, J. Shen, Z. Deng, Y. Zhao, J. Shao, and Z. Fan, “Optimization of near-field optical field of multi-layer dielectric gratings for pulse compressor,” Opt. Commun. 267, 50–57 (2006).
[CrossRef]

Desserouer, F.

Destouches, N.

Dupuy, G.

Eberhart, R.

J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of the Institute of Electrical and Electronics Engineers International Conference on Neural Networks (IEEE, 1995), pp. 1942–1948.

Fan, Z.

J. Wang, Y. Jin, J. Shao, and Z. Fan, “Optimization design of an ultra-broad band, high-efficiency all-dielectric grating,” Opt. Lett. 35, 187–189 (2010).
[CrossRef]

S. Liu, Z. Shen, W. Kong, J. Shen, Z. Deng, Y. Zhao, J. Shao, and Z. Fan, “Optimization of near-field optical field of multi-layer dielectric gratings for pulse compressor,” Opt. Commun. 267, 50–57 (2006).
[CrossRef]

C. Wei, S. Liu, D. Deng, J. Shen, J. Shao, and Z. Fan, “Electric field enhancement in guided-mode resonance filters,” Opt. Lett. 31, 1223–1225 (2006).
[CrossRef]

J. Wang, Y. Jin, J. Ma, J. Shao, and Z. Fan, “Study on the guided-mode resonance characteristic of multilayer dielectric gratings with broadband and wide using-angle,” Chin. Phys. B 19, 054202 (2010).

Fechner, R.

N. Lyndin, M. Flury, S. Tonchev, R. Fechner, and O. Parriaux, “Design and fabrication of an all-dielectric grating with top-hat high diffraction efficiency over a broad spectral range,” J. Euro. Opt. Soc. Rap. Public. 2, 07019 (2007).
[CrossRef]

F. Canova, R. Clady, J.-P. Chambaret, M. Flury, S. Tonchev, R. Fechner, and O. Parriaux, “High-efficiency, broad band, high-damage threshold high-index gratings for femtosecond pulse compression,” Opt. Express 15, 15324–15334(2007).
[CrossRef]

Feit, M. D.

Flamand, J.

Flury, M.

Gelatt, C. D.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,” Science 220, 671–680 (1983).
[CrossRef]

George, J.

Goldberg, D. E.

D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning (Addison-Wesley, 1989).

Harter, D. J.

Hehl, K.

Hessel, A.

Heyer, H.

Hirsh, J.

Hoaglan, C. R.

Jin, Y.

J. Wang, Y. Jin, J. Shao, and Z. Fan, “Optimization design of an ultra-broad band, high-efficiency all-dielectric grating,” Opt. Lett. 35, 187–189 (2010).
[CrossRef]

J. Wang, Y. Jin, J. Ma, J. Shao, and Z. Fan, “Study on the guided-mode resonance characteristic of multilayer dielectric gratings with broadband and wide using-angle,” Chin. Phys. B 19, 054202 (2010).

Jovanovic, I.

I. Jovanovic, C. G. Brown, B. C. Stuart, W. A. Molander, N. D. Nielsen, B. F. Wattellier, J. A. Britten, D. M. Pennington, and C. P. J. Barty, “Precision damage tests of multilayer dielectric gratings for high-energy petawatt lasers,” Proc. SPIE 5647, 34–42 (2005).
[CrossRef]

Kaladgew, S.

Kennedy, J.

J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of the Institute of Electrical and Electronics Engineers International Conference on Neural Networks (IEEE, 1995), pp. 1942–1948.

Kirkpatrick, S.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,” Science 220, 671–680 (1983).
[CrossRef]

Knollenberg, B.

Kong, W.

S. Liu, Z. Shen, W. Kong, J. Shen, Z. Deng, Y. Zhao, J. Shao, and Z. Fan, “Optimization of near-field optical field of multi-layer dielectric gratings for pulse compressor,” Opt. Commun. 267, 50–57 (2006).
[CrossRef]

Krous, E.

Larotonda, M. A.

Larson, C. C.

Lavastre, E.

Li, L.

Liu, S.

S. Liu, Z. Shen, W. Kong, J. Shen, Z. Deng, Y. Zhao, J. Shao, and Z. Fan, “Optimization of near-field optical field of multi-layer dielectric gratings for pulse compressor,” Opt. Commun. 267, 50–57 (2006).
[CrossRef]

C. Wei, S. Liu, D. Deng, J. Shen, J. Shao, and Z. Fan, “Electric field enhancement in guided-mode resonance filters,” Opt. Lett. 31, 1223–1225 (2006).
[CrossRef]

Loomis, G. E.

Lu, P. P.

Luther, B. M.

Lyndin, N.

N. Lyndin, M. Flury, S. Tonchev, R. Fechner, and O. Parriaux, “Design and fabrication of an all-dielectric grating with top-hat high diffraction efficiency over a broad spectral range,” J. Euro. Opt. Soc. Rap. Public. 2, 07019 (2007).
[CrossRef]

Ma, J.

J. Wang, Y. Jin, J. Ma, J. Shao, and Z. Fan, “Study on the guided-mode resonance characteristic of multilayer dielectric gratings with broadband and wide using-angle,” Chin. Phys. B 19, 054202 (2010).

Magnusson, R.

Martz, D. H.

Menoni, C. S.

Mohaupt, U.

Molander, W. A.

I. Jovanovic, C. G. Brown, B. C. Stuart, W. A. Molander, N. D. Nielsen, B. F. Wattellier, J. A. Britten, D. M. Pennington, and C. P. J. Barty, “Precision damage tests of multilayer dielectric gratings for high-energy petawatt lasers,” Proc. SPIE 5647, 34–42 (2005).
[CrossRef]

Mourou, G.

M. Pessot, J. Squier, G. Mourou, and D. J. Harter, “Chirped-pulse amplification of 100fsec pulses,” Opt. Lett. 14, 797–799 (1989).
[CrossRef]

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 55, 447–449 (1985).
[CrossRef]

Neauport, J.

S. Palmier, J. Neauport, N. Baclet, E. Lavastre, and G. Dupuy, “High reflection mirrors for pulse compression gratings,” Opt. Express 17, 20430–20439 (2009).
[CrossRef]

J. Neauport and N. Bonod, “Pulse compression gratings for the PETAL project: a review of various technologies,” Proc. SPIE 7132, 71320D (2008).
[CrossRef]

J. Neauport, E. Lavastre, G. Razé, G. Dupuy, N. Bonod, M. Balas, G. de Villele, J. Flamand, S. Kaladgew, and F. Desserouer, “Effect of electric field on laser induced damage threshold of multilayer dielectric gratings,” Opt. Express 15, 12508–12522 (2007).
[CrossRef]

N. Bonod and J. Neauport, “Optical performance and laser induced damage threshold improvement of diffraction gratings used as compressors in ultra high intensity lasers,” Opt. Commun. 260, 649–655 (2006).
[CrossRef]

Nguyen, H. T.

Nielsen, N. D.

I. Jovanovic, C. G. Brown, B. C. Stuart, W. A. Molander, N. D. Nielsen, B. F. Wattellier, J. A. Britten, D. M. Pennington, and C. P. J. Barty, “Precision damage tests of multilayer dielectric gratings for high-energy petawatt lasers,” Proc. SPIE 5647, 34–42 (2005).
[CrossRef]

Nissen, J. D.

Oliner, A. A.

Palme, M.

Palmier, S.

Parriaux, O.

Patel, D.

Pennington, D. M.

I. Jovanovic, C. G. Brown, B. C. Stuart, W. A. Molander, N. D. Nielsen, B. F. Wattellier, J. A. Britten, D. M. Pennington, and C. P. J. Barty, “Precision damage tests of multilayer dielectric gratings for high-energy petawatt lasers,” Proc. SPIE 5647, 34–42 (2005).
[CrossRef]

Perry, M. D.

Pessot, M.

Pommier, J. C.

Razé, G.

Reynaud, S.

Rocca, J. J.

Sauerbrey, R.

Schnabel, B.

Shannon, C.

Shao, J.

J. Wang, Y. Jin, J. Shao, and Z. Fan, “Optimization design of an ultra-broad band, high-efficiency all-dielectric grating,” Opt. Lett. 35, 187–189 (2010).
[CrossRef]

S. Liu, Z. Shen, W. Kong, J. Shen, Z. Deng, Y. Zhao, J. Shao, and Z. Fan, “Optimization of near-field optical field of multi-layer dielectric gratings for pulse compressor,” Opt. Commun. 267, 50–57 (2006).
[CrossRef]

C. Wei, S. Liu, D. Deng, J. Shen, J. Shao, and Z. Fan, “Electric field enhancement in guided-mode resonance filters,” Opt. Lett. 31, 1223–1225 (2006).
[CrossRef]

J. Wang, Y. Jin, J. Ma, J. Shao, and Z. Fan, “Study on the guided-mode resonance characteristic of multilayer dielectric gratings with broadband and wide using-angle,” Chin. Phys. B 19, 054202 (2010).

Shen, J.

C. Wei, S. Liu, D. Deng, J. Shen, J. Shao, and Z. Fan, “Electric field enhancement in guided-mode resonance filters,” Opt. Lett. 31, 1223–1225 (2006).
[CrossRef]

S. Liu, Z. Shen, W. Kong, J. Shen, Z. Deng, Y. Zhao, J. Shao, and Z. Fan, “Optimization of near-field optical field of multi-layer dielectric gratings for pulse compressor,” Opt. Commun. 267, 50–57 (2006).
[CrossRef]

Shen, Z.

S. Liu, Z. Shen, W. Kong, J. Shen, Z. Deng, Y. Zhao, J. Shao, and Z. Fan, “Optimization of near-field optical field of multi-layer dielectric gratings for pulse compressor,” Opt. Commun. 267, 50–57 (2006).
[CrossRef]

Shokooh-Saremi, M.

Shore, B. W.

Shults, E.

Squier, J.

Strickland, D.

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 55, 447–449 (1985).
[CrossRef]

Stuart, B. C.

I. Jovanovic, C. G. Brown, B. C. Stuart, W. A. Molander, N. D. Nielsen, B. F. Wattellier, J. A. Britten, D. M. Pennington, and C. P. J. Barty, “Precision damage tests of multilayer dielectric gratings for high-energy petawatt lasers,” Proc. SPIE 5647, 34–42 (2005).
[CrossRef]

Sun, K. X.

Svakhin, A. S.

A. S. Svakhin, V. A. Sychugov, and A. E. Tikhomirov, “Diffraction gratings with high optical strength for laser resonators,” Quantum Electron. 24, 233–235 (1994).
[CrossRef]

Sychugov, V. A.

A. S. Svakhin, V. A. Sychugov, and A. E. Tikhomirov, “Diffraction gratings with high optical strength for laser resonators,” Quantum Electron. 24, 233–235 (1994).
[CrossRef]

Theobald, W.

Tikhomirov, A. E.

A. S. Svakhin, V. A. Sychugov, and A. E. Tikhomirov, “Diffraction gratings with high optical strength for laser resonators,” Quantum Electron. 24, 233–235 (1994).
[CrossRef]

Tishchenko, A. V.

Tonchev, S.

N. Lyndin, M. Flury, S. Tonchev, R. Fechner, and O. Parriaux, “Design and fabrication of an all-dielectric grating with top-hat high diffraction efficiency over a broad spectral range,” J. Euro. Opt. Soc. Rap. Public. 2, 07019 (2007).
[CrossRef]

F. Canova, R. Clady, J.-P. Chambaret, M. Flury, S. Tonchev, R. Fechner, and O. Parriaux, “High-efficiency, broad band, high-damage threshold high-index gratings for femtosecond pulse compression,” Opt. Express 15, 15324–15334(2007).
[CrossRef]

Vecchi, M. P.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,” Science 220, 671–680 (1983).
[CrossRef]

Wang, J.

J. Wang, Y. Jin, J. Shao, and Z. Fan, “Optimization design of an ultra-broad band, high-efficiency all-dielectric grating,” Opt. Lett. 35, 187–189 (2010).
[CrossRef]

J. Wang, Y. Jin, J. Ma, J. Shao, and Z. Fan, “Study on the guided-mode resonance characteristic of multilayer dielectric gratings with broadband and wide using-angle,” Chin. Phys. B 19, 054202 (2010).

Wang, Y.

Wattellier, B. F.

I. Jovanovic, C. G. Brown, B. C. Stuart, W. A. Molander, N. D. Nielsen, B. F. Wattellier, J. A. Britten, D. M. Pennington, and C. P. J. Barty, “Precision damage tests of multilayer dielectric gratings for high-energy petawatt lasers,” Proc. SPIE 5647, 34–42 (2005).
[CrossRef]

Wei, C.

Wei, H.

Welsch, E.

Wenke, L.

Zhao, Y.

S. Liu, Z. Shen, W. Kong, J. Shen, Z. Deng, Y. Zhao, J. Shao, and Z. Fan, “Optimization of near-field optical field of multi-layer dielectric gratings for pulse compressor,” Opt. Commun. 267, 50–57 (2006).
[CrossRef]

Appl. Opt.

J. Euro. Opt. Soc. Rap. Public.

N. Lyndin, M. Flury, S. Tonchev, R. Fechner, and O. Parriaux, “Design and fabrication of an all-dielectric grating with top-hat high diffraction efficiency over a broad spectral range,” J. Euro. Opt. Soc. Rap. Public. 2, 07019 (2007).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. A

Opt. Commun.

S. Liu, Z. Shen, W. Kong, J. Shen, Z. Deng, Y. Zhao, J. Shao, and Z. Fan, “Optimization of near-field optical field of multi-layer dielectric gratings for pulse compressor,” Opt. Commun. 267, 50–57 (2006).
[CrossRef]

N. Bonod and J. Neauport, “Optical performance and laser induced damage threshold improvement of diffraction gratings used as compressors in ultra high intensity lasers,” Opt. Commun. 260, 649–655 (2006).
[CrossRef]

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 55, 447–449 (1985).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. SPIE

I. Jovanovic, C. G. Brown, B. C. Stuart, W. A. Molander, N. D. Nielsen, B. F. Wattellier, J. A. Britten, D. M. Pennington, and C. P. J. Barty, “Precision damage tests of multilayer dielectric gratings for high-energy petawatt lasers,” Proc. SPIE 5647, 34–42 (2005).
[CrossRef]

J. Neauport and N. Bonod, “Pulse compression gratings for the PETAL project: a review of various technologies,” Proc. SPIE 7132, 71320D (2008).
[CrossRef]

Quantum Electron.

A. S. Svakhin, V. A. Sychugov, and A. E. Tikhomirov, “Diffraction gratings with high optical strength for laser resonators,” Quantum Electron. 24, 233–235 (1994).
[CrossRef]

Science

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,” Science 220, 671–680 (1983).
[CrossRef]

Other

J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of the Institute of Electrical and Electronics Engineers International Conference on Neural Networks (IEEE, 1995), pp. 1942–1948.

D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning (Addison-Wesley, 1989).

J. Wang, Y. Jin, J. Ma, J. Shao, and Z. Fan, “Study on the guided-mode resonance characteristic of multilayer dielectric gratings with broadband and wide using-angle,” Chin. Phys. B 19, 054202 (2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Schematic diagram of MDG with one match layer. f is the duty cycle of the surface grating.

Fig. 2
Fig. 2

Broadband diffraction spectrum of MDG. The designed values of the MDG parameters are { 121 nm , 2 nm , 74 nm , 0.25 , 863 nm } . The diffraction bandwidth is over 100 nm with average DE above 97.5%.

Fig. 3
Fig. 3

Diffraction spectrums of MDG with a different multilayer structure. From (a)–(c), the designed values of the MDG parameter are { 239 nm , 144 nm , 102 nm , 0.25 , 880 nm } , { 248 nm , 118 nm , 126 nm , 0.25 , 866 nm } , and { 186 nm , 93 nm , 144 nm , 0.43 , 877 nm } , correspondingly.

Fig. 4
Fig. 4

Dependence of the diffraction spectrum on (a) groove depth, (b) duty cycle, (c) the thickness of the match layer, and (b) the wavelength of reference light, correspondingly. The parameters of MDG are the same as in Fig. 3b.

Fig. 5
Fig. 5

Schematic diagram of an MMDG with one metal HR mirror, one match layer, and the surface-relief grating etched in the high-index material layer.

Fig. 6
Fig. 6

Ultrabroad top-hat diffraction spectrum of MMDG designed by multiparameter optimization. MMDG parameters are { 315 nm , 173 nm , 140 nm , 0.25 } .

Fig. 7
Fig. 7

Effect of the groove depth and thickness of the match layer on DE (solid curve) and the value of function MF b (dashed curve). The evaluation efficiency of the MMDG is 95%.

Fig. 8
Fig. 8

Broadband diffraction spectrum of MMDG. The groove depth and the thickness of the residual top layer are 340 nm and 120 nm , respectively. The match layer thickness is 165 nm , and the duty cycle is 0.25.

Fig. 9
Fig. 9

Dependence of the diffraction spectrum on (a) groove depth and (b) duty cycle. The parameters are the same as those in Fig. 6.

Fig. 10
Fig. 10

Broadband diffraction spectrum of different MMDG model calculated by the following parameters: (a) { 254 nm , 11 nm , 0.25 } and (b) { 227 nm , 35 nm , 0.25 } , correspondingly.

Fig. 11
Fig. 11

Calculated tolerances of groove depth (a), (b) and duty cycle (c), (d) of two MMDG models. The MMDG parameters for (a) and (c) are the same as those in Fig. 10a, and MMDG parameters for (b) and (d) are the same as those for Fig. 10b.

Fig. 12
Fig. 12

DE of MMDG with 1740 lines / mm used at the wavelength 800 nm , as a function of groove depth and match layer thickness. The duty cycle of the corrugation is 0.25. The incidence angle is 60 ° , and the incidence light is TE polarization. The maximum efficiency in (d), (e), and (f) is 76.4%, 76.7%, and 75.3%, correspondingly.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

MF m = { 1 N λ i [ 100 % R opt ( λ i ) ] 2 } 1 / 2 ,
MF b = N * Δ λ ,
Λ max = 2 · ( λ 0 Δ λ ) sin θ i n h · sin θ t ,
Λ max = λ 0 Δ λ sin θ i + n h · sin θ t ,

Metrics