Abstract

Through employing an external mirror that is tilted by an angle β=λ/2d in the external cavity, whose round-trip cavity length is one-half a Talbot distance, a laser diode array (LDA) is made to oscillate with only an in-phase supermode. This makes the far-field distribution of the LDA have a central-single-lobe far-field pattern, and it also makes the output from the LDA be nearly diffraction limited. However, if the phase-locked output energy from the LDA is extremely high, then the thermal radiation from the output deforms the external mirror stochastically. This makes the tilt angle (β) mismatched to the in-phase supermode, which results in undesirable supermode oscillations; so the far-field distribution of the LDA is no longer a central-single-lobe far-field pattern. Naturally, the intensity of the output from the LDA is attenuated, and the divergence loss is worsened. Therefore, suitable measures must be taken to guarantee the quality of the phase-locked output from the LDA. Accordingly, after analysis of the deformation of the external mirror, a novel one-spot and multispot processing (OMP) technology is developed. With special sensors, deformation of the external mirror is ascertained as a function of time. Then the deformation is compensated by appropriate equipment, which counteracts any bad influence on the angle β. The experiment significantly demonstrates that only the in-phase supermode oscillated in an extremely high-energy LDA after the implementation of OMP, allowing such lasers to satisfy the requirements of high-quality laser applications.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Bayramian, “Mercury Project overview,” High Energy Class Diode Pumped Solid State Laser Workshop, University of California Radiation Laboratory-PRES (2006), paper 221421.
  2. Y. Zheng and K. Hirofumi, “Effective bandwidth reduction for a high-power laser-diode array by an external-cavity technique,” Opt. Lett. 30, 2424–2426 (2005).
    [CrossRef] [PubMed]
  3. B. Liu, Y. Liu, and Y. Braiman, “Linewidth reduction of a broad-area laser diode array in a compound external cavity,” Appl. Opt. 48, 365–370 (2009).
    [CrossRef] [PubMed]
  4. F. Wang, A. Hermerschmidt, and H. J. Eichler, “Narrow-bandwidth high-power output of a laser diode array with a simple external cavity,” Opt. Commun. 218, 135–139 (2003).
    [CrossRef]
  5. I. Hassiaoui, N. Michel, G. Bourdet, R. McBride, M. Lecomte, O. Parillaud, M. Calligaro, M. Krakowski, and J.-P. Huignard, “Very compact external cavity diffraction-coupled tapered laser diodes,” Appl. Opt. 47, 746–750 (2008).
    [CrossRef] [PubMed]
  6. M. Rattunde, J. Schmitz, G. Kaufel, M. Kelemen, J. Weber, and J. Wagner, “GaSb-based 2.Xμm quantum-well diode lasers with low beam divergence and high output power,” Appl. Phys. Lett. 88, 081115 (2006).
    [CrossRef]
  7. V. V. Apollonov, S. I. Derzhavin, V. I. Kislov, A. A. Kazakov, Y. P. Koval, V. V. Kuz’minov, D. A. Mashkovskii, and A. M. Prokhorov,, “Spatial phase locking of linear arrays of 4 and 12 wide-aperture semiconductor laser diodes in an external cavity,” Quantum Electron. 28, 257–263 (1998).
    [CrossRef]
  8. X. Gao, Y. Zheng, H. Kan, and K. Schinoda, “Effective suppression of beam divergence for a high-power laser diode bar by an external-cavity technique,” Opt. Lett. 29, 361–363 (2004).
    [CrossRef] [PubMed]
  9. M. V. Romalis, “Narrowing of high power diode laser arrays using reflection feedback from an etalon,” Appl. Phys. Lett. 77, 1080–1081 (2000).
    [CrossRef]
  10. I. Hassiaoui, N. Michel, M. Lecomte, O. Parillaud, M. Calligaro, and M. Krakowski,, “In-phase coherent coupling of tapered lasers in an external Talbot cavity,” Proc. SPIE 6485, 64850E (2007).
    [CrossRef]
  11. V. V. Apollonov, S. I. Derzhavin, V. A. Filonenko, V. V. Kuz’minov, D. A. Mashkovsky, and A. M. Prokhorov, “High power laser diode array phase-locking,” Proc. SPIE 3889, 134–146(2000).
    [CrossRef]
  12. J. R. Leger, “Lateral mode control of an AIGaAs laser array in a Talbot cavity,” Appl. Phys. Lett. 55, 334–336 (1989).
    [CrossRef]
  13. A. F. Glova, N. N. Elkin, A. Y. Lysikov, and A. P. Napartovich, “External Talbot cavity with in-phase mode selection,” Quantum Electron. 26, 614–616 (1996).
    [CrossRef]
  14. V. V. Apollonov, S. I. Derzhavin, V. I. Kislov, V. V. Kuzminov, D. A. Mashkovsky, and A. M. Prokhorov, “Phase-locking of the 2D structures,” Opt. Express 4, 19–26 (1999).
    [CrossRef] [PubMed]
  15. E. Kapon, J. Katz, and A. Yariv, “Supermode analysis of phase-locked arrays of semiconductor lasers,” Opt. Lett. 9, 125–127(1984).
    [CrossRef] [PubMed]
  16. E. Kapon, Z. Rav-Noy, S. Margalit, and A. Yariv, “Phase-locked arrays of buried-ridge InP/InGaAsP diode lasers,” J. Lightwave Technol. 4,919–925 (1986).
    [CrossRef]
  17. Y. Takeuti, S. Zaima, and N. Noda, “Thermal stresses problems in industry 1: on thermoelastic distortion in machine metals,” J. Thermal Stresses 1, 199–210 (1978).
    [CrossRef]
  18. A. Abtahi, P. F. Braunlich, P. Kelly, and J. Gasiot, “Laser stimulated thermoluminescence,” J. Appl. Phys. 58, 1626–1639(1985).
    [CrossRef]
  19. W. A. McGahan and K. D. Cole, “Solutions of the heat conduction equation in multilayers for photothermal deflection experiments,” J. Appl. Phys. 72, 1362–1373 (1992).
    [CrossRef]
  20. P. Loza, D. Kouznetsov, and R. Ortega, “Temperature distribution in a uniform medium heated by linear absorption of a Gaussian light beam,” Appl. Opt. 33, 3831–3836 (1994).
    [CrossRef] [PubMed]
  21. M. K. Loze and C. D. Wright, “Temperature distributions in semi-infinite and finite-thickness media as a result of absorption of laser light,” Appl. Opt. 36, 494–507 (1997).
    [CrossRef] [PubMed]
  22. M. K. Loze and C. D. Wright, “Temperature distributions in laser-heated semi-infinite and finite-thickness media with convective surface losses,” Appl. Opt. 37, 6822–6832 (1998).
    [CrossRef]
  23. Q. W. Nowacki, Thermoelasticity (PWN-Polish Scientific, 1986).
  24. J. L. Nowinsik, Theory of Thermoelasticity with Applications (Sijthoff & Noordhoff, 1978).
    [CrossRef]

2009

2008

2007

I. Hassiaoui, N. Michel, M. Lecomte, O. Parillaud, M. Calligaro, and M. Krakowski,, “In-phase coherent coupling of tapered lasers in an external Talbot cavity,” Proc. SPIE 6485, 64850E (2007).
[CrossRef]

2006

M. Rattunde, J. Schmitz, G. Kaufel, M. Kelemen, J. Weber, and J. Wagner, “GaSb-based 2.Xμm quantum-well diode lasers with low beam divergence and high output power,” Appl. Phys. Lett. 88, 081115 (2006).
[CrossRef]

A. Bayramian, “Mercury Project overview,” High Energy Class Diode Pumped Solid State Laser Workshop, University of California Radiation Laboratory-PRES (2006), paper 221421.

2005

2004

2003

F. Wang, A. Hermerschmidt, and H. J. Eichler, “Narrow-bandwidth high-power output of a laser diode array with a simple external cavity,” Opt. Commun. 218, 135–139 (2003).
[CrossRef]

2000

M. V. Romalis, “Narrowing of high power diode laser arrays using reflection feedback from an etalon,” Appl. Phys. Lett. 77, 1080–1081 (2000).
[CrossRef]

V. V. Apollonov, S. I. Derzhavin, V. A. Filonenko, V. V. Kuz’minov, D. A. Mashkovsky, and A. M. Prokhorov, “High power laser diode array phase-locking,” Proc. SPIE 3889, 134–146(2000).
[CrossRef]

1999

1998

V. V. Apollonov, S. I. Derzhavin, V. I. Kislov, A. A. Kazakov, Y. P. Koval, V. V. Kuz’minov, D. A. Mashkovskii, and A. M. Prokhorov,, “Spatial phase locking of linear arrays of 4 and 12 wide-aperture semiconductor laser diodes in an external cavity,” Quantum Electron. 28, 257–263 (1998).
[CrossRef]

M. K. Loze and C. D. Wright, “Temperature distributions in laser-heated semi-infinite and finite-thickness media with convective surface losses,” Appl. Opt. 37, 6822–6832 (1998).
[CrossRef]

1997

1996

A. F. Glova, N. N. Elkin, A. Y. Lysikov, and A. P. Napartovich, “External Talbot cavity with in-phase mode selection,” Quantum Electron. 26, 614–616 (1996).
[CrossRef]

1994

1992

W. A. McGahan and K. D. Cole, “Solutions of the heat conduction equation in multilayers for photothermal deflection experiments,” J. Appl. Phys. 72, 1362–1373 (1992).
[CrossRef]

1989

J. R. Leger, “Lateral mode control of an AIGaAs laser array in a Talbot cavity,” Appl. Phys. Lett. 55, 334–336 (1989).
[CrossRef]

1986

E. Kapon, Z. Rav-Noy, S. Margalit, and A. Yariv, “Phase-locked arrays of buried-ridge InP/InGaAsP diode lasers,” J. Lightwave Technol. 4,919–925 (1986).
[CrossRef]

Q. W. Nowacki, Thermoelasticity (PWN-Polish Scientific, 1986).

1985

A. Abtahi, P. F. Braunlich, P. Kelly, and J. Gasiot, “Laser stimulated thermoluminescence,” J. Appl. Phys. 58, 1626–1639(1985).
[CrossRef]

1984

1978

Y. Takeuti, S. Zaima, and N. Noda, “Thermal stresses problems in industry 1: on thermoelastic distortion in machine metals,” J. Thermal Stresses 1, 199–210 (1978).
[CrossRef]

J. L. Nowinsik, Theory of Thermoelasticity with Applications (Sijthoff & Noordhoff, 1978).
[CrossRef]

Abtahi, A.

A. Abtahi, P. F. Braunlich, P. Kelly, and J. Gasiot, “Laser stimulated thermoluminescence,” J. Appl. Phys. 58, 1626–1639(1985).
[CrossRef]

Apollonov, V. V.

V. V. Apollonov, S. I. Derzhavin, V. A. Filonenko, V. V. Kuz’minov, D. A. Mashkovsky, and A. M. Prokhorov, “High power laser diode array phase-locking,” Proc. SPIE 3889, 134–146(2000).
[CrossRef]

V. V. Apollonov, S. I. Derzhavin, V. I. Kislov, V. V. Kuzminov, D. A. Mashkovsky, and A. M. Prokhorov, “Phase-locking of the 2D structures,” Opt. Express 4, 19–26 (1999).
[CrossRef] [PubMed]

V. V. Apollonov, S. I. Derzhavin, V. I. Kislov, A. A. Kazakov, Y. P. Koval, V. V. Kuz’minov, D. A. Mashkovskii, and A. M. Prokhorov,, “Spatial phase locking of linear arrays of 4 and 12 wide-aperture semiconductor laser diodes in an external cavity,” Quantum Electron. 28, 257–263 (1998).
[CrossRef]

Bayramian, A.

A. Bayramian, “Mercury Project overview,” High Energy Class Diode Pumped Solid State Laser Workshop, University of California Radiation Laboratory-PRES (2006), paper 221421.

Bourdet, G.

Braiman, Y.

Braunlich, P. F.

A. Abtahi, P. F. Braunlich, P. Kelly, and J. Gasiot, “Laser stimulated thermoluminescence,” J. Appl. Phys. 58, 1626–1639(1985).
[CrossRef]

Calligaro, M.

I. Hassiaoui, N. Michel, G. Bourdet, R. McBride, M. Lecomte, O. Parillaud, M. Calligaro, M. Krakowski, and J.-P. Huignard, “Very compact external cavity diffraction-coupled tapered laser diodes,” Appl. Opt. 47, 746–750 (2008).
[CrossRef] [PubMed]

I. Hassiaoui, N. Michel, M. Lecomte, O. Parillaud, M. Calligaro, and M. Krakowski,, “In-phase coherent coupling of tapered lasers in an external Talbot cavity,” Proc. SPIE 6485, 64850E (2007).
[CrossRef]

Cole, K. D.

W. A. McGahan and K. D. Cole, “Solutions of the heat conduction equation in multilayers for photothermal deflection experiments,” J. Appl. Phys. 72, 1362–1373 (1992).
[CrossRef]

Derzhavin, S. I.

V. V. Apollonov, S. I. Derzhavin, V. A. Filonenko, V. V. Kuz’minov, D. A. Mashkovsky, and A. M. Prokhorov, “High power laser diode array phase-locking,” Proc. SPIE 3889, 134–146(2000).
[CrossRef]

V. V. Apollonov, S. I. Derzhavin, V. I. Kislov, V. V. Kuzminov, D. A. Mashkovsky, and A. M. Prokhorov, “Phase-locking of the 2D structures,” Opt. Express 4, 19–26 (1999).
[CrossRef] [PubMed]

V. V. Apollonov, S. I. Derzhavin, V. I. Kislov, A. A. Kazakov, Y. P. Koval, V. V. Kuz’minov, D. A. Mashkovskii, and A. M. Prokhorov,, “Spatial phase locking of linear arrays of 4 and 12 wide-aperture semiconductor laser diodes in an external cavity,” Quantum Electron. 28, 257–263 (1998).
[CrossRef]

Eichler, H. J.

F. Wang, A. Hermerschmidt, and H. J. Eichler, “Narrow-bandwidth high-power output of a laser diode array with a simple external cavity,” Opt. Commun. 218, 135–139 (2003).
[CrossRef]

Elkin, N. N.

A. F. Glova, N. N. Elkin, A. Y. Lysikov, and A. P. Napartovich, “External Talbot cavity with in-phase mode selection,” Quantum Electron. 26, 614–616 (1996).
[CrossRef]

Filonenko, V. A.

V. V. Apollonov, S. I. Derzhavin, V. A. Filonenko, V. V. Kuz’minov, D. A. Mashkovsky, and A. M. Prokhorov, “High power laser diode array phase-locking,” Proc. SPIE 3889, 134–146(2000).
[CrossRef]

Gao, X.

Gasiot, J.

A. Abtahi, P. F. Braunlich, P. Kelly, and J. Gasiot, “Laser stimulated thermoluminescence,” J. Appl. Phys. 58, 1626–1639(1985).
[CrossRef]

Glova, A. F.

A. F. Glova, N. N. Elkin, A. Y. Lysikov, and A. P. Napartovich, “External Talbot cavity with in-phase mode selection,” Quantum Electron. 26, 614–616 (1996).
[CrossRef]

Hassiaoui, I.

I. Hassiaoui, N. Michel, G. Bourdet, R. McBride, M. Lecomte, O. Parillaud, M. Calligaro, M. Krakowski, and J.-P. Huignard, “Very compact external cavity diffraction-coupled tapered laser diodes,” Appl. Opt. 47, 746–750 (2008).
[CrossRef] [PubMed]

I. Hassiaoui, N. Michel, M. Lecomte, O. Parillaud, M. Calligaro, and M. Krakowski,, “In-phase coherent coupling of tapered lasers in an external Talbot cavity,” Proc. SPIE 6485, 64850E (2007).
[CrossRef]

Hermerschmidt, A.

F. Wang, A. Hermerschmidt, and H. J. Eichler, “Narrow-bandwidth high-power output of a laser diode array with a simple external cavity,” Opt. Commun. 218, 135–139 (2003).
[CrossRef]

Hirofumi, K.

Huignard, J.-P.

Kan, H.

Kapon, E.

E. Kapon, Z. Rav-Noy, S. Margalit, and A. Yariv, “Phase-locked arrays of buried-ridge InP/InGaAsP diode lasers,” J. Lightwave Technol. 4,919–925 (1986).
[CrossRef]

E. Kapon, J. Katz, and A. Yariv, “Supermode analysis of phase-locked arrays of semiconductor lasers,” Opt. Lett. 9, 125–127(1984).
[CrossRef] [PubMed]

Katz, J.

Kaufel, G.

M. Rattunde, J. Schmitz, G. Kaufel, M. Kelemen, J. Weber, and J. Wagner, “GaSb-based 2.Xμm quantum-well diode lasers with low beam divergence and high output power,” Appl. Phys. Lett. 88, 081115 (2006).
[CrossRef]

Kazakov, A. A.

V. V. Apollonov, S. I. Derzhavin, V. I. Kislov, A. A. Kazakov, Y. P. Koval, V. V. Kuz’minov, D. A. Mashkovskii, and A. M. Prokhorov,, “Spatial phase locking of linear arrays of 4 and 12 wide-aperture semiconductor laser diodes in an external cavity,” Quantum Electron. 28, 257–263 (1998).
[CrossRef]

Kelemen, M.

M. Rattunde, J. Schmitz, G. Kaufel, M. Kelemen, J. Weber, and J. Wagner, “GaSb-based 2.Xμm quantum-well diode lasers with low beam divergence and high output power,” Appl. Phys. Lett. 88, 081115 (2006).
[CrossRef]

Kelly, P.

A. Abtahi, P. F. Braunlich, P. Kelly, and J. Gasiot, “Laser stimulated thermoluminescence,” J. Appl. Phys. 58, 1626–1639(1985).
[CrossRef]

Kislov, V. I.

V. V. Apollonov, S. I. Derzhavin, V. I. Kislov, V. V. Kuzminov, D. A. Mashkovsky, and A. M. Prokhorov, “Phase-locking of the 2D structures,” Opt. Express 4, 19–26 (1999).
[CrossRef] [PubMed]

V. V. Apollonov, S. I. Derzhavin, V. I. Kislov, A. A. Kazakov, Y. P. Koval, V. V. Kuz’minov, D. A. Mashkovskii, and A. M. Prokhorov,, “Spatial phase locking of linear arrays of 4 and 12 wide-aperture semiconductor laser diodes in an external cavity,” Quantum Electron. 28, 257–263 (1998).
[CrossRef]

Kouznetsov, D.

Koval, Y. P.

V. V. Apollonov, S. I. Derzhavin, V. I. Kislov, A. A. Kazakov, Y. P. Koval, V. V. Kuz’minov, D. A. Mashkovskii, and A. M. Prokhorov,, “Spatial phase locking of linear arrays of 4 and 12 wide-aperture semiconductor laser diodes in an external cavity,” Quantum Electron. 28, 257–263 (1998).
[CrossRef]

Krakowski, M.

I. Hassiaoui, N. Michel, G. Bourdet, R. McBride, M. Lecomte, O. Parillaud, M. Calligaro, M. Krakowski, and J.-P. Huignard, “Very compact external cavity diffraction-coupled tapered laser diodes,” Appl. Opt. 47, 746–750 (2008).
[CrossRef] [PubMed]

I. Hassiaoui, N. Michel, M. Lecomte, O. Parillaud, M. Calligaro, and M. Krakowski,, “In-phase coherent coupling of tapered lasers in an external Talbot cavity,” Proc. SPIE 6485, 64850E (2007).
[CrossRef]

Kuz’minov, V. V.

V. V. Apollonov, S. I. Derzhavin, V. A. Filonenko, V. V. Kuz’minov, D. A. Mashkovsky, and A. M. Prokhorov, “High power laser diode array phase-locking,” Proc. SPIE 3889, 134–146(2000).
[CrossRef]

V. V. Apollonov, S. I. Derzhavin, V. I. Kislov, A. A. Kazakov, Y. P. Koval, V. V. Kuz’minov, D. A. Mashkovskii, and A. M. Prokhorov,, “Spatial phase locking of linear arrays of 4 and 12 wide-aperture semiconductor laser diodes in an external cavity,” Quantum Electron. 28, 257–263 (1998).
[CrossRef]

Kuzminov, V. V.

Lecomte, M.

I. Hassiaoui, N. Michel, G. Bourdet, R. McBride, M. Lecomte, O. Parillaud, M. Calligaro, M. Krakowski, and J.-P. Huignard, “Very compact external cavity diffraction-coupled tapered laser diodes,” Appl. Opt. 47, 746–750 (2008).
[CrossRef] [PubMed]

I. Hassiaoui, N. Michel, M. Lecomte, O. Parillaud, M. Calligaro, and M. Krakowski,, “In-phase coherent coupling of tapered lasers in an external Talbot cavity,” Proc. SPIE 6485, 64850E (2007).
[CrossRef]

Leger, J. R.

J. R. Leger, “Lateral mode control of an AIGaAs laser array in a Talbot cavity,” Appl. Phys. Lett. 55, 334–336 (1989).
[CrossRef]

Liu, B.

Liu, Y.

Loza, P.

Loze, M. K.

Lysikov, A. Y.

A. F. Glova, N. N. Elkin, A. Y. Lysikov, and A. P. Napartovich, “External Talbot cavity with in-phase mode selection,” Quantum Electron. 26, 614–616 (1996).
[CrossRef]

Margalit, S.

E. Kapon, Z. Rav-Noy, S. Margalit, and A. Yariv, “Phase-locked arrays of buried-ridge InP/InGaAsP diode lasers,” J. Lightwave Technol. 4,919–925 (1986).
[CrossRef]

Mashkovskii, D. A.

V. V. Apollonov, S. I. Derzhavin, V. I. Kislov, A. A. Kazakov, Y. P. Koval, V. V. Kuz’minov, D. A. Mashkovskii, and A. M. Prokhorov,, “Spatial phase locking of linear arrays of 4 and 12 wide-aperture semiconductor laser diodes in an external cavity,” Quantum Electron. 28, 257–263 (1998).
[CrossRef]

Mashkovsky, D. A.

V. V. Apollonov, S. I. Derzhavin, V. A. Filonenko, V. V. Kuz’minov, D. A. Mashkovsky, and A. M. Prokhorov, “High power laser diode array phase-locking,” Proc. SPIE 3889, 134–146(2000).
[CrossRef]

V. V. Apollonov, S. I. Derzhavin, V. I. Kislov, V. V. Kuzminov, D. A. Mashkovsky, and A. M. Prokhorov, “Phase-locking of the 2D structures,” Opt. Express 4, 19–26 (1999).
[CrossRef] [PubMed]

McBride, R.

McGahan, W. A.

W. A. McGahan and K. D. Cole, “Solutions of the heat conduction equation in multilayers for photothermal deflection experiments,” J. Appl. Phys. 72, 1362–1373 (1992).
[CrossRef]

Michel, N.

I. Hassiaoui, N. Michel, G. Bourdet, R. McBride, M. Lecomte, O. Parillaud, M. Calligaro, M. Krakowski, and J.-P. Huignard, “Very compact external cavity diffraction-coupled tapered laser diodes,” Appl. Opt. 47, 746–750 (2008).
[CrossRef] [PubMed]

I. Hassiaoui, N. Michel, M. Lecomte, O. Parillaud, M. Calligaro, and M. Krakowski,, “In-phase coherent coupling of tapered lasers in an external Talbot cavity,” Proc. SPIE 6485, 64850E (2007).
[CrossRef]

Napartovich, A. P.

A. F. Glova, N. N. Elkin, A. Y. Lysikov, and A. P. Napartovich, “External Talbot cavity with in-phase mode selection,” Quantum Electron. 26, 614–616 (1996).
[CrossRef]

Noda, N.

Y. Takeuti, S. Zaima, and N. Noda, “Thermal stresses problems in industry 1: on thermoelastic distortion in machine metals,” J. Thermal Stresses 1, 199–210 (1978).
[CrossRef]

Nowacki, Q. W.

Q. W. Nowacki, Thermoelasticity (PWN-Polish Scientific, 1986).

Nowinsik, J. L.

J. L. Nowinsik, Theory of Thermoelasticity with Applications (Sijthoff & Noordhoff, 1978).
[CrossRef]

Ortega, R.

Parillaud, O.

I. Hassiaoui, N. Michel, G. Bourdet, R. McBride, M. Lecomte, O. Parillaud, M. Calligaro, M. Krakowski, and J.-P. Huignard, “Very compact external cavity diffraction-coupled tapered laser diodes,” Appl. Opt. 47, 746–750 (2008).
[CrossRef] [PubMed]

I. Hassiaoui, N. Michel, M. Lecomte, O. Parillaud, M. Calligaro, and M. Krakowski,, “In-phase coherent coupling of tapered lasers in an external Talbot cavity,” Proc. SPIE 6485, 64850E (2007).
[CrossRef]

Prokhorov, A. M.

V. V. Apollonov, S. I. Derzhavin, V. A. Filonenko, V. V. Kuz’minov, D. A. Mashkovsky, and A. M. Prokhorov, “High power laser diode array phase-locking,” Proc. SPIE 3889, 134–146(2000).
[CrossRef]

V. V. Apollonov, S. I. Derzhavin, V. I. Kislov, V. V. Kuzminov, D. A. Mashkovsky, and A. M. Prokhorov, “Phase-locking of the 2D structures,” Opt. Express 4, 19–26 (1999).
[CrossRef] [PubMed]

V. V. Apollonov, S. I. Derzhavin, V. I. Kislov, A. A. Kazakov, Y. P. Koval, V. V. Kuz’minov, D. A. Mashkovskii, and A. M. Prokhorov,, “Spatial phase locking of linear arrays of 4 and 12 wide-aperture semiconductor laser diodes in an external cavity,” Quantum Electron. 28, 257–263 (1998).
[CrossRef]

Rattunde, M.

M. Rattunde, J. Schmitz, G. Kaufel, M. Kelemen, J. Weber, and J. Wagner, “GaSb-based 2.Xμm quantum-well diode lasers with low beam divergence and high output power,” Appl. Phys. Lett. 88, 081115 (2006).
[CrossRef]

Rav-Noy, Z.

E. Kapon, Z. Rav-Noy, S. Margalit, and A. Yariv, “Phase-locked arrays of buried-ridge InP/InGaAsP diode lasers,” J. Lightwave Technol. 4,919–925 (1986).
[CrossRef]

Romalis, M. V.

M. V. Romalis, “Narrowing of high power diode laser arrays using reflection feedback from an etalon,” Appl. Phys. Lett. 77, 1080–1081 (2000).
[CrossRef]

Schinoda, K.

Schmitz, J.

M. Rattunde, J. Schmitz, G. Kaufel, M. Kelemen, J. Weber, and J. Wagner, “GaSb-based 2.Xμm quantum-well diode lasers with low beam divergence and high output power,” Appl. Phys. Lett. 88, 081115 (2006).
[CrossRef]

Takeuti, Y.

Y. Takeuti, S. Zaima, and N. Noda, “Thermal stresses problems in industry 1: on thermoelastic distortion in machine metals,” J. Thermal Stresses 1, 199–210 (1978).
[CrossRef]

Wagner, J.

M. Rattunde, J. Schmitz, G. Kaufel, M. Kelemen, J. Weber, and J. Wagner, “GaSb-based 2.Xμm quantum-well diode lasers with low beam divergence and high output power,” Appl. Phys. Lett. 88, 081115 (2006).
[CrossRef]

Wang, F.

F. Wang, A. Hermerschmidt, and H. J. Eichler, “Narrow-bandwidth high-power output of a laser diode array with a simple external cavity,” Opt. Commun. 218, 135–139 (2003).
[CrossRef]

Weber, J.

M. Rattunde, J. Schmitz, G. Kaufel, M. Kelemen, J. Weber, and J. Wagner, “GaSb-based 2.Xμm quantum-well diode lasers with low beam divergence and high output power,” Appl. Phys. Lett. 88, 081115 (2006).
[CrossRef]

Wright, C. D.

Yariv, A.

E. Kapon, Z. Rav-Noy, S. Margalit, and A. Yariv, “Phase-locked arrays of buried-ridge InP/InGaAsP diode lasers,” J. Lightwave Technol. 4,919–925 (1986).
[CrossRef]

E. Kapon, J. Katz, and A. Yariv, “Supermode analysis of phase-locked arrays of semiconductor lasers,” Opt. Lett. 9, 125–127(1984).
[CrossRef] [PubMed]

Zaima, S.

Y. Takeuti, S. Zaima, and N. Noda, “Thermal stresses problems in industry 1: on thermoelastic distortion in machine metals,” J. Thermal Stresses 1, 199–210 (1978).
[CrossRef]

Zheng, Y.

Appl. Opt.

Appl. Phys. Lett.

M. Rattunde, J. Schmitz, G. Kaufel, M. Kelemen, J. Weber, and J. Wagner, “GaSb-based 2.Xμm quantum-well diode lasers with low beam divergence and high output power,” Appl. Phys. Lett. 88, 081115 (2006).
[CrossRef]

M. V. Romalis, “Narrowing of high power diode laser arrays using reflection feedback from an etalon,” Appl. Phys. Lett. 77, 1080–1081 (2000).
[CrossRef]

J. R. Leger, “Lateral mode control of an AIGaAs laser array in a Talbot cavity,” Appl. Phys. Lett. 55, 334–336 (1989).
[CrossRef]

J. Appl. Phys.

A. Abtahi, P. F. Braunlich, P. Kelly, and J. Gasiot, “Laser stimulated thermoluminescence,” J. Appl. Phys. 58, 1626–1639(1985).
[CrossRef]

W. A. McGahan and K. D. Cole, “Solutions of the heat conduction equation in multilayers for photothermal deflection experiments,” J. Appl. Phys. 72, 1362–1373 (1992).
[CrossRef]

J. Lightwave Technol.

E. Kapon, Z. Rav-Noy, S. Margalit, and A. Yariv, “Phase-locked arrays of buried-ridge InP/InGaAsP diode lasers,” J. Lightwave Technol. 4,919–925 (1986).
[CrossRef]

J. Thermal Stresses

Y. Takeuti, S. Zaima, and N. Noda, “Thermal stresses problems in industry 1: on thermoelastic distortion in machine metals,” J. Thermal Stresses 1, 199–210 (1978).
[CrossRef]

Opt. Commun.

F. Wang, A. Hermerschmidt, and H. J. Eichler, “Narrow-bandwidth high-power output of a laser diode array with a simple external cavity,” Opt. Commun. 218, 135–139 (2003).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. SPIE

I. Hassiaoui, N. Michel, M. Lecomte, O. Parillaud, M. Calligaro, and M. Krakowski,, “In-phase coherent coupling of tapered lasers in an external Talbot cavity,” Proc. SPIE 6485, 64850E (2007).
[CrossRef]

V. V. Apollonov, S. I. Derzhavin, V. A. Filonenko, V. V. Kuz’minov, D. A. Mashkovsky, and A. M. Prokhorov, “High power laser diode array phase-locking,” Proc. SPIE 3889, 134–146(2000).
[CrossRef]

Quantum Electron.

V. V. Apollonov, S. I. Derzhavin, V. I. Kislov, A. A. Kazakov, Y. P. Koval, V. V. Kuz’minov, D. A. Mashkovskii, and A. M. Prokhorov,, “Spatial phase locking of linear arrays of 4 and 12 wide-aperture semiconductor laser diodes in an external cavity,” Quantum Electron. 28, 257–263 (1998).
[CrossRef]

A. F. Glova, N. N. Elkin, A. Y. Lysikov, and A. P. Napartovich, “External Talbot cavity with in-phase mode selection,” Quantum Electron. 26, 614–616 (1996).
[CrossRef]

Other

A. Bayramian, “Mercury Project overview,” High Energy Class Diode Pumped Solid State Laser Workshop, University of California Radiation Laboratory-PRES (2006), paper 221421.

Q. W. Nowacki, Thermoelasticity (PWN-Polish Scientific, 1986).

J. L. Nowinsik, Theory of Thermoelasticity with Applications (Sijthoff & Noordhoff, 1978).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Map of an extremely high-energy LDA.

Fig. 2
Fig. 2

Conventional design of a LDA with external quarter- Talbot cavity.

Fig. 3
Fig. 3

Side view of an extremely high-energy LDA whose external mirror changes β = λ / 2 d .

Fig. 4
Fig. 4

Side view of a phase-locked extremely high-energy LDA for implementing OMP.

Fig. 5
Fig. 5

Schematic drawing of implementing OMP.

Fig. 6
Fig. 6

Sectional view of labeled emitters of an extremely high-energy LDA.

Fig. 7
Fig. 7

Diagrammatic representation of the effect of Δ on phase locking.

Fig. 8
Fig. 8

Typical optical field distribution before OMP is implemented. It was recorded after the extremely high-energy LDA operated for 30 s .

Fig. 9
Fig. 9

Typical optical field distribution of the extremely high- energy LDA after OMP is implemented.

Equations (29)

Equations on this page are rendered with MathJax. Learn more.

A e i = sin ( j π / M + 1 ) sin ( π / M + 1 ) A e 1 .
( A a / ω 0 ) exp ( ( x x a ) 2 / ω 0 2 ) ,
ε e ( x ) a = 1 M sin ( a e π / M + 1 ) exp [ ( x x a ) 2 ω 0 2 ] .
ε 1 ( x ) a = 1 M sin ( a π / M + 1 ) exp [ ( x x a ) 2 ω 0 2 ] .
P In = C In | ε 1 ( x ) | 2 .
P In | ε 1 ( x ) | 2 .
δ L = δ L F + δ L L + δ L T .
δ L F = α 0 L T ( x , y , z , t ) d Z .
T ( x , y , z , t ) = T 0 + ( α / Λ ) Φ .
Φ = u = a a v = b b w = 0 L τ = 0 t m = 1 n = 1 p = 1 exp [ σ ( β m 2 + γ n 2 + η p 2 ) ( t τ ) ] N ( β m ) N ( γ n ) N ( η p ) X ( β m , x ) × Y ( γ n , y ) Z ( η p , z ) X ( β m , u ) Y ( γ n , v ) × Z ( η p , w ) P In μ   exp ( μ z ) d u d v d w d τ ,
δ L L = γ γ γ ϒ L .
Δ δ L / D ( x , y , z ) .
Δ < λ ¯ ,
Δ > S λ / 2 d 2 ,
Δ > ( ( d S ) λ ) / 2 d 2 ,
x c = i , j M , N x i j I i j i , j M , N I i j , y c = i , j M , N y i j I i j i , j M , N I i j .
S x = ( x C 1 x C 0 ) / f , S y = ( y C 1 y C 0 ) / f .
δ z = ( d p S / 2 ) Δ .
δ Z = Δ Z = ρ ( ω 1 S x + ω 2 S y ) / 2.
V Z = δ Z / F tf ,
S x = [ S x 1 , S x 2 , S x 3 , , S x Ω ] ,
S y = [ S y 1 , S y 2 , S y 3 , , S y Ω ] .
S x ( MAX ) = max S x k = max [ S x 1 , S x 2 , S x 3 , , S x Ω ] ,
S y ( MAX ) = max S y k = max [ S x 1 , S x 2 , S x 3 , , S x Ω ] ,
S x ¯ = 1 Ω k = 1 Ω S x k ,
S y ¯ = 1 Ω k = 1 Ω S y k .
V C = G S = [ G x G y ] [ S ^ x S ^ y ] T = k = 1 Ω [ ( g x k G x E / Ω ) S ^ x k + ( g y k G y E / Ω ) S ^ y k ] .
S ^ x k = ω x S x k + ω ¯ x k S ¯ x + ω x k S x ( MAX ) ,
S ^ y k = ω y S y k + ω ¯ y k S ¯ y + ω y k S y ( MAX ) ,

Metrics