Abstract

We describe the design, fabrication, and characterization of modal liquid crystal lenses (MLCLs) with a symmetrical electrode structure using a resistive composite polymer, poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS). We achieved MLCLs with shorter focal lengths (up to 1cm), shorter apertures (1 to 5mm), and lower aberrations compared to other MLCLs. We demonstrate a very uniform conductivity distribution in the PEDOT-PSS layers over a wide resistivity range (100kΩ/sq10MΩ/sq) combined with a symmetrical electrode structure, enabling us to manufacture MLCLs with short f-numbers, large depths of focus, and low aberrations.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Sato, “Liquid-crystal lens cells with variable focal length,” Jpn. J. Appl. Phys. 18, 1679–1684 (1979).
    [CrossRef]
  2. L. G. Commander, S. E. Day, and D. R. Selviah, “Variable focal length microlenses,” Opt. Commun. 177, 157–170 (2000).
    [CrossRef]
  3. S. T. Kowel, D. S. Cleverly, and P. G. Kornreich, “Focusing by electrical modulation of refraction in a liquid crystal cell,” Appl. Opt. 23, 278–289 (1984).
    [CrossRef] [PubMed]
  4. T. Nose and S. Sato, “A liquid crystal microlens obtained with a nonuniform electric field,” Liq. Cryst. 5, 1425 (1989).
    [CrossRef]
  5. T. Nose, S. Masuda, and S. Sato, “Optical properties of a liquid crystal microlens with a symmetric electrode structure,” Jpn. J. Appl. Phys. Lett. 30, 2110–2112 (1991).
    [CrossRef]
  6. A. F. Naumov, M. Y. Loktev, I. R. Guralnik, and G. Vdovin, “Liquid-crystal adaptive lenses with modal control,” Opt. Lett. 23, 992–994 (1998).
    [CrossRef]
  7. G. V. Vdovin, I. R. Guralnik, S. P. Kotova, M. Y. Loktev, and A. F. Naumov, “Liquid-crystal lenses with a controlled focal length. I. Theory,” Quantum Electron. 29, 256–260(1999).
    [CrossRef]
  8. G. V. Vdovin, I. R. Guralnik, S. P. Kotova, M. Y. Loktev, and A. F. Naumov, “Liquid-crystal lenses with a controlled focal length. II. Numerical optimisation and experiments,” Quantum Electron. 29, 261–264 (1999).
    [CrossRef]
  9. P. J. W. Hands, A. K. Kirby, and G. D. Love, “Adaptive modally addressed liquid crystal lenses,” Proc. SPIE 5518, 136–143(2004).
    [CrossRef]
  10. M. Amberg, A. Oeder, S. Sinzinger, P. J. W. Hands, and G. D. Love, “Tuneable planar integrated optical systems,” Opt. Express 15, 10607–10614 (2007).
    [CrossRef] [PubMed]
  11. N. Fraval, P. Joffre, S. Formont, and J. Chazelas, “Electrically tunable liquid-crystal wave plate using quadripolar electrode configuration and transparent conductive polymer layers,” Appl. Opt. 48, 5301–5306 (2009).
    [CrossRef] [PubMed]
  12. C. Geuzaine, P. Dular, and W. Legros, “A general environment for the treatment of discrete problems and its application to coupled finite element and boundary integral methods,” IEEE Trans. Magn. 34, 3395–3398 (1998).
    [CrossRef]
  13. F. D. Pasquale, F. Fernandez, S. Day, and J. Davies, “Two-dimensional finite-element modeling of nematic liquid crystal devices for optical communications and displays,” IEEE J. Sel. Top. Quantum Electron. 2, 128–134 (1996).
    [CrossRef]
  14. M. Honma, T. Nose, and S. Sato, “Optimization of device parameters for minimizing spherical aberration and astigmatism in liquid crystal microlenses,” Opt. Rev. 6, 139–146 (1999).
    [CrossRef]
  15. M. Y. Loktev, V. N. Belopukhov, F. L. Vladimirov, G. V. Vdovin, G. D. Love, and A. F. Naumov, “Wave front control systems based on modal liquid crystal lenses,” Rev. Sci. Instrum. 71, 3290–3297 (2000).
    [CrossRef]
  16. A. K. Kirby, P. J. W. Hands, and G. D. Love, “Liquid crystal multi-mode lenses and axicons based on electronic phase shift control,” Opt. Express 15, 13496–13501 (2007).
    [CrossRef] [PubMed]
  17. G. Williams, N. J. Powell, A. Purvis, and M. G. Clark, “Electrically controllable liquid-crystal fresnel lens,” Proc. SPIE 1168, 352 (1989).

2009

2007

2004

P. J. W. Hands, A. K. Kirby, and G. D. Love, “Adaptive modally addressed liquid crystal lenses,” Proc. SPIE 5518, 136–143(2004).
[CrossRef]

2000

M. Y. Loktev, V. N. Belopukhov, F. L. Vladimirov, G. V. Vdovin, G. D. Love, and A. F. Naumov, “Wave front control systems based on modal liquid crystal lenses,” Rev. Sci. Instrum. 71, 3290–3297 (2000).
[CrossRef]

L. G. Commander, S. E. Day, and D. R. Selviah, “Variable focal length microlenses,” Opt. Commun. 177, 157–170 (2000).
[CrossRef]

1999

G. V. Vdovin, I. R. Guralnik, S. P. Kotova, M. Y. Loktev, and A. F. Naumov, “Liquid-crystal lenses with a controlled focal length. I. Theory,” Quantum Electron. 29, 256–260(1999).
[CrossRef]

G. V. Vdovin, I. R. Guralnik, S. P. Kotova, M. Y. Loktev, and A. F. Naumov, “Liquid-crystal lenses with a controlled focal length. II. Numerical optimisation and experiments,” Quantum Electron. 29, 261–264 (1999).
[CrossRef]

M. Honma, T. Nose, and S. Sato, “Optimization of device parameters for minimizing spherical aberration and astigmatism in liquid crystal microlenses,” Opt. Rev. 6, 139–146 (1999).
[CrossRef]

1998

C. Geuzaine, P. Dular, and W. Legros, “A general environment for the treatment of discrete problems and its application to coupled finite element and boundary integral methods,” IEEE Trans. Magn. 34, 3395–3398 (1998).
[CrossRef]

A. F. Naumov, M. Y. Loktev, I. R. Guralnik, and G. Vdovin, “Liquid-crystal adaptive lenses with modal control,” Opt. Lett. 23, 992–994 (1998).
[CrossRef]

1996

F. D. Pasquale, F. Fernandez, S. Day, and J. Davies, “Two-dimensional finite-element modeling of nematic liquid crystal devices for optical communications and displays,” IEEE J. Sel. Top. Quantum Electron. 2, 128–134 (1996).
[CrossRef]

1991

T. Nose, S. Masuda, and S. Sato, “Optical properties of a liquid crystal microlens with a symmetric electrode structure,” Jpn. J. Appl. Phys. Lett. 30, 2110–2112 (1991).
[CrossRef]

1989

T. Nose and S. Sato, “A liquid crystal microlens obtained with a nonuniform electric field,” Liq. Cryst. 5, 1425 (1989).
[CrossRef]

G. Williams, N. J. Powell, A. Purvis, and M. G. Clark, “Electrically controllable liquid-crystal fresnel lens,” Proc. SPIE 1168, 352 (1989).

1984

1979

S. Sato, “Liquid-crystal lens cells with variable focal length,” Jpn. J. Appl. Phys. 18, 1679–1684 (1979).
[CrossRef]

Amberg, M.

Belopukhov, V. N.

M. Y. Loktev, V. N. Belopukhov, F. L. Vladimirov, G. V. Vdovin, G. D. Love, and A. F. Naumov, “Wave front control systems based on modal liquid crystal lenses,” Rev. Sci. Instrum. 71, 3290–3297 (2000).
[CrossRef]

Chazelas, J.

Clark, M. G.

G. Williams, N. J. Powell, A. Purvis, and M. G. Clark, “Electrically controllable liquid-crystal fresnel lens,” Proc. SPIE 1168, 352 (1989).

Cleverly, D. S.

Commander, L. G.

L. G. Commander, S. E. Day, and D. R. Selviah, “Variable focal length microlenses,” Opt. Commun. 177, 157–170 (2000).
[CrossRef]

Davies, J.

F. D. Pasquale, F. Fernandez, S. Day, and J. Davies, “Two-dimensional finite-element modeling of nematic liquid crystal devices for optical communications and displays,” IEEE J. Sel. Top. Quantum Electron. 2, 128–134 (1996).
[CrossRef]

Day, S.

F. D. Pasquale, F. Fernandez, S. Day, and J. Davies, “Two-dimensional finite-element modeling of nematic liquid crystal devices for optical communications and displays,” IEEE J. Sel. Top. Quantum Electron. 2, 128–134 (1996).
[CrossRef]

Day, S. E.

L. G. Commander, S. E. Day, and D. R. Selviah, “Variable focal length microlenses,” Opt. Commun. 177, 157–170 (2000).
[CrossRef]

Dular, P.

C. Geuzaine, P. Dular, and W. Legros, “A general environment for the treatment of discrete problems and its application to coupled finite element and boundary integral methods,” IEEE Trans. Magn. 34, 3395–3398 (1998).
[CrossRef]

Fernandez, F.

F. D. Pasquale, F. Fernandez, S. Day, and J. Davies, “Two-dimensional finite-element modeling of nematic liquid crystal devices for optical communications and displays,” IEEE J. Sel. Top. Quantum Electron. 2, 128–134 (1996).
[CrossRef]

Formont, S.

Fraval, N.

Geuzaine, C.

C. Geuzaine, P. Dular, and W. Legros, “A general environment for the treatment of discrete problems and its application to coupled finite element and boundary integral methods,” IEEE Trans. Magn. 34, 3395–3398 (1998).
[CrossRef]

Guralnik, I. R.

G. V. Vdovin, I. R. Guralnik, S. P. Kotova, M. Y. Loktev, and A. F. Naumov, “Liquid-crystal lenses with a controlled focal length. II. Numerical optimisation and experiments,” Quantum Electron. 29, 261–264 (1999).
[CrossRef]

G. V. Vdovin, I. R. Guralnik, S. P. Kotova, M. Y. Loktev, and A. F. Naumov, “Liquid-crystal lenses with a controlled focal length. I. Theory,” Quantum Electron. 29, 256–260(1999).
[CrossRef]

A. F. Naumov, M. Y. Loktev, I. R. Guralnik, and G. Vdovin, “Liquid-crystal adaptive lenses with modal control,” Opt. Lett. 23, 992–994 (1998).
[CrossRef]

Hands, P. J. W.

Honma, M.

M. Honma, T. Nose, and S. Sato, “Optimization of device parameters for minimizing spherical aberration and astigmatism in liquid crystal microlenses,” Opt. Rev. 6, 139–146 (1999).
[CrossRef]

Joffre, P.

Kirby, A. K.

Kornreich, P. G.

Kotova, S. P.

G. V. Vdovin, I. R. Guralnik, S. P. Kotova, M. Y. Loktev, and A. F. Naumov, “Liquid-crystal lenses with a controlled focal length. II. Numerical optimisation and experiments,” Quantum Electron. 29, 261–264 (1999).
[CrossRef]

G. V. Vdovin, I. R. Guralnik, S. P. Kotova, M. Y. Loktev, and A. F. Naumov, “Liquid-crystal lenses with a controlled focal length. I. Theory,” Quantum Electron. 29, 256–260(1999).
[CrossRef]

Kowel, S. T.

Legros, W.

C. Geuzaine, P. Dular, and W. Legros, “A general environment for the treatment of discrete problems and its application to coupled finite element and boundary integral methods,” IEEE Trans. Magn. 34, 3395–3398 (1998).
[CrossRef]

Loktev, M. Y.

M. Y. Loktev, V. N. Belopukhov, F. L. Vladimirov, G. V. Vdovin, G. D. Love, and A. F. Naumov, “Wave front control systems based on modal liquid crystal lenses,” Rev. Sci. Instrum. 71, 3290–3297 (2000).
[CrossRef]

G. V. Vdovin, I. R. Guralnik, S. P. Kotova, M. Y. Loktev, and A. F. Naumov, “Liquid-crystal lenses with a controlled focal length. I. Theory,” Quantum Electron. 29, 256–260(1999).
[CrossRef]

G. V. Vdovin, I. R. Guralnik, S. P. Kotova, M. Y. Loktev, and A. F. Naumov, “Liquid-crystal lenses with a controlled focal length. II. Numerical optimisation and experiments,” Quantum Electron. 29, 261–264 (1999).
[CrossRef]

A. F. Naumov, M. Y. Loktev, I. R. Guralnik, and G. Vdovin, “Liquid-crystal adaptive lenses with modal control,” Opt. Lett. 23, 992–994 (1998).
[CrossRef]

Love, G. D.

M. Amberg, A. Oeder, S. Sinzinger, P. J. W. Hands, and G. D. Love, “Tuneable planar integrated optical systems,” Opt. Express 15, 10607–10614 (2007).
[CrossRef] [PubMed]

A. K. Kirby, P. J. W. Hands, and G. D. Love, “Liquid crystal multi-mode lenses and axicons based on electronic phase shift control,” Opt. Express 15, 13496–13501 (2007).
[CrossRef] [PubMed]

P. J. W. Hands, A. K. Kirby, and G. D. Love, “Adaptive modally addressed liquid crystal lenses,” Proc. SPIE 5518, 136–143(2004).
[CrossRef]

M. Y. Loktev, V. N. Belopukhov, F. L. Vladimirov, G. V. Vdovin, G. D. Love, and A. F. Naumov, “Wave front control systems based on modal liquid crystal lenses,” Rev. Sci. Instrum. 71, 3290–3297 (2000).
[CrossRef]

Masuda, S.

T. Nose, S. Masuda, and S. Sato, “Optical properties of a liquid crystal microlens with a symmetric electrode structure,” Jpn. J. Appl. Phys. Lett. 30, 2110–2112 (1991).
[CrossRef]

Naumov, A. F.

M. Y. Loktev, V. N. Belopukhov, F. L. Vladimirov, G. V. Vdovin, G. D. Love, and A. F. Naumov, “Wave front control systems based on modal liquid crystal lenses,” Rev. Sci. Instrum. 71, 3290–3297 (2000).
[CrossRef]

G. V. Vdovin, I. R. Guralnik, S. P. Kotova, M. Y. Loktev, and A. F. Naumov, “Liquid-crystal lenses with a controlled focal length. I. Theory,” Quantum Electron. 29, 256–260(1999).
[CrossRef]

G. V. Vdovin, I. R. Guralnik, S. P. Kotova, M. Y. Loktev, and A. F. Naumov, “Liquid-crystal lenses with a controlled focal length. II. Numerical optimisation and experiments,” Quantum Electron. 29, 261–264 (1999).
[CrossRef]

A. F. Naumov, M. Y. Loktev, I. R. Guralnik, and G. Vdovin, “Liquid-crystal adaptive lenses with modal control,” Opt. Lett. 23, 992–994 (1998).
[CrossRef]

Nose, T.

M. Honma, T. Nose, and S. Sato, “Optimization of device parameters for minimizing spherical aberration and astigmatism in liquid crystal microlenses,” Opt. Rev. 6, 139–146 (1999).
[CrossRef]

T. Nose, S. Masuda, and S. Sato, “Optical properties of a liquid crystal microlens with a symmetric electrode structure,” Jpn. J. Appl. Phys. Lett. 30, 2110–2112 (1991).
[CrossRef]

T. Nose and S. Sato, “A liquid crystal microlens obtained with a nonuniform electric field,” Liq. Cryst. 5, 1425 (1989).
[CrossRef]

Oeder, A.

Pasquale, F. D.

F. D. Pasquale, F. Fernandez, S. Day, and J. Davies, “Two-dimensional finite-element modeling of nematic liquid crystal devices for optical communications and displays,” IEEE J. Sel. Top. Quantum Electron. 2, 128–134 (1996).
[CrossRef]

Powell, N. J.

G. Williams, N. J. Powell, A. Purvis, and M. G. Clark, “Electrically controllable liquid-crystal fresnel lens,” Proc. SPIE 1168, 352 (1989).

Purvis, A.

G. Williams, N. J. Powell, A. Purvis, and M. G. Clark, “Electrically controllable liquid-crystal fresnel lens,” Proc. SPIE 1168, 352 (1989).

Sato, S.

M. Honma, T. Nose, and S. Sato, “Optimization of device parameters for minimizing spherical aberration and astigmatism in liquid crystal microlenses,” Opt. Rev. 6, 139–146 (1999).
[CrossRef]

T. Nose, S. Masuda, and S. Sato, “Optical properties of a liquid crystal microlens with a symmetric electrode structure,” Jpn. J. Appl. Phys. Lett. 30, 2110–2112 (1991).
[CrossRef]

T. Nose and S. Sato, “A liquid crystal microlens obtained with a nonuniform electric field,” Liq. Cryst. 5, 1425 (1989).
[CrossRef]

S. Sato, “Liquid-crystal lens cells with variable focal length,” Jpn. J. Appl. Phys. 18, 1679–1684 (1979).
[CrossRef]

Selviah, D. R.

L. G. Commander, S. E. Day, and D. R. Selviah, “Variable focal length microlenses,” Opt. Commun. 177, 157–170 (2000).
[CrossRef]

Sinzinger, S.

Vdovin, G.

Vdovin, G. V.

M. Y. Loktev, V. N. Belopukhov, F. L. Vladimirov, G. V. Vdovin, G. D. Love, and A. F. Naumov, “Wave front control systems based on modal liquid crystal lenses,” Rev. Sci. Instrum. 71, 3290–3297 (2000).
[CrossRef]

G. V. Vdovin, I. R. Guralnik, S. P. Kotova, M. Y. Loktev, and A. F. Naumov, “Liquid-crystal lenses with a controlled focal length. I. Theory,” Quantum Electron. 29, 256–260(1999).
[CrossRef]

G. V. Vdovin, I. R. Guralnik, S. P. Kotova, M. Y. Loktev, and A. F. Naumov, “Liquid-crystal lenses with a controlled focal length. II. Numerical optimisation and experiments,” Quantum Electron. 29, 261–264 (1999).
[CrossRef]

Vladimirov, F. L.

M. Y. Loktev, V. N. Belopukhov, F. L. Vladimirov, G. V. Vdovin, G. D. Love, and A. F. Naumov, “Wave front control systems based on modal liquid crystal lenses,” Rev. Sci. Instrum. 71, 3290–3297 (2000).
[CrossRef]

Williams, G.

G. Williams, N. J. Powell, A. Purvis, and M. G. Clark, “Electrically controllable liquid-crystal fresnel lens,” Proc. SPIE 1168, 352 (1989).

Appl. Opt.

IEEE J. Sel. Top. Quantum Electron.

F. D. Pasquale, F. Fernandez, S. Day, and J. Davies, “Two-dimensional finite-element modeling of nematic liquid crystal devices for optical communications and displays,” IEEE J. Sel. Top. Quantum Electron. 2, 128–134 (1996).
[CrossRef]

IEEE Trans. Magn.

C. Geuzaine, P. Dular, and W. Legros, “A general environment for the treatment of discrete problems and its application to coupled finite element and boundary integral methods,” IEEE Trans. Magn. 34, 3395–3398 (1998).
[CrossRef]

Jpn. J. Appl. Phys.

S. Sato, “Liquid-crystal lens cells with variable focal length,” Jpn. J. Appl. Phys. 18, 1679–1684 (1979).
[CrossRef]

Jpn. J. Appl. Phys. Lett.

T. Nose, S. Masuda, and S. Sato, “Optical properties of a liquid crystal microlens with a symmetric electrode structure,” Jpn. J. Appl. Phys. Lett. 30, 2110–2112 (1991).
[CrossRef]

Liq. Cryst.

T. Nose and S. Sato, “A liquid crystal microlens obtained with a nonuniform electric field,” Liq. Cryst. 5, 1425 (1989).
[CrossRef]

Opt. Commun.

L. G. Commander, S. E. Day, and D. R. Selviah, “Variable focal length microlenses,” Opt. Commun. 177, 157–170 (2000).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Rev.

M. Honma, T. Nose, and S. Sato, “Optimization of device parameters for minimizing spherical aberration and astigmatism in liquid crystal microlenses,” Opt. Rev. 6, 139–146 (1999).
[CrossRef]

Proc. SPIE

P. J. W. Hands, A. K. Kirby, and G. D. Love, “Adaptive modally addressed liquid crystal lenses,” Proc. SPIE 5518, 136–143(2004).
[CrossRef]

G. Williams, N. J. Powell, A. Purvis, and M. G. Clark, “Electrically controllable liquid-crystal fresnel lens,” Proc. SPIE 1168, 352 (1989).

Quantum Electron.

G. V. Vdovin, I. R. Guralnik, S. P. Kotova, M. Y. Loktev, and A. F. Naumov, “Liquid-crystal lenses with a controlled focal length. I. Theory,” Quantum Electron. 29, 256–260(1999).
[CrossRef]

G. V. Vdovin, I. R. Guralnik, S. P. Kotova, M. Y. Loktev, and A. F. Naumov, “Liquid-crystal lenses with a controlled focal length. II. Numerical optimisation and experiments,” Quantum Electron. 29, 261–264 (1999).
[CrossRef]

Rev. Sci. Instrum.

M. Y. Loktev, V. N. Belopukhov, F. L. Vladimirov, G. V. Vdovin, G. D. Love, and A. F. Naumov, “Wave front control systems based on modal liquid crystal lenses,” Rev. Sci. Instrum. 71, 3290–3297 (2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Cross section (a) and top view (b) of MLCL with symmetrical electrode structure (D, aperture diameter; d, cell thickness; e, electrodes width).

Fig. 2
Fig. 2

Simulation of the equipotential lines in a MLCL with symmetrical (a) and asymmetrical (b) electrodes structure ( D = 100 μm , d = 20 μm ) .

Fig. 3
Fig. 3

Evolution of the measured focal length as a function of the frequency voltage ( D = 2 mm , d = 18 μm , U 0 = 10 V ).

Fig. 4
Fig. 4

Minimum focal length for each aperture diameter and cell thickness versus theoretical curves.

Fig. 5
Fig. 5

Interference fringe patterns obtained for MLCL with asymmetrical structure (a) at voltage of 10 V and 353 kHz , and symmetrical structure (b) at voltage of 5 V and 116 kHz ( D = 2 mm , d = 18 μm ).

Fig. 6
Fig. 6

Several focal lengths as a function of voltage and frequency ( D = 2 mm , d = 18 μm ).

Fig. 7
Fig. 7

Evolution of aberrations as a function of focal length for asymmetrical MLCL ( D = 2 mm , d = 18 μm ).

Fig. 8
Fig. 8

Evolution of aberrations as a function of focal length for symmetrical MLCL ( D = 2 mm , d = 18 μm ).

Fig. 9
Fig. 9

Example of focus adaptation obtained with MLCL. (a) MLCL is off, the camera is focused on infinity. (b) MLCL is on, the camera is focused on the foreground object ( 10 cm ).

Tables (1)

Tables Icon

Table 1 Comparison between Parameters and Performances of the Nonuniform Electric Field Technologies a

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

s 2 U = χ 2 U ,
χ 2 = R s ( g i ω c ) ,
U ( r ) = U 0 J 0 ( i χ r ) J 0 ( i χ D 2 ) ,
f min = ( D / 2 ) 2 2 d Δ n ,

Metrics