Abstract

We analyze two important points related to the experimental emissivity measurements in this paper: the radiometer calibration accuracy and its stability to determine the required frequency of calibration. The usual two-temperature calibration method is compared to a more accurate method, which uses the measurement of blackbody radiation at several temperatures. Additionally, the suitability of the two- temperature method is studied as a function of the gap between both temperatures. Differences higher than 200°C are needed to obtain an acceptable calibration. The temporal stability of the calibration and the influence of the environmental conditions are also analyzed.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. del Campo, R. B. Pérez-Sáez, X. Esquisabel, I. Fernández, and M. J. Tello, “A new experimental device for infrared spectral directional emissivity measurements in a controlled environment,” Rev. Sci. Instrum. 77, 113111 (2006).
    [CrossRef]
  2. O. Rozenbaum, D. de Sousa Meneses, Y. Auger, S. Chermanne, and P. Echegut, “A spectroscopic method to measure the spectral emissivity of semi-transparent materials up to high temperature,” Rev. Sci. Instrum. 70, 4020–4025 (1999).
    [CrossRef]
  3. R. M. Sova, M. J. Linevsky, M. E. Thomas, and F. F. Mark, “High temperature infrared properties of sapphire, AlON, fused silica, yttria, and spinel,” Infrared Phys. Technol. 39, 251–261 (1998).
    [CrossRef]
  4. J. Ishii and A. Ono, “Uncertainty estimation for emissivity measurements near room temperature with a Fourier transform spectrometer,” Meas. Sci. Technol. 12, 2103–2112(2001).
    [CrossRef]
  5. R. B. Pérez-Sáez, L. del Campo, and M. J. Tello, “Analysis of the accuracy of the methods for the direct emissivity measurements,” Int. J. Thermophys. 29, 1141–1155 (2008).
    [CrossRef]
  6. R. Siegel and J. Howel, Thermal Radiation Heat Transfer, 4th ed. (Taylor & Francis, 2002).
  7. Ö. Staaf, C. G. Ribbing, and S. K. Anderson, “Temperature dependence of the band emittance for nongray bodies,” Appl. Opt. 35, 6120–6125 (1996).
    [CrossRef] [PubMed]
  8. D. B. Chase, “The sensitivity and limitations of condensed phase infrared spectroscopy,” Appl. Spectrosc. 35, 77–81(1981).
    [CrossRef]
  9. H. E. Revercomb, H. Buijs, H. B. Howell, D. D. LaPorte, W. L. Smith, and L. A. Sromovsky, “Radiometric calibration of IR Fourier transform spectrometers: solution to a problem with high-resolution interferometer sounder,” Appl. Opt. 27, 3210–3218 (1988).
    [CrossRef] [PubMed]
  10. F. J. DeBlase and S. Compton, “Infrared emission spectroscopy: a theoretical and experimental review,” Appl. Spectrosc. 45, 611–618 (1991).
    [CrossRef]
  11. E. Lindermeir, P. Haschberger, V. Tank, and H. Dietl, “Calibration of Fourier transform spectrometer using three blackbody sources,” Appl. Opt. 31, 4527–4533 (1992).
    [CrossRef] [PubMed]
  12. P. C. Dufour, N. L. Rowell, and A. G. Steele, “Fourier-transform radiation thermometry: measurements and uncertainties,” Appl. Opt. 37, 5923–5931 (1998).
    [CrossRef]
  13. J. Dai, X. Wang, and G. Yuan, “Fourier transform spectrometer for spectral emissivity measurements in the temperature range between 60 and 1500°C,” J. Phys. Conf. Ser. 13, 63–66 (2005).
    [CrossRef]
  14. A. Shimota, H. Kobayashi, and S. Kadokura, “Radiometric calibration for the airbone interferometric monitor for green house gases simulator,” Appl. Opt. 38, 571–576 (1999).
    [CrossRef]
  15. S. Clausen, “Measurement of spectral emissivity by a FT-IR spectrometer,” in Proceedings of the Symposium on Temperature and Thermal Measurements in Industry and Science, TEMPMEKO 2001, B.Fellmuth, J.Seidel, and G.Scholz, eds. (VDE VERLAG GmbH, 2001), pp. 259–264.
  16. C. Weddigen, C. E. Blom, and M. Höpfner, “Phase corrections for the emission sounder MIPAS-FT,” Appl. Opt. 32, 4586–4589(1993).
    [CrossRef] [PubMed]
  17. J. Schreiber, T. Blumenstock, and H. Fischer, “Effects of the self-emission of an IR Fourier-transform spectrometer on measured absorption spectra,” Appl. Opt. 35, 6203–6209 (1996).
    [CrossRef] [PubMed]
  18. J. Schreiber, T. Blumenstock, and F. Hase, “Application of a radiometric calibration method to lunar Fourier transform IR spectra by using a liquid-nitrogen-cooled high-emissivity blackbody,” Appl. Opt. 36, 8168–8172 (1997).
    [CrossRef]
  19. S. Clausen, A. Morgenstjerne, and O. Rathmann, “Measurement of surface temperature and emissivity by a multitemperature method for Fourier-transform infrared spectrometers,” Appl. Opt. 35, 5683–5691 (1996).
    [CrossRef] [PubMed]
  20. E. T. Kwor and S. Matteï, “Emissivity measurements for Nextel Velvet Coating 811-21 between 36°C and 82°C,” High Temp.—High Pressures 33, 551–556 (2001).
    [CrossRef]

2008 (1)

R. B. Pérez-Sáez, L. del Campo, and M. J. Tello, “Analysis of the accuracy of the methods for the direct emissivity measurements,” Int. J. Thermophys. 29, 1141–1155 (2008).
[CrossRef]

2006 (1)

L. del Campo, R. B. Pérez-Sáez, X. Esquisabel, I. Fernández, and M. J. Tello, “A new experimental device for infrared spectral directional emissivity measurements in a controlled environment,” Rev. Sci. Instrum. 77, 113111 (2006).
[CrossRef]

2005 (1)

J. Dai, X. Wang, and G. Yuan, “Fourier transform spectrometer for spectral emissivity measurements in the temperature range between 60 and 1500°C,” J. Phys. Conf. Ser. 13, 63–66 (2005).
[CrossRef]

2002 (1)

R. Siegel and J. Howel, Thermal Radiation Heat Transfer, 4th ed. (Taylor & Francis, 2002).

2001 (3)

S. Clausen, “Measurement of spectral emissivity by a FT-IR spectrometer,” in Proceedings of the Symposium on Temperature and Thermal Measurements in Industry and Science, TEMPMEKO 2001, B.Fellmuth, J.Seidel, and G.Scholz, eds. (VDE VERLAG GmbH, 2001), pp. 259–264.

E. T. Kwor and S. Matteï, “Emissivity measurements for Nextel Velvet Coating 811-21 between 36°C and 82°C,” High Temp.—High Pressures 33, 551–556 (2001).
[CrossRef]

J. Ishii and A. Ono, “Uncertainty estimation for emissivity measurements near room temperature with a Fourier transform spectrometer,” Meas. Sci. Technol. 12, 2103–2112(2001).
[CrossRef]

1999 (2)

A. Shimota, H. Kobayashi, and S. Kadokura, “Radiometric calibration for the airbone interferometric monitor for green house gases simulator,” Appl. Opt. 38, 571–576 (1999).
[CrossRef]

O. Rozenbaum, D. de Sousa Meneses, Y. Auger, S. Chermanne, and P. Echegut, “A spectroscopic method to measure the spectral emissivity of semi-transparent materials up to high temperature,” Rev. Sci. Instrum. 70, 4020–4025 (1999).
[CrossRef]

1998 (2)

R. M. Sova, M. J. Linevsky, M. E. Thomas, and F. F. Mark, “High temperature infrared properties of sapphire, AlON, fused silica, yttria, and spinel,” Infrared Phys. Technol. 39, 251–261 (1998).
[CrossRef]

P. C. Dufour, N. L. Rowell, and A. G. Steele, “Fourier-transform radiation thermometry: measurements and uncertainties,” Appl. Opt. 37, 5923–5931 (1998).
[CrossRef]

1997 (1)

1996 (3)

1993 (1)

1992 (1)

1991 (1)

1988 (1)

1981 (1)

Anderson, S. K.

Auger, Y.

O. Rozenbaum, D. de Sousa Meneses, Y. Auger, S. Chermanne, and P. Echegut, “A spectroscopic method to measure the spectral emissivity of semi-transparent materials up to high temperature,” Rev. Sci. Instrum. 70, 4020–4025 (1999).
[CrossRef]

Blom, C. E.

Blumenstock, T.

Buijs, H.

Chase, D. B.

Chermanne, S.

O. Rozenbaum, D. de Sousa Meneses, Y. Auger, S. Chermanne, and P. Echegut, “A spectroscopic method to measure the spectral emissivity of semi-transparent materials up to high temperature,” Rev. Sci. Instrum. 70, 4020–4025 (1999).
[CrossRef]

Clausen, S.

S. Clausen, “Measurement of spectral emissivity by a FT-IR spectrometer,” in Proceedings of the Symposium on Temperature and Thermal Measurements in Industry and Science, TEMPMEKO 2001, B.Fellmuth, J.Seidel, and G.Scholz, eds. (VDE VERLAG GmbH, 2001), pp. 259–264.

S. Clausen, A. Morgenstjerne, and O. Rathmann, “Measurement of surface temperature and emissivity by a multitemperature method for Fourier-transform infrared spectrometers,” Appl. Opt. 35, 5683–5691 (1996).
[CrossRef] [PubMed]

Compton, S.

Dai, J.

J. Dai, X. Wang, and G. Yuan, “Fourier transform spectrometer for spectral emissivity measurements in the temperature range between 60 and 1500°C,” J. Phys. Conf. Ser. 13, 63–66 (2005).
[CrossRef]

de Sousa Meneses, D.

O. Rozenbaum, D. de Sousa Meneses, Y. Auger, S. Chermanne, and P. Echegut, “A spectroscopic method to measure the spectral emissivity of semi-transparent materials up to high temperature,” Rev. Sci. Instrum. 70, 4020–4025 (1999).
[CrossRef]

DeBlase, F. J.

del Campo, L.

R. B. Pérez-Sáez, L. del Campo, and M. J. Tello, “Analysis of the accuracy of the methods for the direct emissivity measurements,” Int. J. Thermophys. 29, 1141–1155 (2008).
[CrossRef]

L. del Campo, R. B. Pérez-Sáez, X. Esquisabel, I. Fernández, and M. J. Tello, “A new experimental device for infrared spectral directional emissivity measurements in a controlled environment,” Rev. Sci. Instrum. 77, 113111 (2006).
[CrossRef]

Dietl, H.

Dufour, P. C.

Echegut, P.

O. Rozenbaum, D. de Sousa Meneses, Y. Auger, S. Chermanne, and P. Echegut, “A spectroscopic method to measure the spectral emissivity of semi-transparent materials up to high temperature,” Rev. Sci. Instrum. 70, 4020–4025 (1999).
[CrossRef]

Esquisabel, X.

L. del Campo, R. B. Pérez-Sáez, X. Esquisabel, I. Fernández, and M. J. Tello, “A new experimental device for infrared spectral directional emissivity measurements in a controlled environment,” Rev. Sci. Instrum. 77, 113111 (2006).
[CrossRef]

Fernández, I.

L. del Campo, R. B. Pérez-Sáez, X. Esquisabel, I. Fernández, and M. J. Tello, “A new experimental device for infrared spectral directional emissivity measurements in a controlled environment,” Rev. Sci. Instrum. 77, 113111 (2006).
[CrossRef]

Fischer, H.

Haschberger, P.

Hase, F.

Höpfner, M.

Howel, J.

R. Siegel and J. Howel, Thermal Radiation Heat Transfer, 4th ed. (Taylor & Francis, 2002).

Howell, H. B.

Ishii, J.

J. Ishii and A. Ono, “Uncertainty estimation for emissivity measurements near room temperature with a Fourier transform spectrometer,” Meas. Sci. Technol. 12, 2103–2112(2001).
[CrossRef]

Kadokura, S.

Kobayashi, H.

Kwor, E. T.

E. T. Kwor and S. Matteï, “Emissivity measurements for Nextel Velvet Coating 811-21 between 36°C and 82°C,” High Temp.—High Pressures 33, 551–556 (2001).
[CrossRef]

LaPorte, D. D.

Lindermeir, E.

Linevsky, M. J.

R. M. Sova, M. J. Linevsky, M. E. Thomas, and F. F. Mark, “High temperature infrared properties of sapphire, AlON, fused silica, yttria, and spinel,” Infrared Phys. Technol. 39, 251–261 (1998).
[CrossRef]

Mark, F. F.

R. M. Sova, M. J. Linevsky, M. E. Thomas, and F. F. Mark, “High temperature infrared properties of sapphire, AlON, fused silica, yttria, and spinel,” Infrared Phys. Technol. 39, 251–261 (1998).
[CrossRef]

Matteï, S.

E. T. Kwor and S. Matteï, “Emissivity measurements for Nextel Velvet Coating 811-21 between 36°C and 82°C,” High Temp.—High Pressures 33, 551–556 (2001).
[CrossRef]

Morgenstjerne, A.

Ono, A.

J. Ishii and A. Ono, “Uncertainty estimation for emissivity measurements near room temperature with a Fourier transform spectrometer,” Meas. Sci. Technol. 12, 2103–2112(2001).
[CrossRef]

Pérez-Sáez, R. B.

R. B. Pérez-Sáez, L. del Campo, and M. J. Tello, “Analysis of the accuracy of the methods for the direct emissivity measurements,” Int. J. Thermophys. 29, 1141–1155 (2008).
[CrossRef]

L. del Campo, R. B. Pérez-Sáez, X. Esquisabel, I. Fernández, and M. J. Tello, “A new experimental device for infrared spectral directional emissivity measurements in a controlled environment,” Rev. Sci. Instrum. 77, 113111 (2006).
[CrossRef]

Rathmann, O.

Revercomb, H. E.

Ribbing, C. G.

Rowell, N. L.

Rozenbaum, O.

O. Rozenbaum, D. de Sousa Meneses, Y. Auger, S. Chermanne, and P. Echegut, “A spectroscopic method to measure the spectral emissivity of semi-transparent materials up to high temperature,” Rev. Sci. Instrum. 70, 4020–4025 (1999).
[CrossRef]

Schreiber, J.

Shimota, A.

Siegel, R.

R. Siegel and J. Howel, Thermal Radiation Heat Transfer, 4th ed. (Taylor & Francis, 2002).

Smith, W. L.

Sova, R. M.

R. M. Sova, M. J. Linevsky, M. E. Thomas, and F. F. Mark, “High temperature infrared properties of sapphire, AlON, fused silica, yttria, and spinel,” Infrared Phys. Technol. 39, 251–261 (1998).
[CrossRef]

Sromovsky, L. A.

Staaf, Ö.

Steele, A. G.

Tank, V.

Tello, M. J.

R. B. Pérez-Sáez, L. del Campo, and M. J. Tello, “Analysis of the accuracy of the methods for the direct emissivity measurements,” Int. J. Thermophys. 29, 1141–1155 (2008).
[CrossRef]

L. del Campo, R. B. Pérez-Sáez, X. Esquisabel, I. Fernández, and M. J. Tello, “A new experimental device for infrared spectral directional emissivity measurements in a controlled environment,” Rev. Sci. Instrum. 77, 113111 (2006).
[CrossRef]

Thomas, M. E.

R. M. Sova, M. J. Linevsky, M. E. Thomas, and F. F. Mark, “High temperature infrared properties of sapphire, AlON, fused silica, yttria, and spinel,” Infrared Phys. Technol. 39, 251–261 (1998).
[CrossRef]

Wang, X.

J. Dai, X. Wang, and G. Yuan, “Fourier transform spectrometer for spectral emissivity measurements in the temperature range between 60 and 1500°C,” J. Phys. Conf. Ser. 13, 63–66 (2005).
[CrossRef]

Weddigen, C.

Yuan, G.

J. Dai, X. Wang, and G. Yuan, “Fourier transform spectrometer for spectral emissivity measurements in the temperature range between 60 and 1500°C,” J. Phys. Conf. Ser. 13, 63–66 (2005).
[CrossRef]

Appl. Opt. (9)

H. E. Revercomb, H. Buijs, H. B. Howell, D. D. LaPorte, W. L. Smith, and L. A. Sromovsky, “Radiometric calibration of IR Fourier transform spectrometers: solution to a problem with high-resolution interferometer sounder,” Appl. Opt. 27, 3210–3218 (1988).
[CrossRef] [PubMed]

E. Lindermeir, P. Haschberger, V. Tank, and H. Dietl, “Calibration of Fourier transform spectrometer using three blackbody sources,” Appl. Opt. 31, 4527–4533 (1992).
[CrossRef] [PubMed]

J. Schreiber, T. Blumenstock, and F. Hase, “Application of a radiometric calibration method to lunar Fourier transform IR spectra by using a liquid-nitrogen-cooled high-emissivity blackbody,” Appl. Opt. 36, 8168–8172 (1997).
[CrossRef]

P. C. Dufour, N. L. Rowell, and A. G. Steele, “Fourier-transform radiation thermometry: measurements and uncertainties,” Appl. Opt. 37, 5923–5931 (1998).
[CrossRef]

A. Shimota, H. Kobayashi, and S. Kadokura, “Radiometric calibration for the airbone interferometric monitor for green house gases simulator,” Appl. Opt. 38, 571–576 (1999).
[CrossRef]

S. Clausen, A. Morgenstjerne, and O. Rathmann, “Measurement of surface temperature and emissivity by a multitemperature method for Fourier-transform infrared spectrometers,” Appl. Opt. 35, 5683–5691 (1996).
[CrossRef] [PubMed]

Ö. Staaf, C. G. Ribbing, and S. K. Anderson, “Temperature dependence of the band emittance for nongray bodies,” Appl. Opt. 35, 6120–6125 (1996).
[CrossRef] [PubMed]

J. Schreiber, T. Blumenstock, and H. Fischer, “Effects of the self-emission of an IR Fourier-transform spectrometer on measured absorption spectra,” Appl. Opt. 35, 6203–6209 (1996).
[CrossRef] [PubMed]

C. Weddigen, C. E. Blom, and M. Höpfner, “Phase corrections for the emission sounder MIPAS-FT,” Appl. Opt. 32, 4586–4589(1993).
[CrossRef] [PubMed]

Appl. Spectrosc. (2)

High Temp.—High Pressures (1)

E. T. Kwor and S. Matteï, “Emissivity measurements for Nextel Velvet Coating 811-21 between 36°C and 82°C,” High Temp.—High Pressures 33, 551–556 (2001).
[CrossRef]

Infrared Phys. Technol. (1)

R. M. Sova, M. J. Linevsky, M. E. Thomas, and F. F. Mark, “High temperature infrared properties of sapphire, AlON, fused silica, yttria, and spinel,” Infrared Phys. Technol. 39, 251–261 (1998).
[CrossRef]

Int. J. Thermophys. (1)

R. B. Pérez-Sáez, L. del Campo, and M. J. Tello, “Analysis of the accuracy of the methods for the direct emissivity measurements,” Int. J. Thermophys. 29, 1141–1155 (2008).
[CrossRef]

J. Phys. Conf. Ser. (1)

J. Dai, X. Wang, and G. Yuan, “Fourier transform spectrometer for spectral emissivity measurements in the temperature range between 60 and 1500°C,” J. Phys. Conf. Ser. 13, 63–66 (2005).
[CrossRef]

Meas. Sci. Technol. (1)

J. Ishii and A. Ono, “Uncertainty estimation for emissivity measurements near room temperature with a Fourier transform spectrometer,” Meas. Sci. Technol. 12, 2103–2112(2001).
[CrossRef]

Rev. Sci. Instrum. (2)

L. del Campo, R. B. Pérez-Sáez, X. Esquisabel, I. Fernández, and M. J. Tello, “A new experimental device for infrared spectral directional emissivity measurements in a controlled environment,” Rev. Sci. Instrum. 77, 113111 (2006).
[CrossRef]

O. Rozenbaum, D. de Sousa Meneses, Y. Auger, S. Chermanne, and P. Echegut, “A spectroscopic method to measure the spectral emissivity of semi-transparent materials up to high temperature,” Rev. Sci. Instrum. 70, 4020–4025 (1999).
[CrossRef]

Other (2)

S. Clausen, “Measurement of spectral emissivity by a FT-IR spectrometer,” in Proceedings of the Symposium on Temperature and Thermal Measurements in Industry and Science, TEMPMEKO 2001, B.Fellmuth, J.Seidel, and G.Scholz, eds. (VDE VERLAG GmbH, 2001), pp. 259–264.

R. Siegel and J. Howel, Thermal Radiation Heat Transfer, 4th ed. (Taylor & Francis, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Blackbody signal measured at 554 ° C and the corresponding error as a function of the wavelength.

Fig. 2
Fig. 2

Acquired blackbody signal as a function of the blackbody radiance at three wavelengths (3, 10, and 18 μm ).

Fig. 3
Fig. 3

(a) Response function and (b) offset radiation spectra determined by the regression method.

Fig. 4
Fig. 4

Spectral average of the relative difference of (a) the response function and (b) the offset radiation between the two-temperature and the regression methods as a function of the temperature gap for the two reference temperatures.

Fig. 5
Fig. 5

Relative uncertainty of (a) the response function and (b) the offset radiation for the three calibration methods as a function of the wavelength.

Fig. 6
Fig. 6

Planck fitting of the calibration parameters obtained by (a) the regression method, (b) the two-temperature method, and (c) the two-temperature modified method.

Fig. 7
Fig. 7

Response function and offset radiation spectra obtained with several time separations among calibrations.

Fig. 8
Fig. 8

Response function and offset radiation spectra obtained with different environmental conditions.

Fig. 9
Fig. 9

Proportional factors between the uncertainty of the emissivity and the uncertainty of the calibration parameters as a function of the wavelength and the sample temperature.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

L s * = ε L s + ( 1 ε ) L sur ,
ε = L s * L sur L s L sur ,
S s = R L s * + S 0 .
S s = R ( L s * + L 0 ) ,
S bb = R L + S 0 ,
R = S bb 1 S bb 2 L 1 L 2 ,
S 0 = S bb 1 R L 1 = S bb 2 R L 2 .
R = S bb S gr L bb ε gr · L gr ,
S 0 ( λ ) = S bb R · L bb = S gr R ε gr L gr .
L * = S 0 / R .
ε = S s S 0 R L sur R ( L s L sur ) .
Δ ε R ε = ( 1 + L sur ε ( L s L sur ) ) Δ R R = F R Δ R R ,
Δ ε S 0 ε = ( L eq ε ( L s L sur ) ) Δ S 0 S 0 = F S 0 Δ S 0 S 0 ,

Metrics