Abstract

We propose and validate a concept of multichannel near-field fiber probe for the collection and discrimination of optical fields of orthogonal polarizations (linear, elliptic, and circular). The system is achieved by connecting to scanning near-field optical microscope fiber tips an optical stage made up of commercial polarizers, fiber couplers, and polarization controllers. Using radially polarized Bessel beams as test objects, we demonstrate the ability of a three-channel fiber tip to simultaneously and independently probe the transverse vector components of the electric field (parallel to the sample surface) and the overall transverse intensity. The polarization ratio of the near-field collection system exceeds 1:1500. The system can be implemented in collection-mode or reflection-mode near-field microscope configurations, with various kinds of probe and light source (of high or low coherence lengths) for a deeper insight of light polarization effects and vector fields at a subwavelength scale.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Appl. Phys. Lett. 44, 651–653(1984).
    [CrossRef]
  2. U. Fischer, U. T. Du¨rig, and D. W. Pohl, “Near-field optical scanning microscopy in reflection,” Appl. Phys. Lett. 52, 249–251 (1988).
    [CrossRef]
  3. D. Courjon, K. Sarayeddine, and M. Spajer, “Scanneling tunneling optical microscopy,” Opt. Commun. 71, 23–28(1989).
    [CrossRef]
  4. R. Bachelot, P. Gleyzes, and A. Boccara, “Near-field optical microscope based on local perturbation of a diffraction spot,” Opt. Lett. 20, 1924–1926 (1995).
    [CrossRef] [PubMed]
  5. E. Betzig, J. K. Trautman, J. S. Weiner, T. D. Harris, and R. Wolfe, “Polarization contrast in near-field scanning optical microscopy,” Appl. Opt. 31, 4563–4568 (1992).
    [CrossRef] [PubMed]
  6. S. Bozhevolnyi, M. Xiao, and O. Keller, “External-reflection near-field optical microscope with cross-polarized detection,” Appl. Opt. 33, 876–880 (1994).
    [CrossRef] [PubMed]
  7. C. Adelmann, J. Hetzler, G. Scheiber, T. Schimmel, M. Wegener, H. B. Weber, and H. von Löhneysen, “Experiments on the depolarization near-field scanning optical microscope,” Appl. Phys. Lett. 74, 179–181 (1999).
    [CrossRef]
  8. E. Betzig, J. Trautman, R. Wolfe, E. Gyorgy, P. Finn, M. Kryde, and C.-H. Chang, “Near-field magneto-optics and high density data storage,” Appl. Phys. Lett. 61, 142–144 (1992).
    [CrossRef]
  9. T. Lacoste, T. Huser, R. Prioli, and H. Heinzelmann, “Contrast enhancement using polarization-modulation scanning near-field optical microscopy (PM-SNOM),” Ultramicroscopy 71, 333–340 (1998).
    [CrossRef]
  10. L. Ramoino, M. Labardi, N. Maghelli, L. Pardi, M. Allegrini, and S. Patane, “Polarization-modulation near-field optical microscope for quantitative local dichroism mapping,” Rev. Sci. Instrum. 73, 2051–2056 (2002).
    [CrossRef]
  11. M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science 326, 550–553(2009).
    [CrossRef] [PubMed]
  12. S. Vignolini, F. Intonti, F. Riboli, D. S. Wiersma, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Polarization-sensitive near-field investigation of photonic crystal microcavities,” Appl. Phys. Lett. 94, 163102 (2009).
    [CrossRef]
  13. T. Grosjean and D. Courjon, “Polarization filtering induced by imaging systems: effect on image structure,” Phys. Rev. E 67, 046611 (2003).
    [CrossRef]
  14. T. Grosjean, M. Mivelle, and G. Burr, “Polarization-dependent extraction properties of bare fiber probes,” Opt. Lett. 35, 357–359 (2010).
    [CrossRef] [PubMed]
  15. A. Bouhelier, F. Ignatovich, A. Bruyant, C. Huang, G. C. des Francs, J.-C. Weeber, A. Dereux, G. P. Wiederrecht, and L. Novotny, “Surface plasmon interference excited by tightly focused laser beams,” Opt. Lett. 32, 2535–2537 (2007).
    [CrossRef] [PubMed]
  16. E. Bortchagovsky, G. C. des Francs, D. Molenda, A. Naber, and U. Fischer, “Transmission of an obliquely incident beam of light through small apertures in a metal film,” Appl. Phys. B 84, 49–53 (2006).
    [CrossRef]
  17. L. Novotny, M. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86, 5251–5254 (2001).
    [CrossRef] [PubMed]
  18. T. Grosjean, A. Fahys, M. Suarez, D. Charraut, R. Salut, and D. Courjon, “Annular nanoantenna on fibre micro-axicon,” J. Microsc. (Oxford) 229, 354–364 (2008).
    [CrossRef]
  19. T. Grosjean, A. Sabac, and D. Courjon, “A versatile and stable device allowing the efficient generation of beams with radial, azimuthal or hybrid polarizations,” Opt. Commun. 252, 12–21 (2005).
    [CrossRef]
  20. R. Herman and T. Wiggins, “Production and Uses of Diffractionless Beams,” J. Opt. Soc. Am. A 8 (6), 932–942 (1991).
    [CrossRef]
  21. Z. Bouchal and M. Olivik, “Non-diffractive vector Bessel beams,” J. Mod. Opt. 42 (8), 1555–1566 (1995).
    [CrossRef]
  22. T. Grosjean, S. S. Saleh, M. A. Suarez, I. A. Ibrahim, V. Piquerey, D. Charraut, and P. Sandoz, “Fiber microaxicons fabricated by a polishing technique for the generation of Bessel-like beams,” Appl. Opt. 46, 8061–8067 (2007).
    [CrossRef] [PubMed]

2010

2009

M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science 326, 550–553(2009).
[CrossRef] [PubMed]

S. Vignolini, F. Intonti, F. Riboli, D. S. Wiersma, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Polarization-sensitive near-field investigation of photonic crystal microcavities,” Appl. Phys. Lett. 94, 163102 (2009).
[CrossRef]

2008

T. Grosjean, A. Fahys, M. Suarez, D. Charraut, R. Salut, and D. Courjon, “Annular nanoantenna on fibre micro-axicon,” J. Microsc. (Oxford) 229, 354–364 (2008).
[CrossRef]

2007

2006

E. Bortchagovsky, G. C. des Francs, D. Molenda, A. Naber, and U. Fischer, “Transmission of an obliquely incident beam of light through small apertures in a metal film,” Appl. Phys. B 84, 49–53 (2006).
[CrossRef]

2005

T. Grosjean, A. Sabac, and D. Courjon, “A versatile and stable device allowing the efficient generation of beams with radial, azimuthal or hybrid polarizations,” Opt. Commun. 252, 12–21 (2005).
[CrossRef]

2003

T. Grosjean and D. Courjon, “Polarization filtering induced by imaging systems: effect on image structure,” Phys. Rev. E 67, 046611 (2003).
[CrossRef]

2002

L. Ramoino, M. Labardi, N. Maghelli, L. Pardi, M. Allegrini, and S. Patane, “Polarization-modulation near-field optical microscope for quantitative local dichroism mapping,” Rev. Sci. Instrum. 73, 2051–2056 (2002).
[CrossRef]

2001

L. Novotny, M. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86, 5251–5254 (2001).
[CrossRef] [PubMed]

1999

C. Adelmann, J. Hetzler, G. Scheiber, T. Schimmel, M. Wegener, H. B. Weber, and H. von Löhneysen, “Experiments on the depolarization near-field scanning optical microscope,” Appl. Phys. Lett. 74, 179–181 (1999).
[CrossRef]

1998

T. Lacoste, T. Huser, R. Prioli, and H. Heinzelmann, “Contrast enhancement using polarization-modulation scanning near-field optical microscopy (PM-SNOM),” Ultramicroscopy 71, 333–340 (1998).
[CrossRef]

1995

1994

1992

E. Betzig, J. Trautman, R. Wolfe, E. Gyorgy, P. Finn, M. Kryde, and C.-H. Chang, “Near-field magneto-optics and high density data storage,” Appl. Phys. Lett. 61, 142–144 (1992).
[CrossRef]

E. Betzig, J. K. Trautman, J. S. Weiner, T. D. Harris, and R. Wolfe, “Polarization contrast in near-field scanning optical microscopy,” Appl. Opt. 31, 4563–4568 (1992).
[CrossRef] [PubMed]

1991

1989

D. Courjon, K. Sarayeddine, and M. Spajer, “Scanneling tunneling optical microscopy,” Opt. Commun. 71, 23–28(1989).
[CrossRef]

1988

U. Fischer, U. T. Du¨rig, and D. W. Pohl, “Near-field optical scanning microscopy in reflection,” Appl. Phys. Lett. 52, 249–251 (1988).
[CrossRef]

1984

D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Appl. Phys. Lett. 44, 651–653(1984).
[CrossRef]

Adelmann, C.

C. Adelmann, J. Hetzler, G. Scheiber, T. Schimmel, M. Wegener, H. B. Weber, and H. von Löhneysen, “Experiments on the depolarization near-field scanning optical microscope,” Appl. Phys. Lett. 74, 179–181 (1999).
[CrossRef]

Allegrini, M.

L. Ramoino, M. Labardi, N. Maghelli, L. Pardi, M. Allegrini, and S. Patane, “Polarization-modulation near-field optical microscope for quantitative local dichroism mapping,” Rev. Sci. Instrum. 73, 2051–2056 (2002).
[CrossRef]

Bachelot, R.

Balet, L.

S. Vignolini, F. Intonti, F. Riboli, D. S. Wiersma, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Polarization-sensitive near-field investigation of photonic crystal microcavities,” Appl. Phys. Lett. 94, 163102 (2009).
[CrossRef]

Betzig, E.

E. Betzig, J. K. Trautman, J. S. Weiner, T. D. Harris, and R. Wolfe, “Polarization contrast in near-field scanning optical microscopy,” Appl. Opt. 31, 4563–4568 (1992).
[CrossRef] [PubMed]

E. Betzig, J. Trautman, R. Wolfe, E. Gyorgy, P. Finn, M. Kryde, and C.-H. Chang, “Near-field magneto-optics and high density data storage,” Appl. Phys. Lett. 61, 142–144 (1992).
[CrossRef]

Beversluis, M.

L. Novotny, M. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86, 5251–5254 (2001).
[CrossRef] [PubMed]

Boccara, A.

Bortchagovsky, E.

E. Bortchagovsky, G. C. des Francs, D. Molenda, A. Naber, and U. Fischer, “Transmission of an obliquely incident beam of light through small apertures in a metal film,” Appl. Phys. B 84, 49–53 (2006).
[CrossRef]

Bouchal, Z.

Z. Bouchal and M. Olivik, “Non-diffractive vector Bessel beams,” J. Mod. Opt. 42 (8), 1555–1566 (1995).
[CrossRef]

Bouhelier, A.

Bozhevolnyi, S.

Brown, T. G.

L. Novotny, M. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86, 5251–5254 (2001).
[CrossRef] [PubMed]

Bruyant, A.

Burr, G.

Burresi, M.

M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science 326, 550–553(2009).
[CrossRef] [PubMed]

Chang, C.-H.

E. Betzig, J. Trautman, R. Wolfe, E. Gyorgy, P. Finn, M. Kryde, and C.-H. Chang, “Near-field magneto-optics and high density data storage,” Appl. Phys. Lett. 61, 142–144 (1992).
[CrossRef]

Charraut, D.

Courjon, D.

T. Grosjean, A. Fahys, M. Suarez, D. Charraut, R. Salut, and D. Courjon, “Annular nanoantenna on fibre micro-axicon,” J. Microsc. (Oxford) 229, 354–364 (2008).
[CrossRef]

T. Grosjean, A. Sabac, and D. Courjon, “A versatile and stable device allowing the efficient generation of beams with radial, azimuthal or hybrid polarizations,” Opt. Commun. 252, 12–21 (2005).
[CrossRef]

T. Grosjean and D. Courjon, “Polarization filtering induced by imaging systems: effect on image structure,” Phys. Rev. E 67, 046611 (2003).
[CrossRef]

D. Courjon, K. Sarayeddine, and M. Spajer, “Scanneling tunneling optical microscopy,” Opt. Commun. 71, 23–28(1989).
[CrossRef]

Denk, W.

D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Appl. Phys. Lett. 44, 651–653(1984).
[CrossRef]

Dereux, A.

des Francs, G. C.

A. Bouhelier, F. Ignatovich, A. Bruyant, C. Huang, G. C. des Francs, J.-C. Weeber, A. Dereux, G. P. Wiederrecht, and L. Novotny, “Surface plasmon interference excited by tightly focused laser beams,” Opt. Lett. 32, 2535–2537 (2007).
[CrossRef] [PubMed]

E. Bortchagovsky, G. C. des Francs, D. Molenda, A. Naber, and U. Fischer, “Transmission of an obliquely incident beam of light through small apertures in a metal film,” Appl. Phys. B 84, 49–53 (2006).
[CrossRef]

Du¨rig, U. T.

U. Fischer, U. T. Du¨rig, and D. W. Pohl, “Near-field optical scanning microscopy in reflection,” Appl. Phys. Lett. 52, 249–251 (1988).
[CrossRef]

Fahys, A.

T. Grosjean, A. Fahys, M. Suarez, D. Charraut, R. Salut, and D. Courjon, “Annular nanoantenna on fibre micro-axicon,” J. Microsc. (Oxford) 229, 354–364 (2008).
[CrossRef]

Finn, P.

E. Betzig, J. Trautman, R. Wolfe, E. Gyorgy, P. Finn, M. Kryde, and C.-H. Chang, “Near-field magneto-optics and high density data storage,” Appl. Phys. Lett. 61, 142–144 (1992).
[CrossRef]

Fiore, A.

S. Vignolini, F. Intonti, F. Riboli, D. S. Wiersma, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Polarization-sensitive near-field investigation of photonic crystal microcavities,” Appl. Phys. Lett. 94, 163102 (2009).
[CrossRef]

Fischer, U.

E. Bortchagovsky, G. C. des Francs, D. Molenda, A. Naber, and U. Fischer, “Transmission of an obliquely incident beam of light through small apertures in a metal film,” Appl. Phys. B 84, 49–53 (2006).
[CrossRef]

U. Fischer, U. T. Du¨rig, and D. W. Pohl, “Near-field optical scanning microscopy in reflection,” Appl. Phys. Lett. 52, 249–251 (1988).
[CrossRef]

Francardi, M.

S. Vignolini, F. Intonti, F. Riboli, D. S. Wiersma, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Polarization-sensitive near-field investigation of photonic crystal microcavities,” Appl. Phys. Lett. 94, 163102 (2009).
[CrossRef]

Gerardino, A.

S. Vignolini, F. Intonti, F. Riboli, D. S. Wiersma, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Polarization-sensitive near-field investigation of photonic crystal microcavities,” Appl. Phys. Lett. 94, 163102 (2009).
[CrossRef]

Gleyzes, P.

Grosjean, T.

T. Grosjean, M. Mivelle, and G. Burr, “Polarization-dependent extraction properties of bare fiber probes,” Opt. Lett. 35, 357–359 (2010).
[CrossRef] [PubMed]

T. Grosjean, A. Fahys, M. Suarez, D. Charraut, R. Salut, and D. Courjon, “Annular nanoantenna on fibre micro-axicon,” J. Microsc. (Oxford) 229, 354–364 (2008).
[CrossRef]

T. Grosjean, S. S. Saleh, M. A. Suarez, I. A. Ibrahim, V. Piquerey, D. Charraut, and P. Sandoz, “Fiber microaxicons fabricated by a polishing technique for the generation of Bessel-like beams,” Appl. Opt. 46, 8061–8067 (2007).
[CrossRef] [PubMed]

T. Grosjean, A. Sabac, and D. Courjon, “A versatile and stable device allowing the efficient generation of beams with radial, azimuthal or hybrid polarizations,” Opt. Commun. 252, 12–21 (2005).
[CrossRef]

T. Grosjean and D. Courjon, “Polarization filtering induced by imaging systems: effect on image structure,” Phys. Rev. E 67, 046611 (2003).
[CrossRef]

Gurioli, M.

S. Vignolini, F. Intonti, F. Riboli, D. S. Wiersma, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Polarization-sensitive near-field investigation of photonic crystal microcavities,” Appl. Phys. Lett. 94, 163102 (2009).
[CrossRef]

Gyorgy, E.

E. Betzig, J. Trautman, R. Wolfe, E. Gyorgy, P. Finn, M. Kryde, and C.-H. Chang, “Near-field magneto-optics and high density data storage,” Appl. Phys. Lett. 61, 142–144 (1992).
[CrossRef]

Harris, T. D.

Heideman, R.

M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science 326, 550–553(2009).
[CrossRef] [PubMed]

Heinzelmann, H.

T. Lacoste, T. Huser, R. Prioli, and H. Heinzelmann, “Contrast enhancement using polarization-modulation scanning near-field optical microscopy (PM-SNOM),” Ultramicroscopy 71, 333–340 (1998).
[CrossRef]

Herman, R.

Hetzler, J.

C. Adelmann, J. Hetzler, G. Scheiber, T. Schimmel, M. Wegener, H. B. Weber, and H. von Löhneysen, “Experiments on the depolarization near-field scanning optical microscope,” Appl. Phys. Lett. 74, 179–181 (1999).
[CrossRef]

Huang, C.

Huser, T.

T. Lacoste, T. Huser, R. Prioli, and H. Heinzelmann, “Contrast enhancement using polarization-modulation scanning near-field optical microscopy (PM-SNOM),” Ultramicroscopy 71, 333–340 (1998).
[CrossRef]

Ibrahim, I. A.

Ignatovich, F.

Intonti, F.

S. Vignolini, F. Intonti, F. Riboli, D. S. Wiersma, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Polarization-sensitive near-field investigation of photonic crystal microcavities,” Appl. Phys. Lett. 94, 163102 (2009).
[CrossRef]

Kampfrath, T.

M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science 326, 550–553(2009).
[CrossRef] [PubMed]

Keller, O.

Kryde, M.

E. Betzig, J. Trautman, R. Wolfe, E. Gyorgy, P. Finn, M. Kryde, and C.-H. Chang, “Near-field magneto-optics and high density data storage,” Appl. Phys. Lett. 61, 142–144 (1992).
[CrossRef]

Kuipers, L.

M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science 326, 550–553(2009).
[CrossRef] [PubMed]

Labardi, M.

L. Ramoino, M. Labardi, N. Maghelli, L. Pardi, M. Allegrini, and S. Patane, “Polarization-modulation near-field optical microscope for quantitative local dichroism mapping,” Rev. Sci. Instrum. 73, 2051–2056 (2002).
[CrossRef]

Lacoste, T.

T. Lacoste, T. Huser, R. Prioli, and H. Heinzelmann, “Contrast enhancement using polarization-modulation scanning near-field optical microscopy (PM-SNOM),” Ultramicroscopy 71, 333–340 (1998).
[CrossRef]

Lanz, M.

D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Appl. Phys. Lett. 44, 651–653(1984).
[CrossRef]

Leinse, A.

M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science 326, 550–553(2009).
[CrossRef] [PubMed]

Li, L. H.

S. Vignolini, F. Intonti, F. Riboli, D. S. Wiersma, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Polarization-sensitive near-field investigation of photonic crystal microcavities,” Appl. Phys. Lett. 94, 163102 (2009).
[CrossRef]

Maghelli, N.

L. Ramoino, M. Labardi, N. Maghelli, L. Pardi, M. Allegrini, and S. Patane, “Polarization-modulation near-field optical microscope for quantitative local dichroism mapping,” Rev. Sci. Instrum. 73, 2051–2056 (2002).
[CrossRef]

Mivelle, M.

Molenda, D.

E. Bortchagovsky, G. C. des Francs, D. Molenda, A. Naber, and U. Fischer, “Transmission of an obliquely incident beam of light through small apertures in a metal film,” Appl. Phys. B 84, 49–53 (2006).
[CrossRef]

Naber, A.

E. Bortchagovsky, G. C. des Francs, D. Molenda, A. Naber, and U. Fischer, “Transmission of an obliquely incident beam of light through small apertures in a metal film,” Appl. Phys. B 84, 49–53 (2006).
[CrossRef]

Novotny, L.

Olivik, M.

Z. Bouchal and M. Olivik, “Non-diffractive vector Bessel beams,” J. Mod. Opt. 42 (8), 1555–1566 (1995).
[CrossRef]

Pardi, L.

L. Ramoino, M. Labardi, N. Maghelli, L. Pardi, M. Allegrini, and S. Patane, “Polarization-modulation near-field optical microscope for quantitative local dichroism mapping,” Rev. Sci. Instrum. 73, 2051–2056 (2002).
[CrossRef]

Patane, S.

L. Ramoino, M. Labardi, N. Maghelli, L. Pardi, M. Allegrini, and S. Patane, “Polarization-modulation near-field optical microscope for quantitative local dichroism mapping,” Rev. Sci. Instrum. 73, 2051–2056 (2002).
[CrossRef]

Piquerey, V.

Pohl, D. W.

U. Fischer, U. T. Du¨rig, and D. W. Pohl, “Near-field optical scanning microscopy in reflection,” Appl. Phys. Lett. 52, 249–251 (1988).
[CrossRef]

D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Appl. Phys. Lett. 44, 651–653(1984).
[CrossRef]

Prioli, R.

T. Lacoste, T. Huser, R. Prioli, and H. Heinzelmann, “Contrast enhancement using polarization-modulation scanning near-field optical microscopy (PM-SNOM),” Ultramicroscopy 71, 333–340 (1998).
[CrossRef]

Ramoino, L.

L. Ramoino, M. Labardi, N. Maghelli, L. Pardi, M. Allegrini, and S. Patane, “Polarization-modulation near-field optical microscope for quantitative local dichroism mapping,” Rev. Sci. Instrum. 73, 2051–2056 (2002).
[CrossRef]

Riboli, F.

S. Vignolini, F. Intonti, F. Riboli, D. S. Wiersma, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Polarization-sensitive near-field investigation of photonic crystal microcavities,” Appl. Phys. Lett. 94, 163102 (2009).
[CrossRef]

Sabac, A.

T. Grosjean, A. Sabac, and D. Courjon, “A versatile and stable device allowing the efficient generation of beams with radial, azimuthal or hybrid polarizations,” Opt. Commun. 252, 12–21 (2005).
[CrossRef]

Saleh, S. S.

Salut, R.

T. Grosjean, A. Fahys, M. Suarez, D. Charraut, R. Salut, and D. Courjon, “Annular nanoantenna on fibre micro-axicon,” J. Microsc. (Oxford) 229, 354–364 (2008).
[CrossRef]

Sandoz, P.

Sarayeddine, K.

D. Courjon, K. Sarayeddine, and M. Spajer, “Scanneling tunneling optical microscopy,” Opt. Commun. 71, 23–28(1989).
[CrossRef]

Scheiber, G.

C. Adelmann, J. Hetzler, G. Scheiber, T. Schimmel, M. Wegener, H. B. Weber, and H. von Löhneysen, “Experiments on the depolarization near-field scanning optical microscope,” Appl. Phys. Lett. 74, 179–181 (1999).
[CrossRef]

Schimmel, T.

C. Adelmann, J. Hetzler, G. Scheiber, T. Schimmel, M. Wegener, H. B. Weber, and H. von Löhneysen, “Experiments on the depolarization near-field scanning optical microscope,” Appl. Phys. Lett. 74, 179–181 (1999).
[CrossRef]

Schoenmaker, H.

M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science 326, 550–553(2009).
[CrossRef] [PubMed]

Spajer, M.

D. Courjon, K. Sarayeddine, and M. Spajer, “Scanneling tunneling optical microscopy,” Opt. Commun. 71, 23–28(1989).
[CrossRef]

Suarez, M.

T. Grosjean, A. Fahys, M. Suarez, D. Charraut, R. Salut, and D. Courjon, “Annular nanoantenna on fibre micro-axicon,” J. Microsc. (Oxford) 229, 354–364 (2008).
[CrossRef]

Suarez, M. A.

Trautman, J.

E. Betzig, J. Trautman, R. Wolfe, E. Gyorgy, P. Finn, M. Kryde, and C.-H. Chang, “Near-field magneto-optics and high density data storage,” Appl. Phys. Lett. 61, 142–144 (1992).
[CrossRef]

Trautman, J. K.

van Oosten, D.

M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science 326, 550–553(2009).
[CrossRef] [PubMed]

Vignolini, S.

S. Vignolini, F. Intonti, F. Riboli, D. S. Wiersma, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Polarization-sensitive near-field investigation of photonic crystal microcavities,” Appl. Phys. Lett. 94, 163102 (2009).
[CrossRef]

von Löhneysen, H.

C. Adelmann, J. Hetzler, G. Scheiber, T. Schimmel, M. Wegener, H. B. Weber, and H. von Löhneysen, “Experiments on the depolarization near-field scanning optical microscope,” Appl. Phys. Lett. 74, 179–181 (1999).
[CrossRef]

Weber, H. B.

C. Adelmann, J. Hetzler, G. Scheiber, T. Schimmel, M. Wegener, H. B. Weber, and H. von Löhneysen, “Experiments on the depolarization near-field scanning optical microscope,” Appl. Phys. Lett. 74, 179–181 (1999).
[CrossRef]

Weeber, J.-C.

Wegener, M.

C. Adelmann, J. Hetzler, G. Scheiber, T. Schimmel, M. Wegener, H. B. Weber, and H. von Löhneysen, “Experiments on the depolarization near-field scanning optical microscope,” Appl. Phys. Lett. 74, 179–181 (1999).
[CrossRef]

Weiner, J. S.

Wiederrecht, G. P.

Wiersma, D. S.

S. Vignolini, F. Intonti, F. Riboli, D. S. Wiersma, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Polarization-sensitive near-field investigation of photonic crystal microcavities,” Appl. Phys. Lett. 94, 163102 (2009).
[CrossRef]

Wiggins, T.

Wolfe, R.

E. Betzig, J. K. Trautman, J. S. Weiner, T. D. Harris, and R. Wolfe, “Polarization contrast in near-field scanning optical microscopy,” Appl. Opt. 31, 4563–4568 (1992).
[CrossRef] [PubMed]

E. Betzig, J. Trautman, R. Wolfe, E. Gyorgy, P. Finn, M. Kryde, and C.-H. Chang, “Near-field magneto-optics and high density data storage,” Appl. Phys. Lett. 61, 142–144 (1992).
[CrossRef]

Xiao, M.

Youngworth, K. S.

L. Novotny, M. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86, 5251–5254 (2001).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. B

E. Bortchagovsky, G. C. des Francs, D. Molenda, A. Naber, and U. Fischer, “Transmission of an obliquely incident beam of light through small apertures in a metal film,” Appl. Phys. B 84, 49–53 (2006).
[CrossRef]

Appl. Phys. Lett.

S. Vignolini, F. Intonti, F. Riboli, D. S. Wiersma, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Polarization-sensitive near-field investigation of photonic crystal microcavities,” Appl. Phys. Lett. 94, 163102 (2009).
[CrossRef]

C. Adelmann, J. Hetzler, G. Scheiber, T. Schimmel, M. Wegener, H. B. Weber, and H. von Löhneysen, “Experiments on the depolarization near-field scanning optical microscope,” Appl. Phys. Lett. 74, 179–181 (1999).
[CrossRef]

E. Betzig, J. Trautman, R. Wolfe, E. Gyorgy, P. Finn, M. Kryde, and C.-H. Chang, “Near-field magneto-optics and high density data storage,” Appl. Phys. Lett. 61, 142–144 (1992).
[CrossRef]

D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Appl. Phys. Lett. 44, 651–653(1984).
[CrossRef]

U. Fischer, U. T. Du¨rig, and D. W. Pohl, “Near-field optical scanning microscopy in reflection,” Appl. Phys. Lett. 52, 249–251 (1988).
[CrossRef]

J. Microsc. (Oxford)

T. Grosjean, A. Fahys, M. Suarez, D. Charraut, R. Salut, and D. Courjon, “Annular nanoantenna on fibre micro-axicon,” J. Microsc. (Oxford) 229, 354–364 (2008).
[CrossRef]

J. Mod. Opt.

Z. Bouchal and M. Olivik, “Non-diffractive vector Bessel beams,” J. Mod. Opt. 42 (8), 1555–1566 (1995).
[CrossRef]

J. Opt. Soc. Am. A

Opt. Commun.

T. Grosjean, A. Sabac, and D. Courjon, “A versatile and stable device allowing the efficient generation of beams with radial, azimuthal or hybrid polarizations,” Opt. Commun. 252, 12–21 (2005).
[CrossRef]

D. Courjon, K. Sarayeddine, and M. Spajer, “Scanneling tunneling optical microscopy,” Opt. Commun. 71, 23–28(1989).
[CrossRef]

Opt. Lett.

Phys. Rev. E

T. Grosjean and D. Courjon, “Polarization filtering induced by imaging systems: effect on image structure,” Phys. Rev. E 67, 046611 (2003).
[CrossRef]

Phys. Rev. Lett.

L. Novotny, M. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86, 5251–5254 (2001).
[CrossRef] [PubMed]

Rev. Sci. Instrum.

L. Ramoino, M. Labardi, N. Maghelli, L. Pardi, M. Allegrini, and S. Patane, “Polarization-modulation near-field optical microscope for quantitative local dichroism mapping,” Rev. Sci. Instrum. 73, 2051–2056 (2002).
[CrossRef]

Science

M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science 326, 550–553(2009).
[CrossRef] [PubMed]

Ultramicroscopy

T. Lacoste, T. Huser, R. Prioli, and H. Heinzelmann, “Contrast enhancement using polarization-modulation scanning near-field optical microscopy (PM-SNOM),” Ultramicroscopy 71, 333–340 (1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Scheme of a three-channel fiber tip. Two channels, connected to detectors D 1 and D 2 , give intensity information about transverse field components E x and E y , respectively. The last channel measures the overall transverse intensity. Inset: collection diagram of polarizing channels 1 and 2 (associated with D 1 and D 2 ). Solid and dashed lines: ideal diagrams of channels 1 and 2, respectively; squares and triangles: experimental measurements for channels 1 and 2, respectively. The polarization ratio of the system is approximately 1:1500.

Fig. 2
Fig. 2

(a)–(c) Bessel beam acquisitions through channels 3, 1, and 2, respectively. Simulation of the Bessel beam vectorial structure in the transverse plane: (d) intensity of the overall transverse electric field; (e), (f) intensity of the orthogonal transverse components E x and E y , respectively. Image size: 4 μm × 4 μm .

Fig. 3
Fig. 3

Scheme of the experimental setup for the generation and vectorial characterization of a radially polarized evanescent Bessel beam.

Fig. 4
Fig. 4

(a)–(c) Evanescent Bessel beam acquisition through channels 3, ,1 and 2, respectively. Simulation of the Bessel beam vectorial structure in the transverse plane: (d) intensity of the overall transverse electric field; (e), (f) intensity of the orthogonal transverse components E x and E y , respectively. Image size: 2.7 μm × 2.7 μm .

Metrics