Abstract

We propose an in situ technique for measuring an even aberration of lithographic projection optics. By using the Hopkins theory of partially coherent imaging and the thick-mask model, the linear relationship between the intensity difference of adjacent peaks in an alternating phase-shifting mask image and an even aberration is established by equations and verified by numerical results. The sensitivity of measuring the even aberration of lithographic projection optics based on this linear relationship is analyzed, and the measurement mark is designed accordingly. Measurement performance of the present technique is evaluated using the lithographic simulator PROLITH, which shows that the present technique is capable of measuring the even aberration of lithographic projection optics with ultrahigh measurement accuracy.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. van de Kerkhof, W. de Boeij, H. Kok, M. Silova, J. Baselmans, and M. Hemerik, “Full optical column characterization of DUV lithographic projection tools,” Proc. SPIE 5377, 1960–1970(2004).
    [CrossRef]
  2. T. Fujii, K. Suzuki, Y. Mizuno, and N. Kita, “Integrated projecting optics tester for inspection of immersion ArF scanner,” Proc. SPIE 6152, 615237 (2006).
    [CrossRef]
  3. Y. Ohsaki, T. Mori, S. Koga, M. Ando, K. Yamamoto, T. Tezuka, and Y. Shiode, “A new on-machine measurement system to measure wavefront aberrations of projection optics with hyper-NA,” Proc. SPIE 6154, 615424 (2006).
    [CrossRef]
  4. J. P. Kirk, S. Schank, and Chieh-yu Lin, “Detection of focus and spherical aberration by use of a phase grating,” Proc. SPIE 4346, 1355–1361 (2001).
    [CrossRef]
  5. J. Sung, M. Pitchumani, and E. Johnson, “Aberration measurement of photolithographic lenses by use of hybrid diffractive photomasks,” Appl. Opt. 42, 1987–1995 (2003).
    [CrossRef] [PubMed]
  6. H. van der Laan, M. Dierichs, H. van Greevenbroek, E. McCoo, F. Stoffels, R. Pongers, and R. Willekers, “Aerial image measurement methods for fast aberration set-up and illumination pupil verification,” Proc. SPIE 4346, 394–407 (2001).
    [CrossRef]
  7. H. van der Laan and M. H. Moers, “Method of measuring aberration in an optical imaging system,” U.S. patent 6,646,729 (11 November 2003).
  8. J. K. Tyminski, T. Hagiwara, N. Kondo, and H. Irihama, “Aerial image sensor: in-situ scanner aberration monitor,” Proc. SPIE 6152, 61523D (2006).
    [CrossRef]
  9. T. Hagiwara, N. Kondo, I. Hiroshi, K. Suzuki, and N. Magome, “Development of aerial image based aberration measurement technique,” Proc. SPIE 5754, 1659–1669 (2004).
    [CrossRef]
  10. P. Dirksen, C. A. H. Juffermans, R. J. M. Pellens, M. Maenhoudt, and P. De Bisschop, “Novel aberration monitor for optical lithography,” Proc. SPIE 3679, 77 (1999).
    [CrossRef]
  11. P. Dirksen, C. A. H. Juffermans, A. Engelen, P. De Bisschop, and H. Muellerke, “Impact of high-order aberrations on the performance of the aberration monitor,” Proc. SPIE 4000, 9 (2000).
    [CrossRef]
  12. L. V. Zavyalova, B. W. Smith, T. Suganaga, S. Matsuura, T. Itani, and J. S. Cashmore, “In-situ aberration monitoring using phase wheel targets,” Proc. SPIE 5377, 172 (2004).
    [CrossRef]
  13. W. A. Kwok-Kit, Optical Imaging in Projection Microlithography (SPIE, 2005).
  14. M. Born and E. Wolf, Principles of Optics, 7th ed. (Pergamon, 1999), Chap. 9.
  15. R. A. Ferguson, A. K. K. Wong, T. A. Brunner, and L. W. Liebmann, “Pattern-dependent correction of mask topography effects for alternating phase-shifting masks,” Proc. SPIE 2440, 349 (1995).
    [CrossRef]
  16. M. Ma, X. Wang, and F. Wang, “Aberration measurement of projection optics in lithographic tools based on two-beam interference theory,” Appl. Opt. 45, 8200–8208 (2006).
    [CrossRef] [PubMed]
  17. Z. Qiu, X. Wang, Q. Bi, Q. Yuan, B. Peng, and L. Duan, “Translational-symmetry alternating phase shifting mask grating mark used in a linear measurement model of lithographic projection lens aberrations,” Appl. Opt. 48, 3654–3663(2009).
    [CrossRef] [PubMed]
  18. Q. Yuan, X. Wang, Z. Qiu, F. Wang, and M. Ma, “Even aberration measurement of lithographic projection system based on optimized phase-shifting marks,” Microelectron. Eng. 86, 78–82 (2009).
    [CrossRef]
  19. P. Graeupner, R. Garreis, A. Goehnermeiter, T. Heil, M. Lowisch, and D. Flagello, “Impact of wavefront errors on low k1 processes at extreme high NA,” Proc. SPIE 5040, 119–130 (2003).
    [CrossRef]

2009 (2)

Z. Qiu, X. Wang, Q. Bi, Q. Yuan, B. Peng, and L. Duan, “Translational-symmetry alternating phase shifting mask grating mark used in a linear measurement model of lithographic projection lens aberrations,” Appl. Opt. 48, 3654–3663(2009).
[CrossRef] [PubMed]

Q. Yuan, X. Wang, Z. Qiu, F. Wang, and M. Ma, “Even aberration measurement of lithographic projection system based on optimized phase-shifting marks,” Microelectron. Eng. 86, 78–82 (2009).
[CrossRef]

2006 (4)

M. Ma, X. Wang, and F. Wang, “Aberration measurement of projection optics in lithographic tools based on two-beam interference theory,” Appl. Opt. 45, 8200–8208 (2006).
[CrossRef] [PubMed]

T. Fujii, K. Suzuki, Y. Mizuno, and N. Kita, “Integrated projecting optics tester for inspection of immersion ArF scanner,” Proc. SPIE 6152, 615237 (2006).
[CrossRef]

Y. Ohsaki, T. Mori, S. Koga, M. Ando, K. Yamamoto, T. Tezuka, and Y. Shiode, “A new on-machine measurement system to measure wavefront aberrations of projection optics with hyper-NA,” Proc. SPIE 6154, 615424 (2006).
[CrossRef]

J. K. Tyminski, T. Hagiwara, N. Kondo, and H. Irihama, “Aerial image sensor: in-situ scanner aberration monitor,” Proc. SPIE 6152, 61523D (2006).
[CrossRef]

2004 (3)

T. Hagiwara, N. Kondo, I. Hiroshi, K. Suzuki, and N. Magome, “Development of aerial image based aberration measurement technique,” Proc. SPIE 5754, 1659–1669 (2004).
[CrossRef]

M. van de Kerkhof, W. de Boeij, H. Kok, M. Silova, J. Baselmans, and M. Hemerik, “Full optical column characterization of DUV lithographic projection tools,” Proc. SPIE 5377, 1960–1970(2004).
[CrossRef]

L. V. Zavyalova, B. W. Smith, T. Suganaga, S. Matsuura, T. Itani, and J. S. Cashmore, “In-situ aberration monitoring using phase wheel targets,” Proc. SPIE 5377, 172 (2004).
[CrossRef]

2003 (2)

P. Graeupner, R. Garreis, A. Goehnermeiter, T. Heil, M. Lowisch, and D. Flagello, “Impact of wavefront errors on low k1 processes at extreme high NA,” Proc. SPIE 5040, 119–130 (2003).
[CrossRef]

J. Sung, M. Pitchumani, and E. Johnson, “Aberration measurement of photolithographic lenses by use of hybrid diffractive photomasks,” Appl. Opt. 42, 1987–1995 (2003).
[CrossRef] [PubMed]

2001 (2)

H. van der Laan, M. Dierichs, H. van Greevenbroek, E. McCoo, F. Stoffels, R. Pongers, and R. Willekers, “Aerial image measurement methods for fast aberration set-up and illumination pupil verification,” Proc. SPIE 4346, 394–407 (2001).
[CrossRef]

J. P. Kirk, S. Schank, and Chieh-yu Lin, “Detection of focus and spherical aberration by use of a phase grating,” Proc. SPIE 4346, 1355–1361 (2001).
[CrossRef]

2000 (1)

P. Dirksen, C. A. H. Juffermans, A. Engelen, P. De Bisschop, and H. Muellerke, “Impact of high-order aberrations on the performance of the aberration monitor,” Proc. SPIE 4000, 9 (2000).
[CrossRef]

1999 (1)

P. Dirksen, C. A. H. Juffermans, R. J. M. Pellens, M. Maenhoudt, and P. De Bisschop, “Novel aberration monitor for optical lithography,” Proc. SPIE 3679, 77 (1999).
[CrossRef]

1995 (1)

R. A. Ferguson, A. K. K. Wong, T. A. Brunner, and L. W. Liebmann, “Pattern-dependent correction of mask topography effects for alternating phase-shifting masks,” Proc. SPIE 2440, 349 (1995).
[CrossRef]

Ando, M.

Y. Ohsaki, T. Mori, S. Koga, M. Ando, K. Yamamoto, T. Tezuka, and Y. Shiode, “A new on-machine measurement system to measure wavefront aberrations of projection optics with hyper-NA,” Proc. SPIE 6154, 615424 (2006).
[CrossRef]

Baselmans, J.

M. van de Kerkhof, W. de Boeij, H. Kok, M. Silova, J. Baselmans, and M. Hemerik, “Full optical column characterization of DUV lithographic projection tools,” Proc. SPIE 5377, 1960–1970(2004).
[CrossRef]

Bi, Q.

Born, M.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Pergamon, 1999), Chap. 9.

Brunner, T. A.

R. A. Ferguson, A. K. K. Wong, T. A. Brunner, and L. W. Liebmann, “Pattern-dependent correction of mask topography effects for alternating phase-shifting masks,” Proc. SPIE 2440, 349 (1995).
[CrossRef]

Cashmore, J. S.

L. V. Zavyalova, B. W. Smith, T. Suganaga, S. Matsuura, T. Itani, and J. S. Cashmore, “In-situ aberration monitoring using phase wheel targets,” Proc. SPIE 5377, 172 (2004).
[CrossRef]

De Bisschop, P.

P. Dirksen, C. A. H. Juffermans, A. Engelen, P. De Bisschop, and H. Muellerke, “Impact of high-order aberrations on the performance of the aberration monitor,” Proc. SPIE 4000, 9 (2000).
[CrossRef]

P. Dirksen, C. A. H. Juffermans, R. J. M. Pellens, M. Maenhoudt, and P. De Bisschop, “Novel aberration monitor for optical lithography,” Proc. SPIE 3679, 77 (1999).
[CrossRef]

de Boeij, W.

M. van de Kerkhof, W. de Boeij, H. Kok, M. Silova, J. Baselmans, and M. Hemerik, “Full optical column characterization of DUV lithographic projection tools,” Proc. SPIE 5377, 1960–1970(2004).
[CrossRef]

Dierichs, M.

H. van der Laan, M. Dierichs, H. van Greevenbroek, E. McCoo, F. Stoffels, R. Pongers, and R. Willekers, “Aerial image measurement methods for fast aberration set-up and illumination pupil verification,” Proc. SPIE 4346, 394–407 (2001).
[CrossRef]

Dirksen, P.

P. Dirksen, C. A. H. Juffermans, A. Engelen, P. De Bisschop, and H. Muellerke, “Impact of high-order aberrations on the performance of the aberration monitor,” Proc. SPIE 4000, 9 (2000).
[CrossRef]

P. Dirksen, C. A. H. Juffermans, R. J. M. Pellens, M. Maenhoudt, and P. De Bisschop, “Novel aberration monitor for optical lithography,” Proc. SPIE 3679, 77 (1999).
[CrossRef]

Duan, L.

Engelen, A.

P. Dirksen, C. A. H. Juffermans, A. Engelen, P. De Bisschop, and H. Muellerke, “Impact of high-order aberrations on the performance of the aberration monitor,” Proc. SPIE 4000, 9 (2000).
[CrossRef]

Ferguson, R. A.

R. A. Ferguson, A. K. K. Wong, T. A. Brunner, and L. W. Liebmann, “Pattern-dependent correction of mask topography effects for alternating phase-shifting masks,” Proc. SPIE 2440, 349 (1995).
[CrossRef]

Flagello, D.

P. Graeupner, R. Garreis, A. Goehnermeiter, T. Heil, M. Lowisch, and D. Flagello, “Impact of wavefront errors on low k1 processes at extreme high NA,” Proc. SPIE 5040, 119–130 (2003).
[CrossRef]

Fujii, T.

T. Fujii, K. Suzuki, Y. Mizuno, and N. Kita, “Integrated projecting optics tester for inspection of immersion ArF scanner,” Proc. SPIE 6152, 615237 (2006).
[CrossRef]

Garreis, R.

P. Graeupner, R. Garreis, A. Goehnermeiter, T. Heil, M. Lowisch, and D. Flagello, “Impact of wavefront errors on low k1 processes at extreme high NA,” Proc. SPIE 5040, 119–130 (2003).
[CrossRef]

Goehnermeiter, A.

P. Graeupner, R. Garreis, A. Goehnermeiter, T. Heil, M. Lowisch, and D. Flagello, “Impact of wavefront errors on low k1 processes at extreme high NA,” Proc. SPIE 5040, 119–130 (2003).
[CrossRef]

Graeupner, P.

P. Graeupner, R. Garreis, A. Goehnermeiter, T. Heil, M. Lowisch, and D. Flagello, “Impact of wavefront errors on low k1 processes at extreme high NA,” Proc. SPIE 5040, 119–130 (2003).
[CrossRef]

Hagiwara, T.

J. K. Tyminski, T. Hagiwara, N. Kondo, and H. Irihama, “Aerial image sensor: in-situ scanner aberration monitor,” Proc. SPIE 6152, 61523D (2006).
[CrossRef]

T. Hagiwara, N. Kondo, I. Hiroshi, K. Suzuki, and N. Magome, “Development of aerial image based aberration measurement technique,” Proc. SPIE 5754, 1659–1669 (2004).
[CrossRef]

Heil, T.

P. Graeupner, R. Garreis, A. Goehnermeiter, T. Heil, M. Lowisch, and D. Flagello, “Impact of wavefront errors on low k1 processes at extreme high NA,” Proc. SPIE 5040, 119–130 (2003).
[CrossRef]

Hemerik, M.

M. van de Kerkhof, W. de Boeij, H. Kok, M. Silova, J. Baselmans, and M. Hemerik, “Full optical column characterization of DUV lithographic projection tools,” Proc. SPIE 5377, 1960–1970(2004).
[CrossRef]

Hiroshi, I.

T. Hagiwara, N. Kondo, I. Hiroshi, K. Suzuki, and N. Magome, “Development of aerial image based aberration measurement technique,” Proc. SPIE 5754, 1659–1669 (2004).
[CrossRef]

Irihama, H.

J. K. Tyminski, T. Hagiwara, N. Kondo, and H. Irihama, “Aerial image sensor: in-situ scanner aberration monitor,” Proc. SPIE 6152, 61523D (2006).
[CrossRef]

Itani, T.

L. V. Zavyalova, B. W. Smith, T. Suganaga, S. Matsuura, T. Itani, and J. S. Cashmore, “In-situ aberration monitoring using phase wheel targets,” Proc. SPIE 5377, 172 (2004).
[CrossRef]

Johnson, E.

Juffermans, C. A. H.

P. Dirksen, C. A. H. Juffermans, A. Engelen, P. De Bisschop, and H. Muellerke, “Impact of high-order aberrations on the performance of the aberration monitor,” Proc. SPIE 4000, 9 (2000).
[CrossRef]

P. Dirksen, C. A. H. Juffermans, R. J. M. Pellens, M. Maenhoudt, and P. De Bisschop, “Novel aberration monitor for optical lithography,” Proc. SPIE 3679, 77 (1999).
[CrossRef]

Kirk, J. P.

J. P. Kirk, S. Schank, and Chieh-yu Lin, “Detection of focus and spherical aberration by use of a phase grating,” Proc. SPIE 4346, 1355–1361 (2001).
[CrossRef]

Kita, N.

T. Fujii, K. Suzuki, Y. Mizuno, and N. Kita, “Integrated projecting optics tester for inspection of immersion ArF scanner,” Proc. SPIE 6152, 615237 (2006).
[CrossRef]

Koga, S.

Y. Ohsaki, T. Mori, S. Koga, M. Ando, K. Yamamoto, T. Tezuka, and Y. Shiode, “A new on-machine measurement system to measure wavefront aberrations of projection optics with hyper-NA,” Proc. SPIE 6154, 615424 (2006).
[CrossRef]

Kok, H.

M. van de Kerkhof, W. de Boeij, H. Kok, M. Silova, J. Baselmans, and M. Hemerik, “Full optical column characterization of DUV lithographic projection tools,” Proc. SPIE 5377, 1960–1970(2004).
[CrossRef]

Kondo, N.

J. K. Tyminski, T. Hagiwara, N. Kondo, and H. Irihama, “Aerial image sensor: in-situ scanner aberration monitor,” Proc. SPIE 6152, 61523D (2006).
[CrossRef]

T. Hagiwara, N. Kondo, I. Hiroshi, K. Suzuki, and N. Magome, “Development of aerial image based aberration measurement technique,” Proc. SPIE 5754, 1659–1669 (2004).
[CrossRef]

Kwok-Kit, W. A.

W. A. Kwok-Kit, Optical Imaging in Projection Microlithography (SPIE, 2005).

Liebmann, L. W.

R. A. Ferguson, A. K. K. Wong, T. A. Brunner, and L. W. Liebmann, “Pattern-dependent correction of mask topography effects for alternating phase-shifting masks,” Proc. SPIE 2440, 349 (1995).
[CrossRef]

Lin, Chieh-yu

J. P. Kirk, S. Schank, and Chieh-yu Lin, “Detection of focus and spherical aberration by use of a phase grating,” Proc. SPIE 4346, 1355–1361 (2001).
[CrossRef]

Lowisch, M.

P. Graeupner, R. Garreis, A. Goehnermeiter, T. Heil, M. Lowisch, and D. Flagello, “Impact of wavefront errors on low k1 processes at extreme high NA,” Proc. SPIE 5040, 119–130 (2003).
[CrossRef]

Ma, M.

Q. Yuan, X. Wang, Z. Qiu, F. Wang, and M. Ma, “Even aberration measurement of lithographic projection system based on optimized phase-shifting marks,” Microelectron. Eng. 86, 78–82 (2009).
[CrossRef]

M. Ma, X. Wang, and F. Wang, “Aberration measurement of projection optics in lithographic tools based on two-beam interference theory,” Appl. Opt. 45, 8200–8208 (2006).
[CrossRef] [PubMed]

Maenhoudt, M.

P. Dirksen, C. A. H. Juffermans, R. J. M. Pellens, M. Maenhoudt, and P. De Bisschop, “Novel aberration monitor for optical lithography,” Proc. SPIE 3679, 77 (1999).
[CrossRef]

Magome, N.

T. Hagiwara, N. Kondo, I. Hiroshi, K. Suzuki, and N. Magome, “Development of aerial image based aberration measurement technique,” Proc. SPIE 5754, 1659–1669 (2004).
[CrossRef]

Matsuura, S.

L. V. Zavyalova, B. W. Smith, T. Suganaga, S. Matsuura, T. Itani, and J. S. Cashmore, “In-situ aberration monitoring using phase wheel targets,” Proc. SPIE 5377, 172 (2004).
[CrossRef]

McCoo, E.

H. van der Laan, M. Dierichs, H. van Greevenbroek, E. McCoo, F. Stoffels, R. Pongers, and R. Willekers, “Aerial image measurement methods for fast aberration set-up and illumination pupil verification,” Proc. SPIE 4346, 394–407 (2001).
[CrossRef]

Mizuno, Y.

T. Fujii, K. Suzuki, Y. Mizuno, and N. Kita, “Integrated projecting optics tester for inspection of immersion ArF scanner,” Proc. SPIE 6152, 615237 (2006).
[CrossRef]

Moers, M. H.

H. van der Laan and M. H. Moers, “Method of measuring aberration in an optical imaging system,” U.S. patent 6,646,729 (11 November 2003).

Mori, T.

Y. Ohsaki, T. Mori, S. Koga, M. Ando, K. Yamamoto, T. Tezuka, and Y. Shiode, “A new on-machine measurement system to measure wavefront aberrations of projection optics with hyper-NA,” Proc. SPIE 6154, 615424 (2006).
[CrossRef]

Muellerke, H.

P. Dirksen, C. A. H. Juffermans, A. Engelen, P. De Bisschop, and H. Muellerke, “Impact of high-order aberrations on the performance of the aberration monitor,” Proc. SPIE 4000, 9 (2000).
[CrossRef]

Ohsaki, Y.

Y. Ohsaki, T. Mori, S. Koga, M. Ando, K. Yamamoto, T. Tezuka, and Y. Shiode, “A new on-machine measurement system to measure wavefront aberrations of projection optics with hyper-NA,” Proc. SPIE 6154, 615424 (2006).
[CrossRef]

Pellens, R. J. M.

P. Dirksen, C. A. H. Juffermans, R. J. M. Pellens, M. Maenhoudt, and P. De Bisschop, “Novel aberration monitor for optical lithography,” Proc. SPIE 3679, 77 (1999).
[CrossRef]

Peng, B.

Pitchumani, M.

Pongers, R.

H. van der Laan, M. Dierichs, H. van Greevenbroek, E. McCoo, F. Stoffels, R. Pongers, and R. Willekers, “Aerial image measurement methods for fast aberration set-up and illumination pupil verification,” Proc. SPIE 4346, 394–407 (2001).
[CrossRef]

Qiu, Z.

Z. Qiu, X. Wang, Q. Bi, Q. Yuan, B. Peng, and L. Duan, “Translational-symmetry alternating phase shifting mask grating mark used in a linear measurement model of lithographic projection lens aberrations,” Appl. Opt. 48, 3654–3663(2009).
[CrossRef] [PubMed]

Q. Yuan, X. Wang, Z. Qiu, F. Wang, and M. Ma, “Even aberration measurement of lithographic projection system based on optimized phase-shifting marks,” Microelectron. Eng. 86, 78–82 (2009).
[CrossRef]

Schank, S.

J. P. Kirk, S. Schank, and Chieh-yu Lin, “Detection of focus and spherical aberration by use of a phase grating,” Proc. SPIE 4346, 1355–1361 (2001).
[CrossRef]

Shiode, Y.

Y. Ohsaki, T. Mori, S. Koga, M. Ando, K. Yamamoto, T. Tezuka, and Y. Shiode, “A new on-machine measurement system to measure wavefront aberrations of projection optics with hyper-NA,” Proc. SPIE 6154, 615424 (2006).
[CrossRef]

Silova, M.

M. van de Kerkhof, W. de Boeij, H. Kok, M. Silova, J. Baselmans, and M. Hemerik, “Full optical column characterization of DUV lithographic projection tools,” Proc. SPIE 5377, 1960–1970(2004).
[CrossRef]

Smith, B. W.

L. V. Zavyalova, B. W. Smith, T. Suganaga, S. Matsuura, T. Itani, and J. S. Cashmore, “In-situ aberration monitoring using phase wheel targets,” Proc. SPIE 5377, 172 (2004).
[CrossRef]

Stoffels, F.

H. van der Laan, M. Dierichs, H. van Greevenbroek, E. McCoo, F. Stoffels, R. Pongers, and R. Willekers, “Aerial image measurement methods for fast aberration set-up and illumination pupil verification,” Proc. SPIE 4346, 394–407 (2001).
[CrossRef]

Suganaga, T.

L. V. Zavyalova, B. W. Smith, T. Suganaga, S. Matsuura, T. Itani, and J. S. Cashmore, “In-situ aberration monitoring using phase wheel targets,” Proc. SPIE 5377, 172 (2004).
[CrossRef]

Sung, J.

Suzuki, K.

T. Fujii, K. Suzuki, Y. Mizuno, and N. Kita, “Integrated projecting optics tester for inspection of immersion ArF scanner,” Proc. SPIE 6152, 615237 (2006).
[CrossRef]

T. Hagiwara, N. Kondo, I. Hiroshi, K. Suzuki, and N. Magome, “Development of aerial image based aberration measurement technique,” Proc. SPIE 5754, 1659–1669 (2004).
[CrossRef]

Tezuka, T.

Y. Ohsaki, T. Mori, S. Koga, M. Ando, K. Yamamoto, T. Tezuka, and Y. Shiode, “A new on-machine measurement system to measure wavefront aberrations of projection optics with hyper-NA,” Proc. SPIE 6154, 615424 (2006).
[CrossRef]

Tyminski, J. K.

J. K. Tyminski, T. Hagiwara, N. Kondo, and H. Irihama, “Aerial image sensor: in-situ scanner aberration monitor,” Proc. SPIE 6152, 61523D (2006).
[CrossRef]

van de Kerkhof, M.

M. van de Kerkhof, W. de Boeij, H. Kok, M. Silova, J. Baselmans, and M. Hemerik, “Full optical column characterization of DUV lithographic projection tools,” Proc. SPIE 5377, 1960–1970(2004).
[CrossRef]

van der Laan, H.

H. van der Laan, M. Dierichs, H. van Greevenbroek, E. McCoo, F. Stoffels, R. Pongers, and R. Willekers, “Aerial image measurement methods for fast aberration set-up and illumination pupil verification,” Proc. SPIE 4346, 394–407 (2001).
[CrossRef]

H. van der Laan and M. H. Moers, “Method of measuring aberration in an optical imaging system,” U.S. patent 6,646,729 (11 November 2003).

van Greevenbroek, H.

H. van der Laan, M. Dierichs, H. van Greevenbroek, E. McCoo, F. Stoffels, R. Pongers, and R. Willekers, “Aerial image measurement methods for fast aberration set-up and illumination pupil verification,” Proc. SPIE 4346, 394–407 (2001).
[CrossRef]

Wang, F.

Q. Yuan, X. Wang, Z. Qiu, F. Wang, and M. Ma, “Even aberration measurement of lithographic projection system based on optimized phase-shifting marks,” Microelectron. Eng. 86, 78–82 (2009).
[CrossRef]

M. Ma, X. Wang, and F. Wang, “Aberration measurement of projection optics in lithographic tools based on two-beam interference theory,” Appl. Opt. 45, 8200–8208 (2006).
[CrossRef] [PubMed]

Wang, X.

Willekers, R.

H. van der Laan, M. Dierichs, H. van Greevenbroek, E. McCoo, F. Stoffels, R. Pongers, and R. Willekers, “Aerial image measurement methods for fast aberration set-up and illumination pupil verification,” Proc. SPIE 4346, 394–407 (2001).
[CrossRef]

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Pergamon, 1999), Chap. 9.

Wong, A. K. K.

R. A. Ferguson, A. K. K. Wong, T. A. Brunner, and L. W. Liebmann, “Pattern-dependent correction of mask topography effects for alternating phase-shifting masks,” Proc. SPIE 2440, 349 (1995).
[CrossRef]

Yamamoto, K.

Y. Ohsaki, T. Mori, S. Koga, M. Ando, K. Yamamoto, T. Tezuka, and Y. Shiode, “A new on-machine measurement system to measure wavefront aberrations of projection optics with hyper-NA,” Proc. SPIE 6154, 615424 (2006).
[CrossRef]

Yuan, Q.

Z. Qiu, X. Wang, Q. Bi, Q. Yuan, B. Peng, and L. Duan, “Translational-symmetry alternating phase shifting mask grating mark used in a linear measurement model of lithographic projection lens aberrations,” Appl. Opt. 48, 3654–3663(2009).
[CrossRef] [PubMed]

Q. Yuan, X. Wang, Z. Qiu, F. Wang, and M. Ma, “Even aberration measurement of lithographic projection system based on optimized phase-shifting marks,” Microelectron. Eng. 86, 78–82 (2009).
[CrossRef]

Zavyalova, L. V.

L. V. Zavyalova, B. W. Smith, T. Suganaga, S. Matsuura, T. Itani, and J. S. Cashmore, “In-situ aberration monitoring using phase wheel targets,” Proc. SPIE 5377, 172 (2004).
[CrossRef]

Appl. Opt. (3)

Microelectron. Eng. (1)

Q. Yuan, X. Wang, Z. Qiu, F. Wang, and M. Ma, “Even aberration measurement of lithographic projection system based on optimized phase-shifting marks,” Microelectron. Eng. 86, 78–82 (2009).
[CrossRef]

Proc. SPIE (12)

P. Graeupner, R. Garreis, A. Goehnermeiter, T. Heil, M. Lowisch, and D. Flagello, “Impact of wavefront errors on low k1 processes at extreme high NA,” Proc. SPIE 5040, 119–130 (2003).
[CrossRef]

H. van der Laan, M. Dierichs, H. van Greevenbroek, E. McCoo, F. Stoffels, R. Pongers, and R. Willekers, “Aerial image measurement methods for fast aberration set-up and illumination pupil verification,” Proc. SPIE 4346, 394–407 (2001).
[CrossRef]

R. A. Ferguson, A. K. K. Wong, T. A. Brunner, and L. W. Liebmann, “Pattern-dependent correction of mask topography effects for alternating phase-shifting masks,” Proc. SPIE 2440, 349 (1995).
[CrossRef]

M. van de Kerkhof, W. de Boeij, H. Kok, M. Silova, J. Baselmans, and M. Hemerik, “Full optical column characterization of DUV lithographic projection tools,” Proc. SPIE 5377, 1960–1970(2004).
[CrossRef]

T. Fujii, K. Suzuki, Y. Mizuno, and N. Kita, “Integrated projecting optics tester for inspection of immersion ArF scanner,” Proc. SPIE 6152, 615237 (2006).
[CrossRef]

Y. Ohsaki, T. Mori, S. Koga, M. Ando, K. Yamamoto, T. Tezuka, and Y. Shiode, “A new on-machine measurement system to measure wavefront aberrations of projection optics with hyper-NA,” Proc. SPIE 6154, 615424 (2006).
[CrossRef]

J. P. Kirk, S. Schank, and Chieh-yu Lin, “Detection of focus and spherical aberration by use of a phase grating,” Proc. SPIE 4346, 1355–1361 (2001).
[CrossRef]

J. K. Tyminski, T. Hagiwara, N. Kondo, and H. Irihama, “Aerial image sensor: in-situ scanner aberration monitor,” Proc. SPIE 6152, 61523D (2006).
[CrossRef]

T. Hagiwara, N. Kondo, I. Hiroshi, K. Suzuki, and N. Magome, “Development of aerial image based aberration measurement technique,” Proc. SPIE 5754, 1659–1669 (2004).
[CrossRef]

P. Dirksen, C. A. H. Juffermans, R. J. M. Pellens, M. Maenhoudt, and P. De Bisschop, “Novel aberration monitor for optical lithography,” Proc. SPIE 3679, 77 (1999).
[CrossRef]

P. Dirksen, C. A. H. Juffermans, A. Engelen, P. De Bisschop, and H. Muellerke, “Impact of high-order aberrations on the performance of the aberration monitor,” Proc. SPIE 4000, 9 (2000).
[CrossRef]

L. V. Zavyalova, B. W. Smith, T. Suganaga, S. Matsuura, T. Itani, and J. S. Cashmore, “In-situ aberration monitoring using phase wheel targets,” Proc. SPIE 5377, 172 (2004).
[CrossRef]

Other (3)

W. A. Kwok-Kit, Optical Imaging in Projection Microlithography (SPIE, 2005).

M. Born and E. Wolf, Principles of Optics, 7th ed. (Pergamon, 1999), Chap. 9.

H. van der Laan and M. H. Moers, “Method of measuring aberration in an optical imaging system,” U.S. patent 6,646,729 (11 November 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Representation of an optical lithography imaging system.

Fig. 2
Fig. 2

Image intensity of an Alt-PSM with the presence of Z 9 : L = W = 125 nm , σ = 0.3 , NA = 0.5 , and φ = 90 ° .

Fig. 3
Fig. 3

Aberration-induced intensity difference of adjacent peaks in an Alt-PSM image as a function of the amount of aberration: (a) σ = 0.3 and NA = 0.5 ; (b) σ = 0.8 , NA = 0.8 , L = W = 150 nm , and φ = 90 ° .

Fig. 4
Fig. 4

Aberration-induced intensity difference of adjacent peaks in an Alt-PSM image as a function of phase shift: σ = 0.3 , NA = 0.5 , and L = W = 150 nm . The value of each Zernike coefficient is 0.02 λ .

Fig. 5
Fig. 5

Aberration-induced intensity difference of adjacent peaks in an Alt-PSM image as a function of the linewidth: σ = 0.3 , NA = 0.5 , and φ = 90 ° . The pitch of the Alt-PSM is 600 nm . The value of each Zernike coefficient is 0.02 λ .

Fig. 6
Fig. 6

Aberration-induced intensity difference of adjacent peaks in a pure phase mask image as a function of pitch: σ = 0.3 , NA = 0.5 , and φ = 90 ° . The value of each Zernike coefficient is 0.02 λ .

Fig. 7
Fig. 7

Illustration of the measurement mark.

Fig. 8
Fig. 8

Comparison of input and measured Zernike coefficients.

Tables (1)

Tables Icon

Table 1 Simulation Results of Aberration Sensitivities and Measurement Accuracies

Equations (24)

Equations on this page are rendered with MathJax. Learn more.

I ( x i ^ , y i ^ ) = + TCC ( f ^ , g ^ ; f ^ , g ^ ; σ ) O ( f ^ , g ^ ) O * ( f ^ , g ^ ) × e i 2 π [ ( f ^ f ^ ) x i ^ + ( g ^ g ^ ) y i ^ ] d f ^ d g ^ d f ^ d g ^ ,
x o ^ = M x o λ / NA , y o ^ = M y o λ / NA , x i ^ = x i λ / NA , y i ^ = y i λ / NA , f ^ = f NA / λ , g ^ = g NA / λ ,
TCC ( f ^ , g ^ ; f ^ , g ^ ) = + J ( f ^ , g ^ ) H ( f ^ + f ^ , g ^ + g ^ ) H * ( f ^ + f ^ , g ^ + g ^ ) d f ^ d g ^ ,
J ( f ^ , g ^ ) = 1 π σ 2 circ ( f ^ 2 + g ^ 2 σ ) = { 1 π σ 2 if f ^ 2 + g ^ 2 σ , 0 otherwise ,
H ( f ^ , g ^ ) = e i 2 π λ W ( f ^ , g ^ ) , where f ^ 2 + g ^ 2 < 1.
W ( f ^ , g ^ ) = n = 1 Z n R n ( f ^ , g ^ ) = Z 1 + Z 4 [ 2 ( f ^ 2 + g ^ 2 ) 1 ] + Z 5 ( f ^ 2 g ^ 2 ) + Z 6 · 2 f ^ g ^ + Z 9 [ 6 ( f ^ 2 + g ^ 2 ) 2 6 ( f ^ 2 + g ^ 2 ) + 1 ] + Z 12 [ 4 ( f ^ 2 + g ^ 2 ) 3 ] ( f ^ 2 g ^ 2 ) + Z 13 f ^ g ^ [ 8 ( f ^ 2 + g ^ 2 ) 6 ] + Z 16 [ 20 ( f ^ 2 + g ^ 2 ) 3 30 ( f ^ 2 + g ^ 2 ) 2 + 12 ( f ^ 2 + g ^ 2 ) 1 ] + Z 21 [ 15 ( f ^ 2 + g ^ 2 ) 2 20 ( f ^ 2 + g ^ 2 ) + 6 ] ( f ^ g ^ 2 ) + Z 22 f ^ g ^ [ 30 ( f ^ 2 + g ^ 2 ) 2 40 ( f ^ 2 + g ^ 2 ) + 12 ] + ,
t ( x o ) = n = + δ ( x o 2 n ( L + W ) ) * [ t 1 e i α rect ( x o L + W 2 W ) + t 2 e i ( β + φ ) rect ( x o + L + W 2 W ) ] , n Z ,
O ( f ^ ) = W 2 L + 2 W n = N + N δ ( f ^ n λ ( 2 L + 2 W ) NA ) × sinc ( WNA f ^ λ ) [ t 1 e i α e i π f ^ NA λ ( L + W ) + t 2 e i ( β + φ ) e i π f ^ NA λ ( L + W ) ] , n Z .
I ( x i ^ ) = m = 1 + 1 n = 1 + 1 TCC ( m f 0 ^ , 0 ; n f 0 ^ , 0 ) O ( m f 0 ^ ) O * ( n f 0 ^ ) e i 2 π ( m n ) f 0 ^ x i ^ , m , n Z .
TCC ( n f 0 ^ , 0 ; n f 0 ^ , 0 ) = TCC * ( n f 0 ^ , 0 ; n f 0 ^ , 0 ) , n Z , TCC ( m f 0 ^ , 0 ; n f 0 ^ , 0 ) = TCC ( m f 0 ^ , 0 ; n f 0 ^ , 0 ) = TCC * ( n f 0 ^ , 0 ; m f 0 ^ , 0 ) = TCC * ( n f 0 ^ , 0 ; m f 0 ^ , 0 ) , m , n Z , m n .
TCC ( n f 0 ^ , 0 ; n f 0 ^ , 0 ) = TCC ( n f 0 ^ , 0 ; n f 0 ^ , 0 ) = real number , n Z , TCC ( m f 0 ^ , 0 ; n f 0 ^ , 0 ) = TCC ( m f 0 ^ , 0 ; n f 0 ^ , 0 ) = TCC * ( n f 0 ^ , 0 ; m f 0 ^ , 0 ) = TCC * ( n f 0 ^ , 0 ; m f 0 ^ , 0 ) , m , n Z , m n .
I ( x i ^ ) = C 1 + C 3 cos ( 4 π f 0 ^ x i ^ + ϕ ) ,
I ( x i ^ ) = C 1 + C 2 sin ( 2 π f 0 ^ x i ^ ) + C 3 cos ( 4 π f 0 ^ x i ^ ) ,
C 1 = TCC ( f 0 ^ , 0 ; f 0 ^ , 0 ) O ( f 0 ^ ) O * ( f 0 ^ ) + TCC ( 0 , 0 ; 0 , 0 ) O ( 0 ) O * ( 0 ) + TCC ( f 0 ^ , 0 ; f 0 ^ , 0 ) O ( f 0 ^ ) O * ( f 0 ^ ) , C 2 = 4 Im [ TCC ( f 0 ^ , 0 ; 0 , 0 ) O ( f 0 ^ ) O * ( 0 ) ] , C 3 = 2 TCC ( f 0 ^ , 0 ; f 0 ^ , 0 ) O ( f 0 ^ ) O * ( f 0 ^ ) , ϕ = Arg [ TCC ( f 0 ^ , 0 ; f 0 ^ , 0 ) ] .
I max 1 = C 1 + C 2 C 3 , I max 2 = C 1 C 2 C 3 .
Δ I = 2 C 2 = 8 Im [ TCC ( f 0 ^ , 0 ; 0 , 0 ) O ( f 0 ^ ) O * ( 0 ) ] .
TCC ( f ^ , g ^ ; f ^ , g ^ ) = + J ( f ^ , g ^ ) d f ^ d g ^ + i 2 π λ n = 1 37 Z n + J ( f ^ , g ^ ) [ R n ( f ^ + f ^ , g ^ + g ^ ) R n ( f ^ + f ^ , g ^ + g ^ ) ] d f ^ d g ^ , n Z .
Δ I = C + n = 1 37 S n Z n , n Z ,
C = 2 c sinc ( WNA f 0 ^ λ ) ( t 2 2 t 1 2 ) + J ( f ^ , g ^ ) d f ^ d g ^ , S n = 8 π λ c t 1 t 2 sin ( β + φ α ) sinc ( WNA f 0 ^ λ ) × + J ( f ^ , g ^ ) [ R n ( f ^ , g ^ ) R n ( f ^ + f 0 ^ , g ^ ) ] d f ^ d g ^ .
Δ I = Δ I 0 ° + Δ I 45 ° + Δ I 90 ° + Δ I 135 ° 4 .
Δ I H / V = Δ I 0 ° Δ I 90 ° .
Δ I ± 45 ° = Δ I 45 ° Δ I 135 ° .
[ Δ I ( NA 1 , σ 1 ) Δ I ( NA 2 , δ 2 ) ] = [ S 4 ( NA 1 , σ 1 ) S 9 ( NA 1 , σ 1 ) S 16 ( NA 1 , σ 1 ) S 4 ( NA 2 , σ 2 ) S 9 ( NA 2 , σ 2 ) S 16 ( NA 2 , σ 2 ) ] [ Z 4 Z 9 Z 16 ] + [ C ( NA 1 , σ 1 ) C ( NA 2 , σ 2 ) ] .
MA QA | S max S min | ,

Metrics