Abstract

Characterization of absorption, emission, and temperature-dependent luminescent features is of signi ficant interest for the development of optical temperature sensors and photonic devices. In this work, we conduct a comprehensive study to evaluate the orientation axis-dependent absorption and emission cross sections of Cr3+ ions in BeAl2O4. In addition, we present new data for the temperature-dependent Stark-level energies for alexandrite. Laser-induced temperature-dependent luminescence data from 300520K on the R-line transitions are presented for application to high-temperature sensing.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Khalid and K. Kontis, “Thermographic phosphors for high temperature measurements: principles, current state of the art and recent applications,” Sensors 8, 5673–5744 (2008).
    [CrossRef]
  2. M. McSherry, C. Fitzpatrick, and E. Lewis, “Review of luminescent based fiber optic temperature sensors,” Sensor Rev. 25, 56–62 (2005).
    [CrossRef]
  3. H. C. Seat, J. H. Sharp, Z. Y. Zhang, and K. T. V. Grattan, “Single-crystal ruby fiber temperature sensor,” Sens. Actuators A, Phys. 101, 24–29 (2002).
    [CrossRef]
  4. H. Aizawa, H. Uchiyama, T. Katsumata, S. Komuro, T. Morikawa, H. Ishizawa, and E. Toba, “Fiber-optic thermometer using sensor materials with long fluorescence lifetime,” Meas. Sci. Technol. 15, 1484–1489 (2004).
  5. A. T. Augousti, K. T. V. Grattan, and A. W. Palmer, “A laser-pumped temperature sensor using the fluorescent decay time of alexandrite,” J. Lightwave Technol. 5, 759–762(1987).
    [CrossRef]
  6. Z. Zhang, G. T. V. Grattan, and A. W. Palmer, “Fiber-optic high-temperature sensor based on the fluorescence lifetime of alexandrite,” Rev. Sci. Instrum. 63, 3869–3873(1992).
    [CrossRef]
  7. J. C. Walling, O. G. Peterson, H. P. Jenssen, and R. C. Morris, “Tunable alexandrite lasers,” IEEE J. Quant. Electron. 16, 1302–1314 (1980).
    [CrossRef]
  8. R. C. Powell, L. Xi, X. Gang, and G. J. Quarles, “Spectroscopic properties of alexandrite crystals,” Phys. Rev. B 32, 2788–2797 (1985).
    [CrossRef]
  9. R. M. Scalvi, M. S. Li, and L. V. A. Scalvi, “Annealing effects on optical properties of natural alexandrite,” J. Phys. Condens. Matter 15, 7437–7443 (2003).
    [CrossRef]
  10. SRS/Cd2A program written by coauthor B. M. Walsh.
  11. N. P. Barnes, “Solid-state lasers from an efficiency perspective,” IEEE J. Quant. Electron. 13, 435–447 (2007).
    [CrossRef]
  12. http://www.as.northropgrumman.com/products.synoptics_alexandrite/assets/Alexandrite.
  13. S. Watanabe, T. Sasaki, R. Taniguchi, T. Ishii, and K. Ogasawara, “First principles calculation of ground and excited-state absorption spectra of ruby and alexandrite considering lattice relaxation,” Phys. Rev. B. 79, 075109 (2009).
    [CrossRef]
  14. D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev 136, A954–A957(1964).
    [CrossRef]
  15. B. M. Walsh, N. P. Barnes, and B. Di Bartolo, “Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids; application to Tm3+ and Ho3+ ions in LiYF4,” J. Appl. Phys. 83, 2772–2787 (1998).
    [CrossRef]
  16. S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kray, and W. P. Krupke, “Infrared cross section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quant. Electron. 28, 2619–2630 (1992).
    [CrossRef]
  17. W. J. Miniscalco and R. S. Quimbly, “General procedure for the analysis of Er3+ cross sections,” Opt. Lett. 16, 258–260(1991).
    [CrossRef] [PubMed]
  18. M. L. Shand and H. P. Jenssen, “Temperature dependence of the excited-state absorption of alexandrite,” IEEE J. Quant. Electron. 19, 480–484 (1983).
    [CrossRef]
  19. M. L. Shand, “Quantum efficiency of alexandrite,” J. Appl. Phys. 54, 2602–2604 (1983).
    [CrossRef]
  20. B. Di Bartolo, Optical Interactions in Solids (Wiley, 1968).
  21. T. Sun, Z. Y. Yang, K. Y. V. Grattan, and A. W. Palmer, “Alexandrite-based optical temperature sensing: comparison of different fluorescence-based approaches,” in Proceedings of the 12th International Conference on Optical Fiber Sensors (Optical Society of America, 1997), Vol. 16.

2009

S. Watanabe, T. Sasaki, R. Taniguchi, T. Ishii, and K. Ogasawara, “First principles calculation of ground and excited-state absorption spectra of ruby and alexandrite considering lattice relaxation,” Phys. Rev. B. 79, 075109 (2009).
[CrossRef]

2008

A. Khalid and K. Kontis, “Thermographic phosphors for high temperature measurements: principles, current state of the art and recent applications,” Sensors 8, 5673–5744 (2008).
[CrossRef]

2007

N. P. Barnes, “Solid-state lasers from an efficiency perspective,” IEEE J. Quant. Electron. 13, 435–447 (2007).
[CrossRef]

2005

M. McSherry, C. Fitzpatrick, and E. Lewis, “Review of luminescent based fiber optic temperature sensors,” Sensor Rev. 25, 56–62 (2005).
[CrossRef]

2004

H. Aizawa, H. Uchiyama, T. Katsumata, S. Komuro, T. Morikawa, H. Ishizawa, and E. Toba, “Fiber-optic thermometer using sensor materials with long fluorescence lifetime,” Meas. Sci. Technol. 15, 1484–1489 (2004).

2003

R. M. Scalvi, M. S. Li, and L. V. A. Scalvi, “Annealing effects on optical properties of natural alexandrite,” J. Phys. Condens. Matter 15, 7437–7443 (2003).
[CrossRef]

2002

H. C. Seat, J. H. Sharp, Z. Y. Zhang, and K. T. V. Grattan, “Single-crystal ruby fiber temperature sensor,” Sens. Actuators A, Phys. 101, 24–29 (2002).
[CrossRef]

1998

B. M. Walsh, N. P. Barnes, and B. Di Bartolo, “Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids; application to Tm3+ and Ho3+ ions in LiYF4,” J. Appl. Phys. 83, 2772–2787 (1998).
[CrossRef]

1992

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kray, and W. P. Krupke, “Infrared cross section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quant. Electron. 28, 2619–2630 (1992).
[CrossRef]

Z. Zhang, G. T. V. Grattan, and A. W. Palmer, “Fiber-optic high-temperature sensor based on the fluorescence lifetime of alexandrite,” Rev. Sci. Instrum. 63, 3869–3873(1992).
[CrossRef]

1991

1987

A. T. Augousti, K. T. V. Grattan, and A. W. Palmer, “A laser-pumped temperature sensor using the fluorescent decay time of alexandrite,” J. Lightwave Technol. 5, 759–762(1987).
[CrossRef]

1985

R. C. Powell, L. Xi, X. Gang, and G. J. Quarles, “Spectroscopic properties of alexandrite crystals,” Phys. Rev. B 32, 2788–2797 (1985).
[CrossRef]

1983

M. L. Shand and H. P. Jenssen, “Temperature dependence of the excited-state absorption of alexandrite,” IEEE J. Quant. Electron. 19, 480–484 (1983).
[CrossRef]

M. L. Shand, “Quantum efficiency of alexandrite,” J. Appl. Phys. 54, 2602–2604 (1983).
[CrossRef]

1980

J. C. Walling, O. G. Peterson, H. P. Jenssen, and R. C. Morris, “Tunable alexandrite lasers,” IEEE J. Quant. Electron. 16, 1302–1314 (1980).
[CrossRef]

1964

D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev 136, A954–A957(1964).
[CrossRef]

Aizawa, H.

H. Aizawa, H. Uchiyama, T. Katsumata, S. Komuro, T. Morikawa, H. Ishizawa, and E. Toba, “Fiber-optic thermometer using sensor materials with long fluorescence lifetime,” Meas. Sci. Technol. 15, 1484–1489 (2004).

Augousti, A. T.

A. T. Augousti, K. T. V. Grattan, and A. W. Palmer, “A laser-pumped temperature sensor using the fluorescent decay time of alexandrite,” J. Lightwave Technol. 5, 759–762(1987).
[CrossRef]

Barnes, N. P.

N. P. Barnes, “Solid-state lasers from an efficiency perspective,” IEEE J. Quant. Electron. 13, 435–447 (2007).
[CrossRef]

B. M. Walsh, N. P. Barnes, and B. Di Bartolo, “Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids; application to Tm3+ and Ho3+ ions in LiYF4,” J. Appl. Phys. 83, 2772–2787 (1998).
[CrossRef]

Chase, L. L.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kray, and W. P. Krupke, “Infrared cross section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quant. Electron. 28, 2619–2630 (1992).
[CrossRef]

Di Bartolo, B.

B. M. Walsh, N. P. Barnes, and B. Di Bartolo, “Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids; application to Tm3+ and Ho3+ ions in LiYF4,” J. Appl. Phys. 83, 2772–2787 (1998).
[CrossRef]

B. Di Bartolo, Optical Interactions in Solids (Wiley, 1968).

Fitzpatrick, C.

M. McSherry, C. Fitzpatrick, and E. Lewis, “Review of luminescent based fiber optic temperature sensors,” Sensor Rev. 25, 56–62 (2005).
[CrossRef]

Gang, X.

R. C. Powell, L. Xi, X. Gang, and G. J. Quarles, “Spectroscopic properties of alexandrite crystals,” Phys. Rev. B 32, 2788–2797 (1985).
[CrossRef]

Grattan, G. T. V.

Z. Zhang, G. T. V. Grattan, and A. W. Palmer, “Fiber-optic high-temperature sensor based on the fluorescence lifetime of alexandrite,” Rev. Sci. Instrum. 63, 3869–3873(1992).
[CrossRef]

Grattan, K. T. V.

H. C. Seat, J. H. Sharp, Z. Y. Zhang, and K. T. V. Grattan, “Single-crystal ruby fiber temperature sensor,” Sens. Actuators A, Phys. 101, 24–29 (2002).
[CrossRef]

A. T. Augousti, K. T. V. Grattan, and A. W. Palmer, “A laser-pumped temperature sensor using the fluorescent decay time of alexandrite,” J. Lightwave Technol. 5, 759–762(1987).
[CrossRef]

Grattan, K. Y. V.

T. Sun, Z. Y. Yang, K. Y. V. Grattan, and A. W. Palmer, “Alexandrite-based optical temperature sensing: comparison of different fluorescence-based approaches,” in Proceedings of the 12th International Conference on Optical Fiber Sensors (Optical Society of America, 1997), Vol. 16.

Ishii, T.

S. Watanabe, T. Sasaki, R. Taniguchi, T. Ishii, and K. Ogasawara, “First principles calculation of ground and excited-state absorption spectra of ruby and alexandrite considering lattice relaxation,” Phys. Rev. B. 79, 075109 (2009).
[CrossRef]

Ishizawa, H.

H. Aizawa, H. Uchiyama, T. Katsumata, S. Komuro, T. Morikawa, H. Ishizawa, and E. Toba, “Fiber-optic thermometer using sensor materials with long fluorescence lifetime,” Meas. Sci. Technol. 15, 1484–1489 (2004).

Jenssen, H. P.

M. L. Shand and H. P. Jenssen, “Temperature dependence of the excited-state absorption of alexandrite,” IEEE J. Quant. Electron. 19, 480–484 (1983).
[CrossRef]

J. C. Walling, O. G. Peterson, H. P. Jenssen, and R. C. Morris, “Tunable alexandrite lasers,” IEEE J. Quant. Electron. 16, 1302–1314 (1980).
[CrossRef]

Katsumata, T.

H. Aizawa, H. Uchiyama, T. Katsumata, S. Komuro, T. Morikawa, H. Ishizawa, and E. Toba, “Fiber-optic thermometer using sensor materials with long fluorescence lifetime,” Meas. Sci. Technol. 15, 1484–1489 (2004).

Khalid, A.

A. Khalid and K. Kontis, “Thermographic phosphors for high temperature measurements: principles, current state of the art and recent applications,” Sensors 8, 5673–5744 (2008).
[CrossRef]

Komuro, S.

H. Aizawa, H. Uchiyama, T. Katsumata, S. Komuro, T. Morikawa, H. Ishizawa, and E. Toba, “Fiber-optic thermometer using sensor materials with long fluorescence lifetime,” Meas. Sci. Technol. 15, 1484–1489 (2004).

Kontis, K.

A. Khalid and K. Kontis, “Thermographic phosphors for high temperature measurements: principles, current state of the art and recent applications,” Sensors 8, 5673–5744 (2008).
[CrossRef]

Kray, W. L.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kray, and W. P. Krupke, “Infrared cross section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quant. Electron. 28, 2619–2630 (1992).
[CrossRef]

Krupke, W. P.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kray, and W. P. Krupke, “Infrared cross section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quant. Electron. 28, 2619–2630 (1992).
[CrossRef]

Lewis, E.

M. McSherry, C. Fitzpatrick, and E. Lewis, “Review of luminescent based fiber optic temperature sensors,” Sensor Rev. 25, 56–62 (2005).
[CrossRef]

Li, M. S.

R. M. Scalvi, M. S. Li, and L. V. A. Scalvi, “Annealing effects on optical properties of natural alexandrite,” J. Phys. Condens. Matter 15, 7437–7443 (2003).
[CrossRef]

McCumber, D. E.

D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev 136, A954–A957(1964).
[CrossRef]

McSherry, M.

M. McSherry, C. Fitzpatrick, and E. Lewis, “Review of luminescent based fiber optic temperature sensors,” Sensor Rev. 25, 56–62 (2005).
[CrossRef]

Miniscalco, W. J.

Morikawa, T.

H. Aizawa, H. Uchiyama, T. Katsumata, S. Komuro, T. Morikawa, H. Ishizawa, and E. Toba, “Fiber-optic thermometer using sensor materials with long fluorescence lifetime,” Meas. Sci. Technol. 15, 1484–1489 (2004).

Morris, R. C.

J. C. Walling, O. G. Peterson, H. P. Jenssen, and R. C. Morris, “Tunable alexandrite lasers,” IEEE J. Quant. Electron. 16, 1302–1314 (1980).
[CrossRef]

Ogasawara, K.

S. Watanabe, T. Sasaki, R. Taniguchi, T. Ishii, and K. Ogasawara, “First principles calculation of ground and excited-state absorption spectra of ruby and alexandrite considering lattice relaxation,” Phys. Rev. B. 79, 075109 (2009).
[CrossRef]

Palmer, A. W.

Z. Zhang, G. T. V. Grattan, and A. W. Palmer, “Fiber-optic high-temperature sensor based on the fluorescence lifetime of alexandrite,” Rev. Sci. Instrum. 63, 3869–3873(1992).
[CrossRef]

A. T. Augousti, K. T. V. Grattan, and A. W. Palmer, “A laser-pumped temperature sensor using the fluorescent decay time of alexandrite,” J. Lightwave Technol. 5, 759–762(1987).
[CrossRef]

T. Sun, Z. Y. Yang, K. Y. V. Grattan, and A. W. Palmer, “Alexandrite-based optical temperature sensing: comparison of different fluorescence-based approaches,” in Proceedings of the 12th International Conference on Optical Fiber Sensors (Optical Society of America, 1997), Vol. 16.

Payne, S. A.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kray, and W. P. Krupke, “Infrared cross section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quant. Electron. 28, 2619–2630 (1992).
[CrossRef]

Peterson, O. G.

J. C. Walling, O. G. Peterson, H. P. Jenssen, and R. C. Morris, “Tunable alexandrite lasers,” IEEE J. Quant. Electron. 16, 1302–1314 (1980).
[CrossRef]

Powell, R. C.

R. C. Powell, L. Xi, X. Gang, and G. J. Quarles, “Spectroscopic properties of alexandrite crystals,” Phys. Rev. B 32, 2788–2797 (1985).
[CrossRef]

Quarles, G. J.

R. C. Powell, L. Xi, X. Gang, and G. J. Quarles, “Spectroscopic properties of alexandrite crystals,” Phys. Rev. B 32, 2788–2797 (1985).
[CrossRef]

Quimbly, R. S.

Sasaki, T.

S. Watanabe, T. Sasaki, R. Taniguchi, T. Ishii, and K. Ogasawara, “First principles calculation of ground and excited-state absorption spectra of ruby and alexandrite considering lattice relaxation,” Phys. Rev. B. 79, 075109 (2009).
[CrossRef]

Scalvi, L. V. A.

R. M. Scalvi, M. S. Li, and L. V. A. Scalvi, “Annealing effects on optical properties of natural alexandrite,” J. Phys. Condens. Matter 15, 7437–7443 (2003).
[CrossRef]

Scalvi, R. M.

R. M. Scalvi, M. S. Li, and L. V. A. Scalvi, “Annealing effects on optical properties of natural alexandrite,” J. Phys. Condens. Matter 15, 7437–7443 (2003).
[CrossRef]

Seat, H. C.

H. C. Seat, J. H. Sharp, Z. Y. Zhang, and K. T. V. Grattan, “Single-crystal ruby fiber temperature sensor,” Sens. Actuators A, Phys. 101, 24–29 (2002).
[CrossRef]

Shand, M. L.

M. L. Shand and H. P. Jenssen, “Temperature dependence of the excited-state absorption of alexandrite,” IEEE J. Quant. Electron. 19, 480–484 (1983).
[CrossRef]

M. L. Shand, “Quantum efficiency of alexandrite,” J. Appl. Phys. 54, 2602–2604 (1983).
[CrossRef]

Sharp, J. H.

H. C. Seat, J. H. Sharp, Z. Y. Zhang, and K. T. V. Grattan, “Single-crystal ruby fiber temperature sensor,” Sens. Actuators A, Phys. 101, 24–29 (2002).
[CrossRef]

Smith, L. K.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kray, and W. P. Krupke, “Infrared cross section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quant. Electron. 28, 2619–2630 (1992).
[CrossRef]

Sun, T.

T. Sun, Z. Y. Yang, K. Y. V. Grattan, and A. W. Palmer, “Alexandrite-based optical temperature sensing: comparison of different fluorescence-based approaches,” in Proceedings of the 12th International Conference on Optical Fiber Sensors (Optical Society of America, 1997), Vol. 16.

Taniguchi, R.

S. Watanabe, T. Sasaki, R. Taniguchi, T. Ishii, and K. Ogasawara, “First principles calculation of ground and excited-state absorption spectra of ruby and alexandrite considering lattice relaxation,” Phys. Rev. B. 79, 075109 (2009).
[CrossRef]

Toba, E.

H. Aizawa, H. Uchiyama, T. Katsumata, S. Komuro, T. Morikawa, H. Ishizawa, and E. Toba, “Fiber-optic thermometer using sensor materials with long fluorescence lifetime,” Meas. Sci. Technol. 15, 1484–1489 (2004).

Uchiyama, H.

H. Aizawa, H. Uchiyama, T. Katsumata, S. Komuro, T. Morikawa, H. Ishizawa, and E. Toba, “Fiber-optic thermometer using sensor materials with long fluorescence lifetime,” Meas. Sci. Technol. 15, 1484–1489 (2004).

Walling, J. C.

J. C. Walling, O. G. Peterson, H. P. Jenssen, and R. C. Morris, “Tunable alexandrite lasers,” IEEE J. Quant. Electron. 16, 1302–1314 (1980).
[CrossRef]

Walsh, B. M.

B. M. Walsh, N. P. Barnes, and B. Di Bartolo, “Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids; application to Tm3+ and Ho3+ ions in LiYF4,” J. Appl. Phys. 83, 2772–2787 (1998).
[CrossRef]

SRS/Cd2A program written by coauthor B. M. Walsh.

Watanabe, S.

S. Watanabe, T. Sasaki, R. Taniguchi, T. Ishii, and K. Ogasawara, “First principles calculation of ground and excited-state absorption spectra of ruby and alexandrite considering lattice relaxation,” Phys. Rev. B. 79, 075109 (2009).
[CrossRef]

Xi, L.

R. C. Powell, L. Xi, X. Gang, and G. J. Quarles, “Spectroscopic properties of alexandrite crystals,” Phys. Rev. B 32, 2788–2797 (1985).
[CrossRef]

Yang, Z. Y.

T. Sun, Z. Y. Yang, K. Y. V. Grattan, and A. W. Palmer, “Alexandrite-based optical temperature sensing: comparison of different fluorescence-based approaches,” in Proceedings of the 12th International Conference on Optical Fiber Sensors (Optical Society of America, 1997), Vol. 16.

Zhang, Z.

Z. Zhang, G. T. V. Grattan, and A. W. Palmer, “Fiber-optic high-temperature sensor based on the fluorescence lifetime of alexandrite,” Rev. Sci. Instrum. 63, 3869–3873(1992).
[CrossRef]

Zhang, Z. Y.

H. C. Seat, J. H. Sharp, Z. Y. Zhang, and K. T. V. Grattan, “Single-crystal ruby fiber temperature sensor,” Sens. Actuators A, Phys. 101, 24–29 (2002).
[CrossRef]

IEEE J. Quant. Electron.

J. C. Walling, O. G. Peterson, H. P. Jenssen, and R. C. Morris, “Tunable alexandrite lasers,” IEEE J. Quant. Electron. 16, 1302–1314 (1980).
[CrossRef]

N. P. Barnes, “Solid-state lasers from an efficiency perspective,” IEEE J. Quant. Electron. 13, 435–447 (2007).
[CrossRef]

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kray, and W. P. Krupke, “Infrared cross section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quant. Electron. 28, 2619–2630 (1992).
[CrossRef]

M. L. Shand and H. P. Jenssen, “Temperature dependence of the excited-state absorption of alexandrite,” IEEE J. Quant. Electron. 19, 480–484 (1983).
[CrossRef]

J. Appl. Phys.

M. L. Shand, “Quantum efficiency of alexandrite,” J. Appl. Phys. 54, 2602–2604 (1983).
[CrossRef]

B. M. Walsh, N. P. Barnes, and B. Di Bartolo, “Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids; application to Tm3+ and Ho3+ ions in LiYF4,” J. Appl. Phys. 83, 2772–2787 (1998).
[CrossRef]

J. Lightwave Technol.

A. T. Augousti, K. T. V. Grattan, and A. W. Palmer, “A laser-pumped temperature sensor using the fluorescent decay time of alexandrite,” J. Lightwave Technol. 5, 759–762(1987).
[CrossRef]

J. Phys. Condens. Matter

R. M. Scalvi, M. S. Li, and L. V. A. Scalvi, “Annealing effects on optical properties of natural alexandrite,” J. Phys. Condens. Matter 15, 7437–7443 (2003).
[CrossRef]

Meas. Sci. Technol.

H. Aizawa, H. Uchiyama, T. Katsumata, S. Komuro, T. Morikawa, H. Ishizawa, and E. Toba, “Fiber-optic thermometer using sensor materials with long fluorescence lifetime,” Meas. Sci. Technol. 15, 1484–1489 (2004).

Opt. Lett.

Phys. Rev

D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev 136, A954–A957(1964).
[CrossRef]

Phys. Rev. B

R. C. Powell, L. Xi, X. Gang, and G. J. Quarles, “Spectroscopic properties of alexandrite crystals,” Phys. Rev. B 32, 2788–2797 (1985).
[CrossRef]

Phys. Rev. B.

S. Watanabe, T. Sasaki, R. Taniguchi, T. Ishii, and K. Ogasawara, “First principles calculation of ground and excited-state absorption spectra of ruby and alexandrite considering lattice relaxation,” Phys. Rev. B. 79, 075109 (2009).
[CrossRef]

Rev. Sci. Instrum.

Z. Zhang, G. T. V. Grattan, and A. W. Palmer, “Fiber-optic high-temperature sensor based on the fluorescence lifetime of alexandrite,” Rev. Sci. Instrum. 63, 3869–3873(1992).
[CrossRef]

Sens. Actuators A, Phys.

H. C. Seat, J. H. Sharp, Z. Y. Zhang, and K. T. V. Grattan, “Single-crystal ruby fiber temperature sensor,” Sens. Actuators A, Phys. 101, 24–29 (2002).
[CrossRef]

Sensor Rev.

M. McSherry, C. Fitzpatrick, and E. Lewis, “Review of luminescent based fiber optic temperature sensors,” Sensor Rev. 25, 56–62 (2005).
[CrossRef]

Sensors

A. Khalid and K. Kontis, “Thermographic phosphors for high temperature measurements: principles, current state of the art and recent applications,” Sensors 8, 5673–5744 (2008).
[CrossRef]

Other

SRS/Cd2A program written by coauthor B. M. Walsh.

http://www.as.northropgrumman.com/products.synoptics_alexandrite/assets/Alexandrite.

B. Di Bartolo, Optical Interactions in Solids (Wiley, 1968).

T. Sun, Z. Y. Yang, K. Y. V. Grattan, and A. W. Palmer, “Alexandrite-based optical temperature sensing: comparison of different fluorescence-based approaches,” in Proceedings of the 12th International Conference on Optical Fiber Sensors (Optical Society of America, 1997), Vol. 16.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Absorption spectra of Be Al 2 O 4 : Cr 3 + at 295 K .

Fig. 2
Fig. 2

Alexandrite emission cross section: E a (top row), E b (middle row), E c (bottom row), pump wavelength = 488 nm (left column), pump wavelength = 514 nm (right column), and temperature = 295 K .

Fig. 3
Fig. 3

Emission cross sections of alexandrite R lines at T = 295 K for (a) 488 nm and (b) 514.5 nm .

Fig. 4
Fig. 4

Derived emission cross section for E b polarization in Be Al 2 O 4 : Cr 3 + .

Fig. 5
Fig. 5

Emission cross section versus temperature of Be Al 2 O 4 : Cr 3 + for E b polarization.

Fig. 6
Fig. 6

Peak wavelength versus temperature of emission lines in Be Al 2 O 4 : Cr 3 + for E b polarization.

Fig. 7
Fig. 7

Peak intensity versus temperature of emission lines in Be Al 2 O 4 : Cr 3 + for E b polarization.

Fig. 8
Fig. 8

Temperature-dependent lifetime of Be Al 2 O 4 : Cr 3 + .

Fig. 9
Fig. 9

Thermal line shift of R lines versus temperature with respect to its position at 300 K for E b polarization.

Tables (2)

Tables Icon

Table 1 Comparison of Peak Absorption Cross Sections ( × 10 19 cm 2 ) of R Lines in Be Al 2 O 4 : Cr 3 +

Tables Icon

Table 2 Stark-Level Energy ( cm 1 ) of Be Al 2 O 4 : Cr 3 + for E b Polarization

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

σ Abs ( λ ) = 1 N l ln { [ n ( λ ) + 1 ] 4 16 n 2 ( λ ) T } ,
σ em ( λ ) = λ 5 8 π c n 2 ( τ r / β ) I ( λ ) λ I ( λ ) d λ ,
σ em ( λ ) = λ 5 8 π c n 2 ( τ r / β ) I a ( λ ) [ 1 3 I a ( λ ) + 1 3 I b ( λ ) + 1 3 I c ( λ ) ] λ d λ .
σ em ( λ ) = σ abs ( λ ) Z l Z u exp [ E ZL h c / λ k T ] ,
SE ( cm 1 ) = α ( T T D ) 4 0 T D / T x 3 e x 1 d x ,

Metrics