Abstract

A low-splicing-loss polarization-maintaining photonic-crystal-fiber (PMPCF)-based optical fiber Sagnac interferometer (OFSI) and its cladding-mode effect are demonstrated experimentally and analytically. An OFSI with minimum splicing loss of about 2.6dB is achieved. The weak cladding modes induced by residual mode field diameter mismatch at the fusion splice cause a filtering effect on the transmission spectra of the OFSIs. This is especially noticeable for short length PMPCF-based OFSIs. Experimental results show that the relatively maximum ripple fluctuation induced by the cladding mode can reach 5.7%. The cladding-mode effect can be eliminated by slightly bending the PMPCF, but this introduces additional insertion loss.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. L. Zhao, X. Yang, C. Lu, W. Jin, and M. S. Demonkan, “Temperature-insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror,” IEEE Photonics Technol. Lett. 16, 2535–2537 (2004).
    [CrossRef]
  2. X. Y. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett. 90, 151113 (2007).
    [CrossRef]
  3. H. Y. Fu, H. Y. Tam, L.-Y. Shao, X. Dong, P. K. A. Wai, C. Lu, and S. K. Khijwania, “Pressure sensor realized with polarization-maintaining photonic crystal fiber-based Sagnac interferometer,” Appl. Opt. 47, 2835–2839 (2008).
    [CrossRef] [PubMed]
  4. B. J. Eggleton, P. S. Westbrook, C. A. Kerbage, R. S. Windeler, and G. L. Burdge, “Cladding-mode-resonances in air-silica microstructure optical fibers,” J. Lightwave Technol. 18, 1084–1100 (2000).
    [CrossRef]
  5. J.-G. Liu, L.-F. Xue, G.-Y. Kai, Y.-G. Liu, W.-G. Zhang, Y. Li, Z. Wang, C.-S. Zhang, and X.-Y. Dong, “Mode exiting properties of photonic crystal fiber with optical field incident from a single mode fiber,” Chin. Phys. Lett. 23, 2125–2128 (2006).
    [CrossRef]
  6. B. Dong, D.-P. Zhou, L. Wei, W.-K. Liu, and J. W. Y. Lit, “Temperature- and phase-independent lateral force sensor based on a core-offset multi-mode fiber interferometer,” Opt. Express 16, 19291–19296 (2008).
    [CrossRef]
  7. Y. Liu and L. Wei, “Low-cost high-sensitivity strain and temperature sensing using graded-index multimode fibers,” Appl. Opt. 46, 2516–2519 (2007).
    [CrossRef] [PubMed]
  8. B. Dong, D.-P. Zhou, and L. Wei, “Temperature insensitive all-fiber compact polarization-maintaining photonic crystal fiber based interferometer and its applications in fiber sensors,” J. Lightwave Technol. 28, 1011–1015 (2010).
    [CrossRef]
  9. J. H. Chong and M. K. Rao, “Development of a system for laser splicing photonic crystal fiber,” Opt. Express 11, 1365–1370(2003).
    [CrossRef] [PubMed]
  10. R. Thapa, K. Knabe, K. L. Corwin, and B. R. Washburn, “Arc fusion splicing of hollow-core photonic bandgap fibers for gas-filled fiber cells,” Opt. Express 14, 9576–9583 (2006).
    [CrossRef] [PubMed]
  11. L. Xiao, M. S. Demokan, W. Jin, Y. Wang, and C-L. Zhao, “Fusion splicing photonic crystal fibers and conventional single-mode fibers: microhole collapse effect,” J. Lightwave Technol. 25, 3563–3572 (2007).
    [CrossRef]
  12. H. Kogelnik and T. Li, “Laser beams and resonators,” Appl. Opt. 5, 1550–1567 (1966).
    [CrossRef] [PubMed]
  13. H. M. Presby and C. A. Edwards, “Efficient coupling of polarization-maintaining fiber to laser diodes,” IEEE Photonics Technol. Lett. 4, 897–899 (1992).
    [CrossRef]
  14. H. Taya, K. Ito, T. Yamada, and M. Yashinuma, “New splicing method for polarization maintaining fiber,” in Optical Fiber Communication Conference, 1989 OSA Technical Digest Series (Optical Society of America, 1989), paper THJ2.

2010

2008

2007

2006

J.-G. Liu, L.-F. Xue, G.-Y. Kai, Y.-G. Liu, W.-G. Zhang, Y. Li, Z. Wang, C.-S. Zhang, and X.-Y. Dong, “Mode exiting properties of photonic crystal fiber with optical field incident from a single mode fiber,” Chin. Phys. Lett. 23, 2125–2128 (2006).
[CrossRef]

R. Thapa, K. Knabe, K. L. Corwin, and B. R. Washburn, “Arc fusion splicing of hollow-core photonic bandgap fibers for gas-filled fiber cells,” Opt. Express 14, 9576–9583 (2006).
[CrossRef] [PubMed]

2004

C. L. Zhao, X. Yang, C. Lu, W. Jin, and M. S. Demonkan, “Temperature-insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror,” IEEE Photonics Technol. Lett. 16, 2535–2537 (2004).
[CrossRef]

2003

2000

1992

H. M. Presby and C. A. Edwards, “Efficient coupling of polarization-maintaining fiber to laser diodes,” IEEE Photonics Technol. Lett. 4, 897–899 (1992).
[CrossRef]

1989

H. Taya, K. Ito, T. Yamada, and M. Yashinuma, “New splicing method for polarization maintaining fiber,” in Optical Fiber Communication Conference, 1989 OSA Technical Digest Series (Optical Society of America, 1989), paper THJ2.

1966

Burdge, G. L.

Chong, J. H.

Corwin, K. L.

Demokan, M. S.

Demonkan, M. S.

C. L. Zhao, X. Yang, C. Lu, W. Jin, and M. S. Demonkan, “Temperature-insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror,” IEEE Photonics Technol. Lett. 16, 2535–2537 (2004).
[CrossRef]

Dong, B.

Dong, X.

Dong, X. Y.

X. Y. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett. 90, 151113 (2007).
[CrossRef]

Dong, X.-Y.

J.-G. Liu, L.-F. Xue, G.-Y. Kai, Y.-G. Liu, W.-G. Zhang, Y. Li, Z. Wang, C.-S. Zhang, and X.-Y. Dong, “Mode exiting properties of photonic crystal fiber with optical field incident from a single mode fiber,” Chin. Phys. Lett. 23, 2125–2128 (2006).
[CrossRef]

Edwards, C. A.

H. M. Presby and C. A. Edwards, “Efficient coupling of polarization-maintaining fiber to laser diodes,” IEEE Photonics Technol. Lett. 4, 897–899 (1992).
[CrossRef]

Eggleton, B. J.

Fu, H. Y.

Ito, K.

H. Taya, K. Ito, T. Yamada, and M. Yashinuma, “New splicing method for polarization maintaining fiber,” in Optical Fiber Communication Conference, 1989 OSA Technical Digest Series (Optical Society of America, 1989), paper THJ2.

Jin, W.

L. Xiao, M. S. Demokan, W. Jin, Y. Wang, and C-L. Zhao, “Fusion splicing photonic crystal fibers and conventional single-mode fibers: microhole collapse effect,” J. Lightwave Technol. 25, 3563–3572 (2007).
[CrossRef]

C. L. Zhao, X. Yang, C. Lu, W. Jin, and M. S. Demonkan, “Temperature-insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror,” IEEE Photonics Technol. Lett. 16, 2535–2537 (2004).
[CrossRef]

Kai, G.-Y.

J.-G. Liu, L.-F. Xue, G.-Y. Kai, Y.-G. Liu, W.-G. Zhang, Y. Li, Z. Wang, C.-S. Zhang, and X.-Y. Dong, “Mode exiting properties of photonic crystal fiber with optical field incident from a single mode fiber,” Chin. Phys. Lett. 23, 2125–2128 (2006).
[CrossRef]

Kerbage, C. A.

Khijwania, S. K.

Knabe, K.

Kogelnik, H.

Li, T.

Li, Y.

J.-G. Liu, L.-F. Xue, G.-Y. Kai, Y.-G. Liu, W.-G. Zhang, Y. Li, Z. Wang, C.-S. Zhang, and X.-Y. Dong, “Mode exiting properties of photonic crystal fiber with optical field incident from a single mode fiber,” Chin. Phys. Lett. 23, 2125–2128 (2006).
[CrossRef]

Lit, J. W. Y.

Liu, J.-G.

J.-G. Liu, L.-F. Xue, G.-Y. Kai, Y.-G. Liu, W.-G. Zhang, Y. Li, Z. Wang, C.-S. Zhang, and X.-Y. Dong, “Mode exiting properties of photonic crystal fiber with optical field incident from a single mode fiber,” Chin. Phys. Lett. 23, 2125–2128 (2006).
[CrossRef]

Liu, W.-K.

Liu, Y.

Liu, Y.-G.

J.-G. Liu, L.-F. Xue, G.-Y. Kai, Y.-G. Liu, W.-G. Zhang, Y. Li, Z. Wang, C.-S. Zhang, and X.-Y. Dong, “Mode exiting properties of photonic crystal fiber with optical field incident from a single mode fiber,” Chin. Phys. Lett. 23, 2125–2128 (2006).
[CrossRef]

Lu, C.

H. Y. Fu, H. Y. Tam, L.-Y. Shao, X. Dong, P. K. A. Wai, C. Lu, and S. K. Khijwania, “Pressure sensor realized with polarization-maintaining photonic crystal fiber-based Sagnac interferometer,” Appl. Opt. 47, 2835–2839 (2008).
[CrossRef] [PubMed]

C. L. Zhao, X. Yang, C. Lu, W. Jin, and M. S. Demonkan, “Temperature-insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror,” IEEE Photonics Technol. Lett. 16, 2535–2537 (2004).
[CrossRef]

Presby, H. M.

H. M. Presby and C. A. Edwards, “Efficient coupling of polarization-maintaining fiber to laser diodes,” IEEE Photonics Technol. Lett. 4, 897–899 (1992).
[CrossRef]

Rao, M. K.

Shao, L.-Y.

Shum, P.

X. Y. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett. 90, 151113 (2007).
[CrossRef]

Tam, H. Y.

H. Y. Fu, H. Y. Tam, L.-Y. Shao, X. Dong, P. K. A. Wai, C. Lu, and S. K. Khijwania, “Pressure sensor realized with polarization-maintaining photonic crystal fiber-based Sagnac interferometer,” Appl. Opt. 47, 2835–2839 (2008).
[CrossRef] [PubMed]

X. Y. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett. 90, 151113 (2007).
[CrossRef]

Taya, H.

H. Taya, K. Ito, T. Yamada, and M. Yashinuma, “New splicing method for polarization maintaining fiber,” in Optical Fiber Communication Conference, 1989 OSA Technical Digest Series (Optical Society of America, 1989), paper THJ2.

Thapa, R.

Wai, P. K. A.

Wang, Y.

Wang, Z.

J.-G. Liu, L.-F. Xue, G.-Y. Kai, Y.-G. Liu, W.-G. Zhang, Y. Li, Z. Wang, C.-S. Zhang, and X.-Y. Dong, “Mode exiting properties of photonic crystal fiber with optical field incident from a single mode fiber,” Chin. Phys. Lett. 23, 2125–2128 (2006).
[CrossRef]

Washburn, B. R.

Wei, L.

Westbrook, P. S.

Windeler, R. S.

Xiao, L.

Xue, L.-F.

J.-G. Liu, L.-F. Xue, G.-Y. Kai, Y.-G. Liu, W.-G. Zhang, Y. Li, Z. Wang, C.-S. Zhang, and X.-Y. Dong, “Mode exiting properties of photonic crystal fiber with optical field incident from a single mode fiber,” Chin. Phys. Lett. 23, 2125–2128 (2006).
[CrossRef]

Yamada, T.

H. Taya, K. Ito, T. Yamada, and M. Yashinuma, “New splicing method for polarization maintaining fiber,” in Optical Fiber Communication Conference, 1989 OSA Technical Digest Series (Optical Society of America, 1989), paper THJ2.

Yang, X.

C. L. Zhao, X. Yang, C. Lu, W. Jin, and M. S. Demonkan, “Temperature-insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror,” IEEE Photonics Technol. Lett. 16, 2535–2537 (2004).
[CrossRef]

Yashinuma, M.

H. Taya, K. Ito, T. Yamada, and M. Yashinuma, “New splicing method for polarization maintaining fiber,” in Optical Fiber Communication Conference, 1989 OSA Technical Digest Series (Optical Society of America, 1989), paper THJ2.

Zhang, C.-S.

J.-G. Liu, L.-F. Xue, G.-Y. Kai, Y.-G. Liu, W.-G. Zhang, Y. Li, Z. Wang, C.-S. Zhang, and X.-Y. Dong, “Mode exiting properties of photonic crystal fiber with optical field incident from a single mode fiber,” Chin. Phys. Lett. 23, 2125–2128 (2006).
[CrossRef]

Zhang, W.-G.

J.-G. Liu, L.-F. Xue, G.-Y. Kai, Y.-G. Liu, W.-G. Zhang, Y. Li, Z. Wang, C.-S. Zhang, and X.-Y. Dong, “Mode exiting properties of photonic crystal fiber with optical field incident from a single mode fiber,” Chin. Phys. Lett. 23, 2125–2128 (2006).
[CrossRef]

Zhao, C. L.

C. L. Zhao, X. Yang, C. Lu, W. Jin, and M. S. Demonkan, “Temperature-insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror,” IEEE Photonics Technol. Lett. 16, 2535–2537 (2004).
[CrossRef]

Zhao, C-L.

Zhou, D.-P.

Appl. Opt.

Appl. Phys. Lett.

X. Y. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett. 90, 151113 (2007).
[CrossRef]

Chin. Phys. Lett.

J.-G. Liu, L.-F. Xue, G.-Y. Kai, Y.-G. Liu, W.-G. Zhang, Y. Li, Z. Wang, C.-S. Zhang, and X.-Y. Dong, “Mode exiting properties of photonic crystal fiber with optical field incident from a single mode fiber,” Chin. Phys. Lett. 23, 2125–2128 (2006).
[CrossRef]

IEEE Photonics Technol. Lett.

H. M. Presby and C. A. Edwards, “Efficient coupling of polarization-maintaining fiber to laser diodes,” IEEE Photonics Technol. Lett. 4, 897–899 (1992).
[CrossRef]

C. L. Zhao, X. Yang, C. Lu, W. Jin, and M. S. Demonkan, “Temperature-insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror,” IEEE Photonics Technol. Lett. 16, 2535–2537 (2004).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Other

H. Taya, K. Ito, T. Yamada, and M. Yashinuma, “New splicing method for polarization maintaining fiber,” in Optical Fiber Communication Conference, 1989 OSA Technical Digest Series (Optical Society of America, 1989), paper THJ2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Structure of PMPCF-based OFSI. Inset: SEM of the cross section of the PMPCF.

Fig. 2
Fig. 2

(a) Schematic view of the optimized fusion splicer geometry and (b) photograph of one fused splice between the PMPCF and the SMF.

Fig. 3
Fig. 3

Transmission spectra of the OFSIs constructed by 8.4, 9.9, and 12.9 cm PMPCF.

Fig. 4
Fig. 4

Transmission spectra of the intermodal interferometers under Arc 2 time of 1 and 2 s .

Fig. 5
Fig. 5

Spatial frequency spectra of the 8.4, 9.9, and 12.9 cm PMPCF-based OFSIs.

Fig. 6
Fig. 6

Transmission spectra of the 8.4 and 9.9 cm PMPCF-based OFSIs after slightly bending the PMPCF.

Fig. 7
Fig. 7

Spatial frequency spectra of the 8.4 and 9.9 cm PMPCF-based OFSIs.

Tables (1)

Tables Icon

Table 1 Splicing Parameters

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

α M = 20 log [ 2 M PM M s / ( M p 2 + M s 2 ] ,
η e = [ 2 ω 1 ω 2 / ( ω 1 2 + ω 2 2 ) ] 0.5 ,

Metrics