Abstract

We design and fabricate a novel optical accelerometer based on high-order diffraction beam interference with a built-in phase-generated carrier modulator. A proof-of-concept prototype is tested and achieves a resolution of 96 ng/√Hz with a dynamic range of 60 g. By employing optical interference between ±1 order diffraction beams from a grating translating perpendicular to an optical beam for acceleration sensing, the accelerometer realizes a wide dynamic range, while maintaining a high resolution. Compared with prior optical accelerometers, the interference in this structure is free from the effect of short coherence length or beam divergence, and a greater than ordinary dynamic range is obtained. The proposed design is also applicable to a MOEMS platform, offering a new thought in the design of high-performance MOEMS accelerometers.

© 2010 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber Technol. 9, 57–79 (2003).
    [CrossRef]
  2. B. Lee, S. Roh, and J. Park, “Current status of micro- and nano-structured optical fiber sensors,” Opt. Fiber Technol. 15, 209–221 (2009).
    [CrossRef]
  3. J. Nayak, T. Srinivas, A. Selvarajan, and D. V. K. Sastry, “Design and analysis of an intensity modulated micro-opto-electro-mechanical accelerometer based on nonuniform cantilever beam proof mass,” J. Microlith. Microfab. Microsyst. 5, 043012 (2006).
    [CrossRef]
  4. C. Z. Shi, N. Zeng, H. L. Ho, C. C. Chan, M. Zhang, W. Jin, and Y. B. Liao, “Cantilever optical vibrometer using fiber Bragg grating,” Opt. Eng. 42, 3179–3181 (2003).
    [CrossRef]
  5. P. M. Nieva, N. E. McGruer, and G. G. Adams, “Design and characterization of a micromachined Fabry-Perot vibration sensor for high-temperature applications,” J. Micromech. Microeng. 16, 2618–2631 (2006).
    [CrossRef]
  6. R. D. Pechstedt and D. A. Jackson, “Design of a compliant-cylinder-type fiber-optic accelerometer: theory and experiment,” Appl. Opt. 34, 3009–3017 (1995).
    [CrossRef]
  7. G. A. Cranch and P. J. Nash, “High-responsivity fiber-optic flexural disk accelerometers,” J. Lightwave Technol. 18, 1233–1243 (2000).
    [CrossRef]
  8. Y. Wang, H. Xiao, S. Zhang, F. Li, and Y. Liu, “Design of a fibre-optic disc accelerometer theory and experiment,” Meas. Sci. Technol. 18, 1763–1767 (2007).
    [CrossRef]
  9. J. Thiel and E. Spanner, “Interferential linear encoder with 270 mm measurement length for nanometrology,” in Proceedings of the 1st International European Society for Precision Engineering and Nanotechnology Conference (1999), Vol. II, pp. 419–422.
  10. A. Cekorich, “Demodulator for interferometric sensors,” Proc. SPIE 3860, 338–347 (1999).
    [CrossRef]
  11. A. Dandridge, A. B. Tveten, and T. G. Giallorenzi, “Homodyne demodulation scheme for fibre-optic sensors using phase generated carrier,” Quantum Electron. 18, 1647–1653 (1982).
    [CrossRef]
  12. L. Ristic, Sensor Technology and Devices (Artech House, 1994), p. 50.
  13. C. Rathjen, “Statistical properties of phase-shift algorithms,” J. Opt. Soc. Am. A 12, 1997–2008 (1995).
    [CrossRef]
  14. T. B. Gabrielson, “Mechanical-thermal noise in micromachined acoustic and vibration sensors,” IEEE Trans. Electron, Devices 40, 903–909 (1993).
    [CrossRef]

2009 (1)

B. Lee, S. Roh, and J. Park, “Current status of micro- and nano-structured optical fiber sensors,” Opt. Fiber Technol. 15, 209–221 (2009).
[CrossRef]

2007 (1)

Y. Wang, H. Xiao, S. Zhang, F. Li, and Y. Liu, “Design of a fibre-optic disc accelerometer theory and experiment,” Meas. Sci. Technol. 18, 1763–1767 (2007).
[CrossRef]

2006 (2)

J. Nayak, T. Srinivas, A. Selvarajan, and D. V. K. Sastry, “Design and analysis of an intensity modulated micro-opto-electro-mechanical accelerometer based on nonuniform cantilever beam proof mass,” J. Microlith. Microfab. Microsyst. 5, 043012 (2006).
[CrossRef]

P. M. Nieva, N. E. McGruer, and G. G. Adams, “Design and characterization of a micromachined Fabry-Perot vibration sensor for high-temperature applications,” J. Micromech. Microeng. 16, 2618–2631 (2006).
[CrossRef]

2003 (2)

B. Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber Technol. 9, 57–79 (2003).
[CrossRef]

C. Z. Shi, N. Zeng, H. L. Ho, C. C. Chan, M. Zhang, W. Jin, and Y. B. Liao, “Cantilever optical vibrometer using fiber Bragg grating,” Opt. Eng. 42, 3179–3181 (2003).
[CrossRef]

2000 (1)

1999 (2)

J. Thiel and E. Spanner, “Interferential linear encoder with 270 mm measurement length for nanometrology,” in Proceedings of the 1st International European Society for Precision Engineering and Nanotechnology Conference (1999), Vol. II, pp. 419–422.

A. Cekorich, “Demodulator for interferometric sensors,” Proc. SPIE 3860, 338–347 (1999).
[CrossRef]

1995 (2)

1994 (1)

L. Ristic, Sensor Technology and Devices (Artech House, 1994), p. 50.

1993 (1)

T. B. Gabrielson, “Mechanical-thermal noise in micromachined acoustic and vibration sensors,” IEEE Trans. Electron, Devices 40, 903–909 (1993).
[CrossRef]

1982 (1)

A. Dandridge, A. B. Tveten, and T. G. Giallorenzi, “Homodyne demodulation scheme for fibre-optic sensors using phase generated carrier,” Quantum Electron. 18, 1647–1653 (1982).
[CrossRef]

Adams, G. G.

P. M. Nieva, N. E. McGruer, and G. G. Adams, “Design and characterization of a micromachined Fabry-Perot vibration sensor for high-temperature applications,” J. Micromech. Microeng. 16, 2618–2631 (2006).
[CrossRef]

Cekorich, A.

A. Cekorich, “Demodulator for interferometric sensors,” Proc. SPIE 3860, 338–347 (1999).
[CrossRef]

Chan, C. C.

C. Z. Shi, N. Zeng, H. L. Ho, C. C. Chan, M. Zhang, W. Jin, and Y. B. Liao, “Cantilever optical vibrometer using fiber Bragg grating,” Opt. Eng. 42, 3179–3181 (2003).
[CrossRef]

Cranch, G. A.

Dandridge, A.

A. Dandridge, A. B. Tveten, and T. G. Giallorenzi, “Homodyne demodulation scheme for fibre-optic sensors using phase generated carrier,” Quantum Electron. 18, 1647–1653 (1982).
[CrossRef]

Gabrielson, T. B.

T. B. Gabrielson, “Mechanical-thermal noise in micromachined acoustic and vibration sensors,” IEEE Trans. Electron, Devices 40, 903–909 (1993).
[CrossRef]

Giallorenzi, T. G.

A. Dandridge, A. B. Tveten, and T. G. Giallorenzi, “Homodyne demodulation scheme for fibre-optic sensors using phase generated carrier,” Quantum Electron. 18, 1647–1653 (1982).
[CrossRef]

Ho, H. L.

C. Z. Shi, N. Zeng, H. L. Ho, C. C. Chan, M. Zhang, W. Jin, and Y. B. Liao, “Cantilever optical vibrometer using fiber Bragg grating,” Opt. Eng. 42, 3179–3181 (2003).
[CrossRef]

Jackson, D. A.

Jin, W.

C. Z. Shi, N. Zeng, H. L. Ho, C. C. Chan, M. Zhang, W. Jin, and Y. B. Liao, “Cantilever optical vibrometer using fiber Bragg grating,” Opt. Eng. 42, 3179–3181 (2003).
[CrossRef]

Lee, B.

B. Lee, S. Roh, and J. Park, “Current status of micro- and nano-structured optical fiber sensors,” Opt. Fiber Technol. 15, 209–221 (2009).
[CrossRef]

B. Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber Technol. 9, 57–79 (2003).
[CrossRef]

Li, F.

Y. Wang, H. Xiao, S. Zhang, F. Li, and Y. Liu, “Design of a fibre-optic disc accelerometer theory and experiment,” Meas. Sci. Technol. 18, 1763–1767 (2007).
[CrossRef]

Liao, Y. B.

C. Z. Shi, N. Zeng, H. L. Ho, C. C. Chan, M. Zhang, W. Jin, and Y. B. Liao, “Cantilever optical vibrometer using fiber Bragg grating,” Opt. Eng. 42, 3179–3181 (2003).
[CrossRef]

Liu, Y.

Y. Wang, H. Xiao, S. Zhang, F. Li, and Y. Liu, “Design of a fibre-optic disc accelerometer theory and experiment,” Meas. Sci. Technol. 18, 1763–1767 (2007).
[CrossRef]

McGruer, N. E.

P. M. Nieva, N. E. McGruer, and G. G. Adams, “Design and characterization of a micromachined Fabry-Perot vibration sensor for high-temperature applications,” J. Micromech. Microeng. 16, 2618–2631 (2006).
[CrossRef]

Nash, P. J.

Nayak, J.

J. Nayak, T. Srinivas, A. Selvarajan, and D. V. K. Sastry, “Design and analysis of an intensity modulated micro-opto-electro-mechanical accelerometer based on nonuniform cantilever beam proof mass,” J. Microlith. Microfab. Microsyst. 5, 043012 (2006).
[CrossRef]

Nieva, P. M.

P. M. Nieva, N. E. McGruer, and G. G. Adams, “Design and characterization of a micromachined Fabry-Perot vibration sensor for high-temperature applications,” J. Micromech. Microeng. 16, 2618–2631 (2006).
[CrossRef]

Park, J.

B. Lee, S. Roh, and J. Park, “Current status of micro- and nano-structured optical fiber sensors,” Opt. Fiber Technol. 15, 209–221 (2009).
[CrossRef]

Pechstedt, R. D.

Rathjen, C.

Ristic, L.

L. Ristic, Sensor Technology and Devices (Artech House, 1994), p. 50.

Roh, S.

B. Lee, S. Roh, and J. Park, “Current status of micro- and nano-structured optical fiber sensors,” Opt. Fiber Technol. 15, 209–221 (2009).
[CrossRef]

Sastry, D. V. K.

J. Nayak, T. Srinivas, A. Selvarajan, and D. V. K. Sastry, “Design and analysis of an intensity modulated micro-opto-electro-mechanical accelerometer based on nonuniform cantilever beam proof mass,” J. Microlith. Microfab. Microsyst. 5, 043012 (2006).
[CrossRef]

Selvarajan, A.

J. Nayak, T. Srinivas, A. Selvarajan, and D. V. K. Sastry, “Design and analysis of an intensity modulated micro-opto-electro-mechanical accelerometer based on nonuniform cantilever beam proof mass,” J. Microlith. Microfab. Microsyst. 5, 043012 (2006).
[CrossRef]

Shi, C. Z.

C. Z. Shi, N. Zeng, H. L. Ho, C. C. Chan, M. Zhang, W. Jin, and Y. B. Liao, “Cantilever optical vibrometer using fiber Bragg grating,” Opt. Eng. 42, 3179–3181 (2003).
[CrossRef]

Spanner, E.

J. Thiel and E. Spanner, “Interferential linear encoder with 270 mm measurement length for nanometrology,” in Proceedings of the 1st International European Society for Precision Engineering and Nanotechnology Conference (1999), Vol. II, pp. 419–422.

Srinivas, T.

J. Nayak, T. Srinivas, A. Selvarajan, and D. V. K. Sastry, “Design and analysis of an intensity modulated micro-opto-electro-mechanical accelerometer based on nonuniform cantilever beam proof mass,” J. Microlith. Microfab. Microsyst. 5, 043012 (2006).
[CrossRef]

Thiel, J.

J. Thiel and E. Spanner, “Interferential linear encoder with 270 mm measurement length for nanometrology,” in Proceedings of the 1st International European Society for Precision Engineering and Nanotechnology Conference (1999), Vol. II, pp. 419–422.

Tveten, A. B.

A. Dandridge, A. B. Tveten, and T. G. Giallorenzi, “Homodyne demodulation scheme for fibre-optic sensors using phase generated carrier,” Quantum Electron. 18, 1647–1653 (1982).
[CrossRef]

Wang, Y.

Y. Wang, H. Xiao, S. Zhang, F. Li, and Y. Liu, “Design of a fibre-optic disc accelerometer theory and experiment,” Meas. Sci. Technol. 18, 1763–1767 (2007).
[CrossRef]

Xiao, H.

Y. Wang, H. Xiao, S. Zhang, F. Li, and Y. Liu, “Design of a fibre-optic disc accelerometer theory and experiment,” Meas. Sci. Technol. 18, 1763–1767 (2007).
[CrossRef]

Zeng, N.

C. Z. Shi, N. Zeng, H. L. Ho, C. C. Chan, M. Zhang, W. Jin, and Y. B. Liao, “Cantilever optical vibrometer using fiber Bragg grating,” Opt. Eng. 42, 3179–3181 (2003).
[CrossRef]

Zhang, M.

C. Z. Shi, N. Zeng, H. L. Ho, C. C. Chan, M. Zhang, W. Jin, and Y. B. Liao, “Cantilever optical vibrometer using fiber Bragg grating,” Opt. Eng. 42, 3179–3181 (2003).
[CrossRef]

Zhang, S.

Y. Wang, H. Xiao, S. Zhang, F. Li, and Y. Liu, “Design of a fibre-optic disc accelerometer theory and experiment,” Meas. Sci. Technol. 18, 1763–1767 (2007).
[CrossRef]

Appl. Opt. (1)

IEEE Trans. Electron, Devices (1)

T. B. Gabrielson, “Mechanical-thermal noise in micromachined acoustic and vibration sensors,” IEEE Trans. Electron, Devices 40, 903–909 (1993).
[CrossRef]

J. Lightwave Technol. (1)

J. Microlith. Microfab. Microsyst. (1)

J. Nayak, T. Srinivas, A. Selvarajan, and D. V. K. Sastry, “Design and analysis of an intensity modulated micro-opto-electro-mechanical accelerometer based on nonuniform cantilever beam proof mass,” J. Microlith. Microfab. Microsyst. 5, 043012 (2006).
[CrossRef]

J. Micromech. Microeng. (1)

P. M. Nieva, N. E. McGruer, and G. G. Adams, “Design and characterization of a micromachined Fabry-Perot vibration sensor for high-temperature applications,” J. Micromech. Microeng. 16, 2618–2631 (2006).
[CrossRef]

J. Opt. Soc. Am. A (1)

Meas. Sci. Technol. (1)

Y. Wang, H. Xiao, S. Zhang, F. Li, and Y. Liu, “Design of a fibre-optic disc accelerometer theory and experiment,” Meas. Sci. Technol. 18, 1763–1767 (2007).
[CrossRef]

Opt. Eng. (1)

C. Z. Shi, N. Zeng, H. L. Ho, C. C. Chan, M. Zhang, W. Jin, and Y. B. Liao, “Cantilever optical vibrometer using fiber Bragg grating,” Opt. Eng. 42, 3179–3181 (2003).
[CrossRef]

Opt. Fiber Technol. (2)

B. Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber Technol. 9, 57–79 (2003).
[CrossRef]

B. Lee, S. Roh, and J. Park, “Current status of micro- and nano-structured optical fiber sensors,” Opt. Fiber Technol. 15, 209–221 (2009).
[CrossRef]

Proc. SPIE (1)

A. Cekorich, “Demodulator for interferometric sensors,” Proc. SPIE 3860, 338–347 (1999).
[CrossRef]

Quantum Electron. (1)

A. Dandridge, A. B. Tveten, and T. G. Giallorenzi, “Homodyne demodulation scheme for fibre-optic sensors using phase generated carrier,” Quantum Electron. 18, 1647–1653 (1982).
[CrossRef]

Other (2)

L. Ristic, Sensor Technology and Devices (Artech House, 1994), p. 50.

J. Thiel and E. Spanner, “Interferential linear encoder with 270 mm measurement length for nanometrology,” in Proceedings of the 1st International European Society for Precision Engineering and Nanotechnology Conference (1999), Vol. II, pp. 419–422.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics