Abstract

A waveband-tunable multiwavelength erbium-doped fiber laser based on a novel integrated structure of nonlinear polarization rotation and an unbalanced in-line Sagnac interferometer is proposed and demonstrated. An ultrabroadband lasing spectrum with 140 wavelength lasing peaks periodically distributed from 1563 to 1612.5nm accompanied by a lasing linewidth of 0.112nm, a free spectral range (FSR) of 0.32nm, and a signal-to-noise ratio (SNR) of 20dB has been achieved. A laser with high-wavelength lasing and waveband tunability was also achieved by merely adjusting the polarization controllers. The wavebands can be tuned from 1567 to 1606nm continuously. Thirty-one lasing wavelengths in a 3dB flattened spectrum has been achieved with a SNR of 48dB, a linewidth of 0.03nm, and a FSR of 0.32nm. Good stability of the laser operating at room temperature has been verified by using an optical spectrum analyzer to measure every 2 min for a half-hour.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Yamashita and K. Hotate, “Multiwavelength erbium-doped fiber laser using intracavity etalon and cooled by liquid nitrogen,” Electron. Lett. 32, 1298–1299 (1996).
    [CrossRef]
  2. Z. Chen, S. Ma, and N. K. Dutta, “Multiwavelength fiber ring laser based on a semiconductor and fiber gain medium,” Opt. Express 17, 1234–1239 (2009).
    [CrossRef]
  3. D. Chen, S. Qin, and S. He, “Channel-spacing-tunable multi-wavelength fiber ring laser with hybrid Raman and erbium-doped fiber gains,” Opt. Express 15, 930–935 (2007).
    [CrossRef]
  4. L. Zhan, J. H. Ji, J. Xia, S. Y. Luo, and Y. X. Xia, “160-line multiwavelength generation of linear-cavity self-seeded Brillouin-erbium fiber laser,” Opt. Express 14, 10233–10238 (2006).
    [CrossRef]
  5. Z. Zhang, L. Zhan, and Y. Xia, “Tunable self-seeded multiwavelength Brillouin-erbium fiber laser with enhanced power efficiency,” Opt. Express 15, 9731–9736 (2007).
    [CrossRef]
  6. R. Slavík and S. LaRochelle, “Frequency shift in a fiber laser resonator,” Opt. Lett. 27, 28–30 (2002).
    [CrossRef]
  7. Y.-G. Han, T. V. A. Tran, and S. B. Lee, “Wavelength-spacing tunable multiwavelength erbium-doped fiber laser based on four-wave mixing of dispersion-shifted fiber,” Opt. Lett. 31, 697–699 (2006).
    [CrossRef]
  8. J. Yao, J. Yao, Z. Deng, and J. Liu, “Investigation of room-temperature multiwavelength fiber-ring laser that incorporates an SOA-based phase modulator in the laser cavity,” J. Lightwave Technol. 23, 2484–2490 (2005).
    [CrossRef]
  9. K. Zhou, D. Zhou, F. Dong, and N. Q. Ngo, “Room-temperature multiwavelength erbium-doped fiber ring laser employing sinusoidal phase-modulation feedback,” Opt. Lett. 28, 893–895 (2003).
    [CrossRef]
  10. S. Pan, C. Lou, and Y. Gao, “Multiwavelength erbium-doped fiber laser based on inhomogeneous loss mechanism by use of a highly nonlinear fiber and a Fabry–Perot filter,” Opt. Express 14, 1113–1118 (2006).
    [CrossRef]
  11. X. Dong, P. Shum, N. Q. Ngo, and C. C. Chan, “Multiwavelength Raman fiber laser with a continuously-tunable spacing,” Opt. Express 14, 3288–3293 (2006).
    [CrossRef]
  12. T. V. A. Tran, K. Lee, S. B. Lee, and Y.-G. Han, “Switchable multiwavelength erbium doped fiber laser based on a nonlinear optical loop mirror incorporating multiple fiber Bragg gratings,” Opt. Express 16, 1460–1465 (2008).
    [CrossRef]
  13. J. Tian, Y. Yao, Y. Sun, X. Yu, and D. Chen, “Multiwavelength erbium-doped fiber laser employing nonlinear polarization rotation in a symmetric nonlinear optical loop mirror,” Opt. Express 17, 15160–15166 (2009).
    [CrossRef]
  14. Z. Zhang, L. Zhan, K. Xu, J. Wu, Y. Xia, and J. Lin, “Multiwavelength fiber laser with fine adjustment, based on nonlinear polarization rotation and birefringence fiber filter,” Opt. Lett. 33, 324–326 (2008).
    [CrossRef]
  15. X. Feng, H.-Y. Tam, and P. K. A. Wai, “Stable and uniform multiwavelength erbium-doped fiber laser using nonlinear polarization rotation,” Opt. Express 14, 8205–8210 (2006).
    [CrossRef]
  16. X. Dong, P. Shum, N. Q. Ngo, and C. C. Chan, “Multiwavelength Raman fiber laser with a continuously-tunable spacing,” Opt. Express 14, 3288–3293 (2006).
    [CrossRef]
  17. C.-S. Kim, Y.-G. Han, S. B. Lee, E. J. Jung, T. H. Lee, J. S. Park, and M. Y. Jeong, “Individual switching of multi-wavelength lasing outputs based on switchable FBG filters,” Opt. Express 15, 3702–3707 (2007).
    [CrossRef]
  18. Y.-G. Han, F. Fresi, L. Poti, J. H. Lee, and X. Dong, “Continuously spacing-tunable multiwavelength semiconductor-optical-amplifier-based fiber ring laser incorporating a superimposed chirped fiber Bragg grating,” Opt. Lett. 32, 1032–1034 (2007).
    [CrossRef]
  19. G. Sun, D. S. Moon, A. Lin, W.-T. Han, and Y. Chung, “Tunable multiwavelength fiber laser using a comb filter based on erbium-ytterbium co-doped polarization maintaining fiber loop mirror,” Opt. Express 16, 3652–3658 (2008).
    [CrossRef]
  20. N. Park and P. F. Wysocki, “24-line multiwavelength operation of erbium-doped fiber-ring laser,” IEEE Photon. Technol. Lett. 8, 1459–1461 (1996).
  21. D. S. Moon, B. H. Kim, A. Lin, G. Sun, W.-T. Han, Y.-G. Han, and Y. Chung, “Tunable multi-wavelength SOA fiber laser based on a Sagnac loop mirror using an elliptical core side-hole fiber,” Opt. Express 15, 8371–8376 (2007).
    [CrossRef]
  22. C.-H. Chang, H. Lin, Y.-S. Huang, and S.-H. Tong, “Multi-wavelength-switchable and uniform erbium-doped fiber laser using unbalanced in-line Sagnac interferometer,” Opt. Express 15, 12450–12456 (2007).
    [CrossRef]
  23. Y. Li, C. Lou, J. Wu, B. Wu, and Y. Gao, “Novel method to simultaneously compress pulses and suppress supermode noise in actively mode-locked fiber ring laser,” IEEE Photon. Technol. Lett. 9, 1250–1252 (1998).

2009 (2)

2008 (3)

2007 (6)

2006 (6)

2005 (1)

2003 (1)

2002 (1)

1998 (1)

Y. Li, C. Lou, J. Wu, B. Wu, and Y. Gao, “Novel method to simultaneously compress pulses and suppress supermode noise in actively mode-locked fiber ring laser,” IEEE Photon. Technol. Lett. 9, 1250–1252 (1998).

1996 (2)

S. Yamashita and K. Hotate, “Multiwavelength erbium-doped fiber laser using intracavity etalon and cooled by liquid nitrogen,” Electron. Lett. 32, 1298–1299 (1996).
[CrossRef]

N. Park and P. F. Wysocki, “24-line multiwavelength operation of erbium-doped fiber-ring laser,” IEEE Photon. Technol. Lett. 8, 1459–1461 (1996).

Chan, C. C.

Chang, C.-H.

Chen, D.

Chen, Z.

Chung, Y.

Deng, Z.

Dong, F.

Dong, X.

Dutta, N. K.

Feng, X.

Fresi, F.

Gao, Y.

S. Pan, C. Lou, and Y. Gao, “Multiwavelength erbium-doped fiber laser based on inhomogeneous loss mechanism by use of a highly nonlinear fiber and a Fabry–Perot filter,” Opt. Express 14, 1113–1118 (2006).
[CrossRef]

Y. Li, C. Lou, J. Wu, B. Wu, and Y. Gao, “Novel method to simultaneously compress pulses and suppress supermode noise in actively mode-locked fiber ring laser,” IEEE Photon. Technol. Lett. 9, 1250–1252 (1998).

Han, W.-T.

Han, Y.-G.

He, S.

Hotate, K.

S. Yamashita and K. Hotate, “Multiwavelength erbium-doped fiber laser using intracavity etalon and cooled by liquid nitrogen,” Electron. Lett. 32, 1298–1299 (1996).
[CrossRef]

Huang, Y.-S.

Jeong, M. Y.

Ji, J. H.

Jung, E. J.

Kim, B. H.

Kim, C.-S.

LaRochelle, S.

Lee, J. H.

Lee, K.

Lee, S. B.

Lee, T. H.

Li, Y.

Y. Li, C. Lou, J. Wu, B. Wu, and Y. Gao, “Novel method to simultaneously compress pulses and suppress supermode noise in actively mode-locked fiber ring laser,” IEEE Photon. Technol. Lett. 9, 1250–1252 (1998).

Lin, A.

Lin, H.

Lin, J.

Liu, J.

Lou, C.

S. Pan, C. Lou, and Y. Gao, “Multiwavelength erbium-doped fiber laser based on inhomogeneous loss mechanism by use of a highly nonlinear fiber and a Fabry–Perot filter,” Opt. Express 14, 1113–1118 (2006).
[CrossRef]

Y. Li, C. Lou, J. Wu, B. Wu, and Y. Gao, “Novel method to simultaneously compress pulses and suppress supermode noise in actively mode-locked fiber ring laser,” IEEE Photon. Technol. Lett. 9, 1250–1252 (1998).

Luo, S. Y.

Ma, S.

Moon, D. S.

Ngo, N. Q.

Pan, S.

Park, J. S.

Park, N.

N. Park and P. F. Wysocki, “24-line multiwavelength operation of erbium-doped fiber-ring laser,” IEEE Photon. Technol. Lett. 8, 1459–1461 (1996).

Poti, L.

Qin, S.

Shum, P.

Slavík, R.

Sun, G.

Sun, Y.

Tam, H.-Y.

Tian, J.

Tong, S.-H.

Tran, T. V. A.

Wai, P. K. A.

Wu, B.

Y. Li, C. Lou, J. Wu, B. Wu, and Y. Gao, “Novel method to simultaneously compress pulses and suppress supermode noise in actively mode-locked fiber ring laser,” IEEE Photon. Technol. Lett. 9, 1250–1252 (1998).

Wu, J.

Z. Zhang, L. Zhan, K. Xu, J. Wu, Y. Xia, and J. Lin, “Multiwavelength fiber laser with fine adjustment, based on nonlinear polarization rotation and birefringence fiber filter,” Opt. Lett. 33, 324–326 (2008).
[CrossRef]

Y. Li, C. Lou, J. Wu, B. Wu, and Y. Gao, “Novel method to simultaneously compress pulses and suppress supermode noise in actively mode-locked fiber ring laser,” IEEE Photon. Technol. Lett. 9, 1250–1252 (1998).

Wysocki, P. F.

N. Park and P. F. Wysocki, “24-line multiwavelength operation of erbium-doped fiber-ring laser,” IEEE Photon. Technol. Lett. 8, 1459–1461 (1996).

Xia, J.

Xia, Y.

Xia, Y. X.

Xu, K.

Yamashita, S.

S. Yamashita and K. Hotate, “Multiwavelength erbium-doped fiber laser using intracavity etalon and cooled by liquid nitrogen,” Electron. Lett. 32, 1298–1299 (1996).
[CrossRef]

Yao, J.

Yao, Y.

Yu, X.

Zhan, L.

Zhang, Z.

Zhou, D.

Zhou, K.

Electron. Lett. (1)

S. Yamashita and K. Hotate, “Multiwavelength erbium-doped fiber laser using intracavity etalon and cooled by liquid nitrogen,” Electron. Lett. 32, 1298–1299 (1996).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

N. Park and P. F. Wysocki, “24-line multiwavelength operation of erbium-doped fiber-ring laser,” IEEE Photon. Technol. Lett. 8, 1459–1461 (1996).

Y. Li, C. Lou, J. Wu, B. Wu, and Y. Gao, “Novel method to simultaneously compress pulses and suppress supermode noise in actively mode-locked fiber ring laser,” IEEE Photon. Technol. Lett. 9, 1250–1252 (1998).

J. Lightwave Technol. (1)

Opt. Express (14)

S. Pan, C. Lou, and Y. Gao, “Multiwavelength erbium-doped fiber laser based on inhomogeneous loss mechanism by use of a highly nonlinear fiber and a Fabry–Perot filter,” Opt. Express 14, 1113–1118 (2006).
[CrossRef]

G. Sun, D. S. Moon, A. Lin, W.-T. Han, and Y. Chung, “Tunable multiwavelength fiber laser using a comb filter based on erbium-ytterbium co-doped polarization maintaining fiber loop mirror,” Opt. Express 16, 3652–3658 (2008).
[CrossRef]

Z. Chen, S. Ma, and N. K. Dutta, “Multiwavelength fiber ring laser based on a semiconductor and fiber gain medium,” Opt. Express 17, 1234–1239 (2009).
[CrossRef]

J. Tian, Y. Yao, Y. Sun, X. Yu, and D. Chen, “Multiwavelength erbium-doped fiber laser employing nonlinear polarization rotation in a symmetric nonlinear optical loop mirror,” Opt. Express 17, 15160–15166 (2009).
[CrossRef]

D. S. Moon, B. H. Kim, A. Lin, G. Sun, W.-T. Han, Y.-G. Han, and Y. Chung, “Tunable multi-wavelength SOA fiber laser based on a Sagnac loop mirror using an elliptical core side-hole fiber,” Opt. Express 15, 8371–8376 (2007).
[CrossRef]

Z. Zhang, L. Zhan, and Y. Xia, “Tunable self-seeded multiwavelength Brillouin-erbium fiber laser with enhanced power efficiency,” Opt. Express 15, 9731–9736 (2007).
[CrossRef]

C.-H. Chang, H. Lin, Y.-S. Huang, and S.-H. Tong, “Multi-wavelength-switchable and uniform erbium-doped fiber laser using unbalanced in-line Sagnac interferometer,” Opt. Express 15, 12450–12456 (2007).
[CrossRef]

T. V. A. Tran, K. Lee, S. B. Lee, and Y.-G. Han, “Switchable multiwavelength erbium doped fiber laser based on a nonlinear optical loop mirror incorporating multiple fiber Bragg gratings,” Opt. Express 16, 1460–1465 (2008).
[CrossRef]

X. Dong, P. Shum, N. Q. Ngo, and C. C. Chan, “Multiwavelength Raman fiber laser with a continuously-tunable spacing,” Opt. Express 14, 3288–3293 (2006).
[CrossRef]

X. Dong, P. Shum, N. Q. Ngo, and C. C. Chan, “Multiwavelength Raman fiber laser with a continuously-tunable spacing,” Opt. Express 14, 3288–3293 (2006).
[CrossRef]

X. Feng, H.-Y. Tam, and P. K. A. Wai, “Stable and uniform multiwavelength erbium-doped fiber laser using nonlinear polarization rotation,” Opt. Express 14, 8205–8210 (2006).
[CrossRef]

L. Zhan, J. H. Ji, J. Xia, S. Y. Luo, and Y. X. Xia, “160-line multiwavelength generation of linear-cavity self-seeded Brillouin-erbium fiber laser,” Opt. Express 14, 10233–10238 (2006).
[CrossRef]

D. Chen, S. Qin, and S. He, “Channel-spacing-tunable multi-wavelength fiber ring laser with hybrid Raman and erbium-doped fiber gains,” Opt. Express 15, 930–935 (2007).
[CrossRef]

C.-S. Kim, Y.-G. Han, S. B. Lee, E. J. Jung, T. H. Lee, J. S. Park, and M. Y. Jeong, “Individual switching of multi-wavelength lasing outputs based on switchable FBG filters,” Opt. Express 15, 3702–3707 (2007).
[CrossRef]

Opt. Lett. (5)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of the waveband-tunable multiwavelength erbium-doped fiber laser based on a NPR-IDL UISI.

Fig. 2
Fig. 2

The 140 wavelength lasing spectrum from 1560 to 1620 nm with an enlarged spectrum from 1596 to 1598 nm .

Fig. 3
Fig. 3

Waveband-tunable spectra sweeping from 1567 to 1606 nm with six envelopes of lasing spectra. The enlarged spectrum of envelope 4 is shown in Fig. 4.

Fig. 4
Fig. 4

Enlarged spectrum of envelope 4 (Fig. 3). The spectral range from 1584.5 to 1595 nm includes 31 lasing wavelengths with a SNR of 48 dB .

Fig. 5
Fig. 5

Spectrum for measurements of the lasing linewidth, FSR, and SNR.

Fig. 6
Fig. 6

Stability measurements of multiwavelength lasing spectra for 30 min.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I = cos 2 θ 1 cos 2 θ 2 + sin 2 θ 1 sin 2 θ 2 + 1 2 sin 2 θ 1 sin 2 θ 2 cos ( Δ ψ l + Δ ψ n l ) ,
Δ ψ l = 2 π Δ n SMF SMF / λ ,
Δ ψ n l = 2 π ρ I SMF cos 2 θ 1 / λ A eff ,
OPD = Δ n PMF · 2 PMF .
Δ ϕ ( λ ) = 4 π Δ n PMF PMF / λ .
Δ λ S = λ 2 / ( Δ n PMF · 2 PMF ) .

Metrics