Abstract

We have experimentally observed the transitional and steady mode-locking (ML) evolution of dissipative solitons (DSs). It is found that pulses with different energies can coexist in the cavity during the evolution. When an additional pulse is generated from the laser, it initially exhibits weak intensity, and then gradually develops into the fully grown pulse with the increase of pump power. Meanwhile, the spectral profile of pulses is modulated at its top. The dynamic processes occur stage by stage, and can be regarded as the transitional states between the two nearby steady ML states. To our best knowledge, this is the first report on experimental observations for the detailed dynamic evolutions of pulse shaping in a DS laser.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. D. Jackson, “Passively Q-switched Tm3+-doped silica fiber lasers,” Appl. Opt. 46, 3311–3317 (2007).
    [CrossRef] [PubMed]
  2. L. Orsila, L. A. Gomes, N. Xiang, T. Jouhti, and O. G. Okhotnikov, “Mode-locked ytterbium fiber lasers,” Appl. Opt. 43, 1902–1906 (2004).
    [CrossRef] [PubMed]
  3. L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65, 277–294 (1997).
    [CrossRef]
  4. A. Komarov, H. Leblond, and F. Sanchez, “Multistablility and hysteresis phenomena in passive mode-locked lasers,” Phys. Rev. A 71, 053809 (2005).
    [CrossRef]
  5. R. Herda and O. G. Okhotnikov, “Mode-locked Yb-doped fiber laser with external compression to 89 fs in normal dispersion fiber,” Appl. Opt. 47, 1182–1186 (2008).
    [CrossRef] [PubMed]
  6. L. M. Zhao, C. Lu, H. Y. Tam, P. K. A. Wai, and D. Y. Tang, “Gain dispersion for dissipative soliton generation in all-normal-dispersion fiber lasers,” Appl. Opt. 48, 5131–5137 (2009).
    [CrossRef] [PubMed]
  7. F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photon. Rev. 2, 58–73 (2008).
    [CrossRef]
  8. W. H. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77, 023814 (2008).
    [CrossRef]
  9. A. Cabasse, B. Ortac, G. Martel, A. Hideur, and J. Limpert, “Dissipative solitons in a passively mode-locked Er-doped fiber with strong normal dispersion,” Opt. Express 16, 19322–19329 (2008).
    [CrossRef]
  10. G. Martel, C. Chédot, A. Hideur, and P. Grelu, “Numerical maps for fiber lasers mode kocked with nonlinear polarization evolution: comparison with semi-analytical models,” Fiber. Integr. Opt. 27, 320–340 (2008).
    [CrossRef]
  11. M. Olivier and M. Piché, “Origin of the bound states of pulses in the stretched-pulse fiber laser,” Opt. Express 17, 405–418(2009).
    [CrossRef] [PubMed]
  12. X. M. Liu, L. R. Wang, X. H. Li, H. Sun, A. Lin, K. Lu, Y. Wang, and W. Zhao, “Multistability evolution and hysteresis phenomena of dissipative solitons in a passively mode-locked fiber laser with large normal cavity dispersion,” Opt. Express 17, 8506–8512 (2009).
    [CrossRef] [PubMed]
  13. X. M. Liu, “Dissipative soliton evolution in ultra-large normal-cavity-dispersion fiber lasers,” Opt. Express 17, 9549–9557(2009).
    [CrossRef] [PubMed]
  14. X. M. Liu, “Numerical and experimental investigation of dissipative solitons in passively mode-locked fiber lasers with large net-normal-dispersion and high nonlinearity,” Opt. Express 17, 22401–22416 (2009).
    [CrossRef]
  15. M. A. Abdelalim, Y. Logvin, D. A. Khalil, and H. Anis, “Steady and oscillating multiple dissipative solitons in normal-dispersion mode-locked Yb-doped fiber laser,” Opt. Express 17, 13128–13139 (2009).
    [CrossRef] [PubMed]
  16. Y. Logvin and H. Anis, “Similariton pulse instability in mode-locked Yb-doped fiber laser in the vicinity of zero cavity dispersion,” Opt. Express 15, 13607–13612 (2007).
    [CrossRef] [PubMed]
  17. G. P. Agrawal, “Transverse modulation instability of copropagating optical beams in nonlinear Kerr media,” J. Opt. Soc. Am. B 7, 1072–1078 (1990).
    [CrossRef]
  18. J. M. Soto-Crespo, Ph. Grelu, N. Akhmediev, and N. Devine, “Soliton complexes in dissipative systems: vibrating, shaking, and mixed soliton pairs,” Phys. Rev. E 75, 016613 (2007).
    [CrossRef]

2009

2008

F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photon. Rev. 2, 58–73 (2008).
[CrossRef]

W. H. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77, 023814 (2008).
[CrossRef]

A. Cabasse, B. Ortac, G. Martel, A. Hideur, and J. Limpert, “Dissipative solitons in a passively mode-locked Er-doped fiber with strong normal dispersion,” Opt. Express 16, 19322–19329 (2008).
[CrossRef]

G. Martel, C. Chédot, A. Hideur, and P. Grelu, “Numerical maps for fiber lasers mode kocked with nonlinear polarization evolution: comparison with semi-analytical models,” Fiber. Integr. Opt. 27, 320–340 (2008).
[CrossRef]

R. Herda and O. G. Okhotnikov, “Mode-locked Yb-doped fiber laser with external compression to 89 fs in normal dispersion fiber,” Appl. Opt. 47, 1182–1186 (2008).
[CrossRef] [PubMed]

2007

2005

A. Komarov, H. Leblond, and F. Sanchez, “Multistablility and hysteresis phenomena in passive mode-locked lasers,” Phys. Rev. A 71, 053809 (2005).
[CrossRef]

2004

1997

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65, 277–294 (1997).
[CrossRef]

1990

Abdelalim, M. A.

Agrawal, G. P.

Akhmediev, N.

J. M. Soto-Crespo, Ph. Grelu, N. Akhmediev, and N. Devine, “Soliton complexes in dissipative systems: vibrating, shaking, and mixed soliton pairs,” Phys. Rev. E 75, 016613 (2007).
[CrossRef]

Anis, H.

Cabasse, A.

Chédot, C.

G. Martel, C. Chédot, A. Hideur, and P. Grelu, “Numerical maps for fiber lasers mode kocked with nonlinear polarization evolution: comparison with semi-analytical models,” Fiber. Integr. Opt. 27, 320–340 (2008).
[CrossRef]

Chong, A.

W. H. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77, 023814 (2008).
[CrossRef]

F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photon. Rev. 2, 58–73 (2008).
[CrossRef]

Devine, N.

J. M. Soto-Crespo, Ph. Grelu, N. Akhmediev, and N. Devine, “Soliton complexes in dissipative systems: vibrating, shaking, and mixed soliton pairs,” Phys. Rev. E 75, 016613 (2007).
[CrossRef]

Gomes, L. A.

Grelu, P.

G. Martel, C. Chédot, A. Hideur, and P. Grelu, “Numerical maps for fiber lasers mode kocked with nonlinear polarization evolution: comparison with semi-analytical models,” Fiber. Integr. Opt. 27, 320–340 (2008).
[CrossRef]

Grelu, Ph.

J. M. Soto-Crespo, Ph. Grelu, N. Akhmediev, and N. Devine, “Soliton complexes in dissipative systems: vibrating, shaking, and mixed soliton pairs,” Phys. Rev. E 75, 016613 (2007).
[CrossRef]

Haus, H. A.

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65, 277–294 (1997).
[CrossRef]

Herda, R.

Hideur, A.

A. Cabasse, B. Ortac, G. Martel, A. Hideur, and J. Limpert, “Dissipative solitons in a passively mode-locked Er-doped fiber with strong normal dispersion,” Opt. Express 16, 19322–19329 (2008).
[CrossRef]

G. Martel, C. Chédot, A. Hideur, and P. Grelu, “Numerical maps for fiber lasers mode kocked with nonlinear polarization evolution: comparison with semi-analytical models,” Fiber. Integr. Opt. 27, 320–340 (2008).
[CrossRef]

Ippen, E. P.

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65, 277–294 (1997).
[CrossRef]

Jackson, S. D.

Jones, D. J.

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65, 277–294 (1997).
[CrossRef]

Jouhti, T.

Khalil, D. A.

Komarov, A.

A. Komarov, H. Leblond, and F. Sanchez, “Multistablility and hysteresis phenomena in passive mode-locked lasers,” Phys. Rev. A 71, 053809 (2005).
[CrossRef]

Leblond, H.

A. Komarov, H. Leblond, and F. Sanchez, “Multistablility and hysteresis phenomena in passive mode-locked lasers,” Phys. Rev. A 71, 053809 (2005).
[CrossRef]

Li, X. H.

Limpert, J.

Lin, A.

Liu, X. M.

Logvin, Y.

Lu, C.

Lu, K.

Martel, G.

A. Cabasse, B. Ortac, G. Martel, A. Hideur, and J. Limpert, “Dissipative solitons in a passively mode-locked Er-doped fiber with strong normal dispersion,” Opt. Express 16, 19322–19329 (2008).
[CrossRef]

G. Martel, C. Chédot, A. Hideur, and P. Grelu, “Numerical maps for fiber lasers mode kocked with nonlinear polarization evolution: comparison with semi-analytical models,” Fiber. Integr. Opt. 27, 320–340 (2008).
[CrossRef]

Nelson, L. E.

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65, 277–294 (1997).
[CrossRef]

Okhotnikov, O. G.

Olivier, M.

Orsila, L.

Ortac, B.

Piché, M.

Renninger, W. H.

F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photon. Rev. 2, 58–73 (2008).
[CrossRef]

W. H. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77, 023814 (2008).
[CrossRef]

Sanchez, F.

A. Komarov, H. Leblond, and F. Sanchez, “Multistablility and hysteresis phenomena in passive mode-locked lasers,” Phys. Rev. A 71, 053809 (2005).
[CrossRef]

Soto-Crespo, J. M.

J. M. Soto-Crespo, Ph. Grelu, N. Akhmediev, and N. Devine, “Soliton complexes in dissipative systems: vibrating, shaking, and mixed soliton pairs,” Phys. Rev. E 75, 016613 (2007).
[CrossRef]

Sun, H.

Tam, H. Y.

Tamura, K.

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65, 277–294 (1997).
[CrossRef]

Tang, D. Y.

Wai, P. K. A.

Wang, L. R.

Wang, Y.

Wise, F. W.

F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photon. Rev. 2, 58–73 (2008).
[CrossRef]

W. H. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77, 023814 (2008).
[CrossRef]

Xiang, N.

Zhao, L. M.

Zhao, W.

Appl. Opt.

Appl. Phys. B

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65, 277–294 (1997).
[CrossRef]

Fiber. Integr. Opt.

G. Martel, C. Chédot, A. Hideur, and P. Grelu, “Numerical maps for fiber lasers mode kocked with nonlinear polarization evolution: comparison with semi-analytical models,” Fiber. Integr. Opt. 27, 320–340 (2008).
[CrossRef]

J. Opt. Soc. Am. B

Laser Photon. Rev.

F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photon. Rev. 2, 58–73 (2008).
[CrossRef]

Opt. Express

Phys. Rev. A

W. H. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77, 023814 (2008).
[CrossRef]

A. Komarov, H. Leblond, and F. Sanchez, “Multistablility and hysteresis phenomena in passive mode-locked lasers,” Phys. Rev. A 71, 053809 (2005).
[CrossRef]

Phys. Rev. E

J. M. Soto-Crespo, Ph. Grelu, N. Akhmediev, and N. Devine, “Soliton complexes in dissipative systems: vibrating, shaking, and mixed soliton pairs,” Phys. Rev. E 75, 016613 (2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram of the DS laser cavity.

Fig. 2
Fig. 2

(a) Optical spectrum, (b) oscilloscope trace, (c) RF spectrum, and (d) autocorrelation trace for P = 62 mW .

Fig. 3
Fig. 3

Optical spectrum when P is (a) 90 mW , (b) 92 mW , (c) 95 mW , and (d) 98 mW .

Fig. 4
Fig. 4

Oscilloscope traces when P is (a) 90 mW , (b) 92 mW , (c) 95 mW , and (d) 98 mW .

Fig. 5
Fig. 5

Optical spectra and oscilloscope traces: (a), (b) for P = 102 mW and (c), (d) for P = 115 mW .

Fig. 6
Fig. 6

Oscilloscope traces for the transitional state of the triple pulse at (a) P = 234 mW and (b) P = 244 mW . Oscilloscope traces for (c) stable states of the triple pulse at P = 260 mW and (d) steady states of the quadruple pulse at P = 375 mW .

Fig. 7
Fig. 7

Comparisons with unstable states in Refs. [12, 13, 14] and transitional states of this report: optical spectra (top) correlation traces (bottom).

Metrics