Abstract

Laser-induced growth of optical damage can limit component lifetime and, therefore, increase operating costs of large-aperture fusion-class laser systems. While far-infrared (IR) lasers have been used previously to treat laser damage on fused silica optics and render it benign, little is known about the effectiveness of less-absorbing mid-IR lasers for this purpose. In this study, we quantitatively compare the effectiveness and efficiency of mid-IR (4.6μm) versus far-IR (10.6μm) lasers in mitigating damage growth on fused silica surfaces. The nonlinear volumetric heating due to mid-IR laser absorption is analyzed by solving the heat equation numerically, taking into account the temperature-dependent absorption coefficient α(T) at λ=4.6μm, while far-IR laser heating is well described by a linear analytic approximation to the laser-driven temperature rise. In both cases, the predicted results agree well with surface temperature measurements based on IR radiometry, as well as subsurface fictive temperature measurements based on confocal Raman microscopy. Damage mitigation efficiency is assessed using a figure of merit (FOM) relating the crack healing depth to laser power required, under minimally ablative conditions. Based on our FOM, we show that, for cracks up to at least 500μm in depth, mitigation with a 4.6μm mid-IR laser is more efficient than mitigation with a 10.6μm far-IR laser. This conclusion is corroborated by direct application of each laser system to the mitigation of pulsed laser-induced damage possessing fractures up to 225μm in depth.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A. Norton, L. W. Hrubesh, W. Zhouling, E. E. Donohue, M. D. Feit, M. R. Kozlowski, D. Milam, K. P. Neeb, W. A. Molander, A. M. Rubenchik, W. D. Sell, and P. Wegner, “Growth of laser initiated damage in fused silica at 351 nm,” Proc. SPIE 4347, 468–468 (2001).
    [CrossRef]
  2. L. W. Hrubesh, M. A. Norton, W. A. Molander, E. E. Donohue, S. M. Maricle, B. M. Penetrante, R. M. Brusasco, W. Grundler, J. A. Butler, J. W. Carr, R. M. Hill, L. J. Summers, M. D. Feit, A. Rubenchik, M. H. Key, P. J. Wegner, A. K. Burnham, L. A. Hackel, and M. R. Kozlowski, “Methods for mitigating surface damage growth in NIF final optics,” Proc. SPIE 4679, 23–33 (2002).
    [CrossRef]
  3. R. M. Brusasco, B. M. Penetrante, J. A. Butler, and L. W. Hrubesh, “Localized CO2 laser treatment for mitigation of 351 nm damage growth on fused silica,” Proc. SPIE 4679, 40–47 (2002).
    [CrossRef]
  4. I. L. Bass, V. G. Draggoo, G. M. Guss, R. P. Hackel, and M. A. Norton, “Mitigation of laser damage growth in fused silica NIF optics with a galvanometer scanned CO2 laser,” Proc. SPIE 6261, 62612A (2006).
    [CrossRef]
  5. I. L. Bass, G. M. Guss, and R. P. Hackel, “Mitigation of laser damage growth in fused silica with a galvanometer scanned CO2 laser,” Proc. SPIE 5991, 59910C (2005).
    [CrossRef]
  6. S. Palmier, L. Gallais, M. Commandre, P. Cormont, R. Courchinoux, L. Lamaignere, J. L. Rullier, and P. Legros, “Optimization of a laser mitigation process in damaged fused silica,” Appl. Surf. Sci. 255, 5532–5536 (2009).
    [CrossRef]
  7. M. J. Matthews, I. L. Bass, G. M. Guss, C. C. Widmayer, and F. L. Ravizza, “Downstream intensification effects associated with CO2 laser mitigation of fused silica,” Proc. SPIE 6720, 67200A (2007).
    [CrossRef]
  8. E. Mendez, K. M. Nowak, H. J. Baker, F. J. Villarreal, and D. R. Hall, “Localized CO2 laser damage repair of fused silica optics,” Appl. Opt. 45, 5358–5367 (2006).
    [CrossRef] [PubMed]
  9. R. Kitamura, L. Pilon, and M. Jonasz, “Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature,” Appl. Opt. 46, 8118–8133 (2007).
    [CrossRef] [PubMed]
  10. G. Guss, I. Bass, V. Draggoo, R. Hackel, S. Payne, M. Lancaster, and P. Mak, “Mitigation of growth of laser initiated surface damage in fused silica using a 4.6-micron wavelength laser,” Proc. SPIE 6403, 64030M (2006).
    [CrossRef]
  11. A. D. McLachlan and F. P. Meyer, “Temperature dependence of the extinction coefficient of fused-silica for CO2-laser wavelengths,” Appl. Opt. 26, 1728–1731 (1987).
    [CrossRef] [PubMed]
  12. S. T. Yang, M. J. Matthews, S. Elhadj, V. G. Draggoo, and S. E. Bisson, “Thermal transport in CO2 laser irradiated fused silica: in situ measurements and analysis,” J. Appl. Phys. 106, 1031061–1031067 (2009).
  13. O. S. Heavens, Optical Properties of Thin Solid Films (Dover, 1965), Eq. 4(116), p. 77.
  14. H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, 2nd ed. (Oxford U. Press, 2000).
  15. M. v. Allmen and A. Blatter, Laser-Beam Interactions with Materials, 2nd ed., Springer Series in Materials Science (Springer, 1995).
    [CrossRef]
  16. M. Mansuripur, G. A. N. Connell, and J. W. Goodman, “Laser-induced local heating of multilayers,” Appl. Opt. 21, 1106–1114 (1982).
    [CrossRef] [PubMed]
  17. S. Elhadj, M. J. Matthews, S. T. Yang, D. Cooke, J. S. Stolken, R. M. Vignes, V. G. Draggoo, and S. E. Bisson, “Determination of the intrinsic temperature dependent thermal conductivity from analysis of surface temperature of laser irradiated materials,” Appl. Phys. Lett. 96, 071110 –071112 (2010).
    [CrossRef]
  18. M. A. Norton, J. J. Adams, C. W. Carr, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, J. A. Jarboe, M. J. Matthews, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage in fused silica: diameter to depth ratio,” Proc. SPIE 6720, 67200H (2007).
    [CrossRef]
  19. Z. Jian, J. Sullivan, J. Zayac, and T. D. Bennett, “Structural modification of silica glass by laser scanning,” J. Appl. Phys. 95, 5475–5482 (2004).
    [CrossRef]
  20. M. J. Matthews, R. M. Vignes, D. Cooke, S. T. Yang, and J. S. Stolken, “Analysis of micro-structural relaxation phenomena in laser-modified fused silica using confocal Raman microscopy,” Opt. Lett. 35, 1311–1313 (2010).
    [CrossRef] [PubMed]
  21. A. E. Geissberger and F. L. Galeener, “Raman studies of vitreous SiO2 versus fictive temperature,” Phys. Rev. B 28, 3266–3271 (1983).
    [CrossRef]
  22. M. D. Feit and A. M. Rubenchik, “Mechanisms of CO2 laser mitigation of laser damage growth in fused silica,” Proc. SPIE 4932, 91–102 (2003).
    [CrossRef]
  23. R. H. Doremus, “Viscosity of silica,” J. Appl. Phys. 92, 7619–7629 (2002).
    [CrossRef]
  24. N. M. Parikh, “Effect of atmosphere on surface tension of glass,” J. Am. Ceram. Soc. 41, 18–22 (1958).
    [CrossRef]

2010

S. Elhadj, M. J. Matthews, S. T. Yang, D. Cooke, J. S. Stolken, R. M. Vignes, V. G. Draggoo, and S. E. Bisson, “Determination of the intrinsic temperature dependent thermal conductivity from analysis of surface temperature of laser irradiated materials,” Appl. Phys. Lett. 96, 071110 –071112 (2010).
[CrossRef]

M. J. Matthews, R. M. Vignes, D. Cooke, S. T. Yang, and J. S. Stolken, “Analysis of micro-structural relaxation phenomena in laser-modified fused silica using confocal Raman microscopy,” Opt. Lett. 35, 1311–1313 (2010).
[CrossRef] [PubMed]

2009

S. Palmier, L. Gallais, M. Commandre, P. Cormont, R. Courchinoux, L. Lamaignere, J. L. Rullier, and P. Legros, “Optimization of a laser mitigation process in damaged fused silica,” Appl. Surf. Sci. 255, 5532–5536 (2009).
[CrossRef]

S. T. Yang, M. J. Matthews, S. Elhadj, V. G. Draggoo, and S. E. Bisson, “Thermal transport in CO2 laser irradiated fused silica: in situ measurements and analysis,” J. Appl. Phys. 106, 1031061–1031067 (2009).

2007

M. J. Matthews, I. L. Bass, G. M. Guss, C. C. Widmayer, and F. L. Ravizza, “Downstream intensification effects associated with CO2 laser mitigation of fused silica,” Proc. SPIE 6720, 67200A (2007).
[CrossRef]

M. A. Norton, J. J. Adams, C. W. Carr, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, J. A. Jarboe, M. J. Matthews, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage in fused silica: diameter to depth ratio,” Proc. SPIE 6720, 67200H (2007).
[CrossRef]

R. Kitamura, L. Pilon, and M. Jonasz, “Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature,” Appl. Opt. 46, 8118–8133 (2007).
[CrossRef] [PubMed]

2006

E. Mendez, K. M. Nowak, H. J. Baker, F. J. Villarreal, and D. R. Hall, “Localized CO2 laser damage repair of fused silica optics,” Appl. Opt. 45, 5358–5367 (2006).
[CrossRef] [PubMed]

G. Guss, I. Bass, V. Draggoo, R. Hackel, S. Payne, M. Lancaster, and P. Mak, “Mitigation of growth of laser initiated surface damage in fused silica using a 4.6-micron wavelength laser,” Proc. SPIE 6403, 64030M (2006).
[CrossRef]

I. L. Bass, V. G. Draggoo, G. M. Guss, R. P. Hackel, and M. A. Norton, “Mitigation of laser damage growth in fused silica NIF optics with a galvanometer scanned CO2 laser,” Proc. SPIE 6261, 62612A (2006).
[CrossRef]

2005

I. L. Bass, G. M. Guss, and R. P. Hackel, “Mitigation of laser damage growth in fused silica with a galvanometer scanned CO2 laser,” Proc. SPIE 5991, 59910C (2005).
[CrossRef]

2004

Z. Jian, J. Sullivan, J. Zayac, and T. D. Bennett, “Structural modification of silica glass by laser scanning,” J. Appl. Phys. 95, 5475–5482 (2004).
[CrossRef]

2003

M. D. Feit and A. M. Rubenchik, “Mechanisms of CO2 laser mitigation of laser damage growth in fused silica,” Proc. SPIE 4932, 91–102 (2003).
[CrossRef]

2002

R. H. Doremus, “Viscosity of silica,” J. Appl. Phys. 92, 7619–7629 (2002).
[CrossRef]

L. W. Hrubesh, M. A. Norton, W. A. Molander, E. E. Donohue, S. M. Maricle, B. M. Penetrante, R. M. Brusasco, W. Grundler, J. A. Butler, J. W. Carr, R. M. Hill, L. J. Summers, M. D. Feit, A. Rubenchik, M. H. Key, P. J. Wegner, A. K. Burnham, L. A. Hackel, and M. R. Kozlowski, “Methods for mitigating surface damage growth in NIF final optics,” Proc. SPIE 4679, 23–33 (2002).
[CrossRef]

R. M. Brusasco, B. M. Penetrante, J. A. Butler, and L. W. Hrubesh, “Localized CO2 laser treatment for mitigation of 351 nm damage growth on fused silica,” Proc. SPIE 4679, 40–47 (2002).
[CrossRef]

2001

M. A. Norton, L. W. Hrubesh, W. Zhouling, E. E. Donohue, M. D. Feit, M. R. Kozlowski, D. Milam, K. P. Neeb, W. A. Molander, A. M. Rubenchik, W. D. Sell, and P. Wegner, “Growth of laser initiated damage in fused silica at 351 nm,” Proc. SPIE 4347, 468–468 (2001).
[CrossRef]

2000

H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, 2nd ed. (Oxford U. Press, 2000).

1995

M. v. Allmen and A. Blatter, Laser-Beam Interactions with Materials, 2nd ed., Springer Series in Materials Science (Springer, 1995).
[CrossRef]

1987

1983

A. E. Geissberger and F. L. Galeener, “Raman studies of vitreous SiO2 versus fictive temperature,” Phys. Rev. B 28, 3266–3271 (1983).
[CrossRef]

1982

1965

O. S. Heavens, Optical Properties of Thin Solid Films (Dover, 1965), Eq. 4(116), p. 77.

1958

N. M. Parikh, “Effect of atmosphere on surface tension of glass,” J. Am. Ceram. Soc. 41, 18–22 (1958).
[CrossRef]

Adams, J. J.

M. A. Norton, J. J. Adams, C. W. Carr, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, J. A. Jarboe, M. J. Matthews, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage in fused silica: diameter to depth ratio,” Proc. SPIE 6720, 67200H (2007).
[CrossRef]

Allmen, M. v.

M. v. Allmen and A. Blatter, Laser-Beam Interactions with Materials, 2nd ed., Springer Series in Materials Science (Springer, 1995).
[CrossRef]

Baker, H. J.

Bass, I.

G. Guss, I. Bass, V. Draggoo, R. Hackel, S. Payne, M. Lancaster, and P. Mak, “Mitigation of growth of laser initiated surface damage in fused silica using a 4.6-micron wavelength laser,” Proc. SPIE 6403, 64030M (2006).
[CrossRef]

Bass, I. L.

M. J. Matthews, I. L. Bass, G. M. Guss, C. C. Widmayer, and F. L. Ravizza, “Downstream intensification effects associated with CO2 laser mitigation of fused silica,” Proc. SPIE 6720, 67200A (2007).
[CrossRef]

I. L. Bass, V. G. Draggoo, G. M. Guss, R. P. Hackel, and M. A. Norton, “Mitigation of laser damage growth in fused silica NIF optics with a galvanometer scanned CO2 laser,” Proc. SPIE 6261, 62612A (2006).
[CrossRef]

I. L. Bass, G. M. Guss, and R. P. Hackel, “Mitigation of laser damage growth in fused silica with a galvanometer scanned CO2 laser,” Proc. SPIE 5991, 59910C (2005).
[CrossRef]

Bennett, T. D.

Z. Jian, J. Sullivan, J. Zayac, and T. D. Bennett, “Structural modification of silica glass by laser scanning,” J. Appl. Phys. 95, 5475–5482 (2004).
[CrossRef]

Bisson, S. E.

S. Elhadj, M. J. Matthews, S. T. Yang, D. Cooke, J. S. Stolken, R. M. Vignes, V. G. Draggoo, and S. E. Bisson, “Determination of the intrinsic temperature dependent thermal conductivity from analysis of surface temperature of laser irradiated materials,” Appl. Phys. Lett. 96, 071110 –071112 (2010).
[CrossRef]

S. T. Yang, M. J. Matthews, S. Elhadj, V. G. Draggoo, and S. E. Bisson, “Thermal transport in CO2 laser irradiated fused silica: in situ measurements and analysis,” J. Appl. Phys. 106, 1031061–1031067 (2009).

Blatter, A.

M. v. Allmen and A. Blatter, Laser-Beam Interactions with Materials, 2nd ed., Springer Series in Materials Science (Springer, 1995).
[CrossRef]

Brusasco, R. M.

L. W. Hrubesh, M. A. Norton, W. A. Molander, E. E. Donohue, S. M. Maricle, B. M. Penetrante, R. M. Brusasco, W. Grundler, J. A. Butler, J. W. Carr, R. M. Hill, L. J. Summers, M. D. Feit, A. Rubenchik, M. H. Key, P. J. Wegner, A. K. Burnham, L. A. Hackel, and M. R. Kozlowski, “Methods for mitigating surface damage growth in NIF final optics,” Proc. SPIE 4679, 23–33 (2002).
[CrossRef]

R. M. Brusasco, B. M. Penetrante, J. A. Butler, and L. W. Hrubesh, “Localized CO2 laser treatment for mitigation of 351 nm damage growth on fused silica,” Proc. SPIE 4679, 40–47 (2002).
[CrossRef]

Burnham, A. K.

L. W. Hrubesh, M. A. Norton, W. A. Molander, E. E. Donohue, S. M. Maricle, B. M. Penetrante, R. M. Brusasco, W. Grundler, J. A. Butler, J. W. Carr, R. M. Hill, L. J. Summers, M. D. Feit, A. Rubenchik, M. H. Key, P. J. Wegner, A. K. Burnham, L. A. Hackel, and M. R. Kozlowski, “Methods for mitigating surface damage growth in NIF final optics,” Proc. SPIE 4679, 23–33 (2002).
[CrossRef]

Butler, J. A.

L. W. Hrubesh, M. A. Norton, W. A. Molander, E. E. Donohue, S. M. Maricle, B. M. Penetrante, R. M. Brusasco, W. Grundler, J. A. Butler, J. W. Carr, R. M. Hill, L. J. Summers, M. D. Feit, A. Rubenchik, M. H. Key, P. J. Wegner, A. K. Burnham, L. A. Hackel, and M. R. Kozlowski, “Methods for mitigating surface damage growth in NIF final optics,” Proc. SPIE 4679, 23–33 (2002).
[CrossRef]

R. M. Brusasco, B. M. Penetrante, J. A. Butler, and L. W. Hrubesh, “Localized CO2 laser treatment for mitigation of 351 nm damage growth on fused silica,” Proc. SPIE 4679, 40–47 (2002).
[CrossRef]

Carr, C. W.

M. A. Norton, J. J. Adams, C. W. Carr, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, J. A. Jarboe, M. J. Matthews, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage in fused silica: diameter to depth ratio,” Proc. SPIE 6720, 67200H (2007).
[CrossRef]

Carr, J. W.

L. W. Hrubesh, M. A. Norton, W. A. Molander, E. E. Donohue, S. M. Maricle, B. M. Penetrante, R. M. Brusasco, W. Grundler, J. A. Butler, J. W. Carr, R. M. Hill, L. J. Summers, M. D. Feit, A. Rubenchik, M. H. Key, P. J. Wegner, A. K. Burnham, L. A. Hackel, and M. R. Kozlowski, “Methods for mitigating surface damage growth in NIF final optics,” Proc. SPIE 4679, 23–33 (2002).
[CrossRef]

Carslaw, H. S.

H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, 2nd ed. (Oxford U. Press, 2000).

Commandre, M.

S. Palmier, L. Gallais, M. Commandre, P. Cormont, R. Courchinoux, L. Lamaignere, J. L. Rullier, and P. Legros, “Optimization of a laser mitigation process in damaged fused silica,” Appl. Surf. Sci. 255, 5532–5536 (2009).
[CrossRef]

Connell, G. A. N.

Cooke, D.

M. J. Matthews, R. M. Vignes, D. Cooke, S. T. Yang, and J. S. Stolken, “Analysis of micro-structural relaxation phenomena in laser-modified fused silica using confocal Raman microscopy,” Opt. Lett. 35, 1311–1313 (2010).
[CrossRef] [PubMed]

S. Elhadj, M. J. Matthews, S. T. Yang, D. Cooke, J. S. Stolken, R. M. Vignes, V. G. Draggoo, and S. E. Bisson, “Determination of the intrinsic temperature dependent thermal conductivity from analysis of surface temperature of laser irradiated materials,” Appl. Phys. Lett. 96, 071110 –071112 (2010).
[CrossRef]

Cormont, P.

S. Palmier, L. Gallais, M. Commandre, P. Cormont, R. Courchinoux, L. Lamaignere, J. L. Rullier, and P. Legros, “Optimization of a laser mitigation process in damaged fused silica,” Appl. Surf. Sci. 255, 5532–5536 (2009).
[CrossRef]

Courchinoux, R.

S. Palmier, L. Gallais, M. Commandre, P. Cormont, R. Courchinoux, L. Lamaignere, J. L. Rullier, and P. Legros, “Optimization of a laser mitigation process in damaged fused silica,” Appl. Surf. Sci. 255, 5532–5536 (2009).
[CrossRef]

Donohue, E. E.

M. A. Norton, J. J. Adams, C. W. Carr, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, J. A. Jarboe, M. J. Matthews, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage in fused silica: diameter to depth ratio,” Proc. SPIE 6720, 67200H (2007).
[CrossRef]

L. W. Hrubesh, M. A. Norton, W. A. Molander, E. E. Donohue, S. M. Maricle, B. M. Penetrante, R. M. Brusasco, W. Grundler, J. A. Butler, J. W. Carr, R. M. Hill, L. J. Summers, M. D. Feit, A. Rubenchik, M. H. Key, P. J. Wegner, A. K. Burnham, L. A. Hackel, and M. R. Kozlowski, “Methods for mitigating surface damage growth in NIF final optics,” Proc. SPIE 4679, 23–33 (2002).
[CrossRef]

M. A. Norton, L. W. Hrubesh, W. Zhouling, E. E. Donohue, M. D. Feit, M. R. Kozlowski, D. Milam, K. P. Neeb, W. A. Molander, A. M. Rubenchik, W. D. Sell, and P. Wegner, “Growth of laser initiated damage in fused silica at 351 nm,” Proc. SPIE 4347, 468–468 (2001).
[CrossRef]

Doremus, R. H.

R. H. Doremus, “Viscosity of silica,” J. Appl. Phys. 92, 7619–7629 (2002).
[CrossRef]

Draggoo, V.

G. Guss, I. Bass, V. Draggoo, R. Hackel, S. Payne, M. Lancaster, and P. Mak, “Mitigation of growth of laser initiated surface damage in fused silica using a 4.6-micron wavelength laser,” Proc. SPIE 6403, 64030M (2006).
[CrossRef]

Draggoo, V. G.

S. Elhadj, M. J. Matthews, S. T. Yang, D. Cooke, J. S. Stolken, R. M. Vignes, V. G. Draggoo, and S. E. Bisson, “Determination of the intrinsic temperature dependent thermal conductivity from analysis of surface temperature of laser irradiated materials,” Appl. Phys. Lett. 96, 071110 –071112 (2010).
[CrossRef]

S. T. Yang, M. J. Matthews, S. Elhadj, V. G. Draggoo, and S. E. Bisson, “Thermal transport in CO2 laser irradiated fused silica: in situ measurements and analysis,” J. Appl. Phys. 106, 1031061–1031067 (2009).

I. L. Bass, V. G. Draggoo, G. M. Guss, R. P. Hackel, and M. A. Norton, “Mitigation of laser damage growth in fused silica NIF optics with a galvanometer scanned CO2 laser,” Proc. SPIE 6261, 62612A (2006).
[CrossRef]

Elhadj, S.

S. Elhadj, M. J. Matthews, S. T. Yang, D. Cooke, J. S. Stolken, R. M. Vignes, V. G. Draggoo, and S. E. Bisson, “Determination of the intrinsic temperature dependent thermal conductivity from analysis of surface temperature of laser irradiated materials,” Appl. Phys. Lett. 96, 071110 –071112 (2010).
[CrossRef]

S. T. Yang, M. J. Matthews, S. Elhadj, V. G. Draggoo, and S. E. Bisson, “Thermal transport in CO2 laser irradiated fused silica: in situ measurements and analysis,” J. Appl. Phys. 106, 1031061–1031067 (2009).

Feit, M. D.

M. A. Norton, J. J. Adams, C. W. Carr, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, J. A. Jarboe, M. J. Matthews, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage in fused silica: diameter to depth ratio,” Proc. SPIE 6720, 67200H (2007).
[CrossRef]

M. D. Feit and A. M. Rubenchik, “Mechanisms of CO2 laser mitigation of laser damage growth in fused silica,” Proc. SPIE 4932, 91–102 (2003).
[CrossRef]

L. W. Hrubesh, M. A. Norton, W. A. Molander, E. E. Donohue, S. M. Maricle, B. M. Penetrante, R. M. Brusasco, W. Grundler, J. A. Butler, J. W. Carr, R. M. Hill, L. J. Summers, M. D. Feit, A. Rubenchik, M. H. Key, P. J. Wegner, A. K. Burnham, L. A. Hackel, and M. R. Kozlowski, “Methods for mitigating surface damage growth in NIF final optics,” Proc. SPIE 4679, 23–33 (2002).
[CrossRef]

M. A. Norton, L. W. Hrubesh, W. Zhouling, E. E. Donohue, M. D. Feit, M. R. Kozlowski, D. Milam, K. P. Neeb, W. A. Molander, A. M. Rubenchik, W. D. Sell, and P. Wegner, “Growth of laser initiated damage in fused silica at 351 nm,” Proc. SPIE 4347, 468–468 (2001).
[CrossRef]

Galeener, F. L.

A. E. Geissberger and F. L. Galeener, “Raman studies of vitreous SiO2 versus fictive temperature,” Phys. Rev. B 28, 3266–3271 (1983).
[CrossRef]

Gallais, L.

S. Palmier, L. Gallais, M. Commandre, P. Cormont, R. Courchinoux, L. Lamaignere, J. L. Rullier, and P. Legros, “Optimization of a laser mitigation process in damaged fused silica,” Appl. Surf. Sci. 255, 5532–5536 (2009).
[CrossRef]

Geissberger, A. E.

A. E. Geissberger and F. L. Galeener, “Raman studies of vitreous SiO2 versus fictive temperature,” Phys. Rev. B 28, 3266–3271 (1983).
[CrossRef]

Goodman, J. W.

Grundler, W.

L. W. Hrubesh, M. A. Norton, W. A. Molander, E. E. Donohue, S. M. Maricle, B. M. Penetrante, R. M. Brusasco, W. Grundler, J. A. Butler, J. W. Carr, R. M. Hill, L. J. Summers, M. D. Feit, A. Rubenchik, M. H. Key, P. J. Wegner, A. K. Burnham, L. A. Hackel, and M. R. Kozlowski, “Methods for mitigating surface damage growth in NIF final optics,” Proc. SPIE 4679, 23–33 (2002).
[CrossRef]

Guss, G.

G. Guss, I. Bass, V. Draggoo, R. Hackel, S. Payne, M. Lancaster, and P. Mak, “Mitigation of growth of laser initiated surface damage in fused silica using a 4.6-micron wavelength laser,” Proc. SPIE 6403, 64030M (2006).
[CrossRef]

Guss, G. M.

M. J. Matthews, I. L. Bass, G. M. Guss, C. C. Widmayer, and F. L. Ravizza, “Downstream intensification effects associated with CO2 laser mitigation of fused silica,” Proc. SPIE 6720, 67200A (2007).
[CrossRef]

I. L. Bass, V. G. Draggoo, G. M. Guss, R. P. Hackel, and M. A. Norton, “Mitigation of laser damage growth in fused silica NIF optics with a galvanometer scanned CO2 laser,” Proc. SPIE 6261, 62612A (2006).
[CrossRef]

I. L. Bass, G. M. Guss, and R. P. Hackel, “Mitigation of laser damage growth in fused silica with a galvanometer scanned CO2 laser,” Proc. SPIE 5991, 59910C (2005).
[CrossRef]

Hackel, L. A.

L. W. Hrubesh, M. A. Norton, W. A. Molander, E. E. Donohue, S. M. Maricle, B. M. Penetrante, R. M. Brusasco, W. Grundler, J. A. Butler, J. W. Carr, R. M. Hill, L. J. Summers, M. D. Feit, A. Rubenchik, M. H. Key, P. J. Wegner, A. K. Burnham, L. A. Hackel, and M. R. Kozlowski, “Methods for mitigating surface damage growth in NIF final optics,” Proc. SPIE 4679, 23–33 (2002).
[CrossRef]

Hackel, R.

G. Guss, I. Bass, V. Draggoo, R. Hackel, S. Payne, M. Lancaster, and P. Mak, “Mitigation of growth of laser initiated surface damage in fused silica using a 4.6-micron wavelength laser,” Proc. SPIE 6403, 64030M (2006).
[CrossRef]

Hackel, R. P.

M. A. Norton, J. J. Adams, C. W. Carr, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, J. A. Jarboe, M. J. Matthews, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage in fused silica: diameter to depth ratio,” Proc. SPIE 6720, 67200H (2007).
[CrossRef]

I. L. Bass, V. G. Draggoo, G. M. Guss, R. P. Hackel, and M. A. Norton, “Mitigation of laser damage growth in fused silica NIF optics with a galvanometer scanned CO2 laser,” Proc. SPIE 6261, 62612A (2006).
[CrossRef]

I. L. Bass, G. M. Guss, and R. P. Hackel, “Mitigation of laser damage growth in fused silica with a galvanometer scanned CO2 laser,” Proc. SPIE 5991, 59910C (2005).
[CrossRef]

Hall, D. R.

Heavens, O. S.

O. S. Heavens, Optical Properties of Thin Solid Films (Dover, 1965), Eq. 4(116), p. 77.

Hill, R. M.

L. W. Hrubesh, M. A. Norton, W. A. Molander, E. E. Donohue, S. M. Maricle, B. M. Penetrante, R. M. Brusasco, W. Grundler, J. A. Butler, J. W. Carr, R. M. Hill, L. J. Summers, M. D. Feit, A. Rubenchik, M. H. Key, P. J. Wegner, A. K. Burnham, L. A. Hackel, and M. R. Kozlowski, “Methods for mitigating surface damage growth in NIF final optics,” Proc. SPIE 4679, 23–33 (2002).
[CrossRef]

Hollingsworth, W. G.

M. A. Norton, J. J. Adams, C. W. Carr, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, J. A. Jarboe, M. J. Matthews, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage in fused silica: diameter to depth ratio,” Proc. SPIE 6720, 67200H (2007).
[CrossRef]

Hrubesh, L. W.

R. M. Brusasco, B. M. Penetrante, J. A. Butler, and L. W. Hrubesh, “Localized CO2 laser treatment for mitigation of 351 nm damage growth on fused silica,” Proc. SPIE 4679, 40–47 (2002).
[CrossRef]

L. W. Hrubesh, M. A. Norton, W. A. Molander, E. E. Donohue, S. M. Maricle, B. M. Penetrante, R. M. Brusasco, W. Grundler, J. A. Butler, J. W. Carr, R. M. Hill, L. J. Summers, M. D. Feit, A. Rubenchik, M. H. Key, P. J. Wegner, A. K. Burnham, L. A. Hackel, and M. R. Kozlowski, “Methods for mitigating surface damage growth in NIF final optics,” Proc. SPIE 4679, 23–33 (2002).
[CrossRef]

M. A. Norton, L. W. Hrubesh, W. Zhouling, E. E. Donohue, M. D. Feit, M. R. Kozlowski, D. Milam, K. P. Neeb, W. A. Molander, A. M. Rubenchik, W. D. Sell, and P. Wegner, “Growth of laser initiated damage in fused silica at 351 nm,” Proc. SPIE 4347, 468–468 (2001).
[CrossRef]

Jaeger, J. C.

H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, 2nd ed. (Oxford U. Press, 2000).

Jarboe, J. A.

M. A. Norton, J. J. Adams, C. W. Carr, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, J. A. Jarboe, M. J. Matthews, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage in fused silica: diameter to depth ratio,” Proc. SPIE 6720, 67200H (2007).
[CrossRef]

Jian, Z.

Z. Jian, J. Sullivan, J. Zayac, and T. D. Bennett, “Structural modification of silica glass by laser scanning,” J. Appl. Phys. 95, 5475–5482 (2004).
[CrossRef]

Jonasz, M.

Key, M. H.

L. W. Hrubesh, M. A. Norton, W. A. Molander, E. E. Donohue, S. M. Maricle, B. M. Penetrante, R. M. Brusasco, W. Grundler, J. A. Butler, J. W. Carr, R. M. Hill, L. J. Summers, M. D. Feit, A. Rubenchik, M. H. Key, P. J. Wegner, A. K. Burnham, L. A. Hackel, and M. R. Kozlowski, “Methods for mitigating surface damage growth in NIF final optics,” Proc. SPIE 4679, 23–33 (2002).
[CrossRef]

Kitamura, R.

Kozlowski, M. R.

L. W. Hrubesh, M. A. Norton, W. A. Molander, E. E. Donohue, S. M. Maricle, B. M. Penetrante, R. M. Brusasco, W. Grundler, J. A. Butler, J. W. Carr, R. M. Hill, L. J. Summers, M. D. Feit, A. Rubenchik, M. H. Key, P. J. Wegner, A. K. Burnham, L. A. Hackel, and M. R. Kozlowski, “Methods for mitigating surface damage growth in NIF final optics,” Proc. SPIE 4679, 23–33 (2002).
[CrossRef]

M. A. Norton, L. W. Hrubesh, W. Zhouling, E. E. Donohue, M. D. Feit, M. R. Kozlowski, D. Milam, K. P. Neeb, W. A. Molander, A. M. Rubenchik, W. D. Sell, and P. Wegner, “Growth of laser initiated damage in fused silica at 351 nm,” Proc. SPIE 4347, 468–468 (2001).
[CrossRef]

Lamaignere, L.

S. Palmier, L. Gallais, M. Commandre, P. Cormont, R. Courchinoux, L. Lamaignere, J. L. Rullier, and P. Legros, “Optimization of a laser mitigation process in damaged fused silica,” Appl. Surf. Sci. 255, 5532–5536 (2009).
[CrossRef]

Lancaster, M.

G. Guss, I. Bass, V. Draggoo, R. Hackel, S. Payne, M. Lancaster, and P. Mak, “Mitigation of growth of laser initiated surface damage in fused silica using a 4.6-micron wavelength laser,” Proc. SPIE 6403, 64030M (2006).
[CrossRef]

Legros, P.

S. Palmier, L. Gallais, M. Commandre, P. Cormont, R. Courchinoux, L. Lamaignere, J. L. Rullier, and P. Legros, “Optimization of a laser mitigation process in damaged fused silica,” Appl. Surf. Sci. 255, 5532–5536 (2009).
[CrossRef]

Mak, P.

G. Guss, I. Bass, V. Draggoo, R. Hackel, S. Payne, M. Lancaster, and P. Mak, “Mitigation of growth of laser initiated surface damage in fused silica using a 4.6-micron wavelength laser,” Proc. SPIE 6403, 64030M (2006).
[CrossRef]

Mansuripur, M.

Maricle, S. M.

L. W. Hrubesh, M. A. Norton, W. A. Molander, E. E. Donohue, S. M. Maricle, B. M. Penetrante, R. M. Brusasco, W. Grundler, J. A. Butler, J. W. Carr, R. M. Hill, L. J. Summers, M. D. Feit, A. Rubenchik, M. H. Key, P. J. Wegner, A. K. Burnham, L. A. Hackel, and M. R. Kozlowski, “Methods for mitigating surface damage growth in NIF final optics,” Proc. SPIE 4679, 23–33 (2002).
[CrossRef]

Matthews, M. J.

M. J. Matthews, R. M. Vignes, D. Cooke, S. T. Yang, and J. S. Stolken, “Analysis of micro-structural relaxation phenomena in laser-modified fused silica using confocal Raman microscopy,” Opt. Lett. 35, 1311–1313 (2010).
[CrossRef] [PubMed]

S. Elhadj, M. J. Matthews, S. T. Yang, D. Cooke, J. S. Stolken, R. M. Vignes, V. G. Draggoo, and S. E. Bisson, “Determination of the intrinsic temperature dependent thermal conductivity from analysis of surface temperature of laser irradiated materials,” Appl. Phys. Lett. 96, 071110 –071112 (2010).
[CrossRef]

S. T. Yang, M. J. Matthews, S. Elhadj, V. G. Draggoo, and S. E. Bisson, “Thermal transport in CO2 laser irradiated fused silica: in situ measurements and analysis,” J. Appl. Phys. 106, 1031061–1031067 (2009).

M. A. Norton, J. J. Adams, C. W. Carr, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, J. A. Jarboe, M. J. Matthews, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage in fused silica: diameter to depth ratio,” Proc. SPIE 6720, 67200H (2007).
[CrossRef]

M. J. Matthews, I. L. Bass, G. M. Guss, C. C. Widmayer, and F. L. Ravizza, “Downstream intensification effects associated with CO2 laser mitigation of fused silica,” Proc. SPIE 6720, 67200A (2007).
[CrossRef]

McLachlan, A. D.

Mendez, E.

Meyer, F. P.

Milam, D.

M. A. Norton, L. W. Hrubesh, W. Zhouling, E. E. Donohue, M. D. Feit, M. R. Kozlowski, D. Milam, K. P. Neeb, W. A. Molander, A. M. Rubenchik, W. D. Sell, and P. Wegner, “Growth of laser initiated damage in fused silica at 351 nm,” Proc. SPIE 4347, 468–468 (2001).
[CrossRef]

Molander, W. A.

L. W. Hrubesh, M. A. Norton, W. A. Molander, E. E. Donohue, S. M. Maricle, B. M. Penetrante, R. M. Brusasco, W. Grundler, J. A. Butler, J. W. Carr, R. M. Hill, L. J. Summers, M. D. Feit, A. Rubenchik, M. H. Key, P. J. Wegner, A. K. Burnham, L. A. Hackel, and M. R. Kozlowski, “Methods for mitigating surface damage growth in NIF final optics,” Proc. SPIE 4679, 23–33 (2002).
[CrossRef]

M. A. Norton, L. W. Hrubesh, W. Zhouling, E. E. Donohue, M. D. Feit, M. R. Kozlowski, D. Milam, K. P. Neeb, W. A. Molander, A. M. Rubenchik, W. D. Sell, and P. Wegner, “Growth of laser initiated damage in fused silica at 351 nm,” Proc. SPIE 4347, 468–468 (2001).
[CrossRef]

Neeb, K. P.

M. A. Norton, L. W. Hrubesh, W. Zhouling, E. E. Donohue, M. D. Feit, M. R. Kozlowski, D. Milam, K. P. Neeb, W. A. Molander, A. M. Rubenchik, W. D. Sell, and P. Wegner, “Growth of laser initiated damage in fused silica at 351 nm,” Proc. SPIE 4347, 468–468 (2001).
[CrossRef]

Norton, M. A.

M. A. Norton, J. J. Adams, C. W. Carr, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, J. A. Jarboe, M. J. Matthews, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage in fused silica: diameter to depth ratio,” Proc. SPIE 6720, 67200H (2007).
[CrossRef]

I. L. Bass, V. G. Draggoo, G. M. Guss, R. P. Hackel, and M. A. Norton, “Mitigation of laser damage growth in fused silica NIF optics with a galvanometer scanned CO2 laser,” Proc. SPIE 6261, 62612A (2006).
[CrossRef]

L. W. Hrubesh, M. A. Norton, W. A. Molander, E. E. Donohue, S. M. Maricle, B. M. Penetrante, R. M. Brusasco, W. Grundler, J. A. Butler, J. W. Carr, R. M. Hill, L. J. Summers, M. D. Feit, A. Rubenchik, M. H. Key, P. J. Wegner, A. K. Burnham, L. A. Hackel, and M. R. Kozlowski, “Methods for mitigating surface damage growth in NIF final optics,” Proc. SPIE 4679, 23–33 (2002).
[CrossRef]

M. A. Norton, L. W. Hrubesh, W. Zhouling, E. E. Donohue, M. D. Feit, M. R. Kozlowski, D. Milam, K. P. Neeb, W. A. Molander, A. M. Rubenchik, W. D. Sell, and P. Wegner, “Growth of laser initiated damage in fused silica at 351 nm,” Proc. SPIE 4347, 468–468 (2001).
[CrossRef]

Nowak, K. M.

Palmier, S.

S. Palmier, L. Gallais, M. Commandre, P. Cormont, R. Courchinoux, L. Lamaignere, J. L. Rullier, and P. Legros, “Optimization of a laser mitigation process in damaged fused silica,” Appl. Surf. Sci. 255, 5532–5536 (2009).
[CrossRef]

Parikh, N. M.

N. M. Parikh, “Effect of atmosphere on surface tension of glass,” J. Am. Ceram. Soc. 41, 18–22 (1958).
[CrossRef]

Payne, S.

G. Guss, I. Bass, V. Draggoo, R. Hackel, S. Payne, M. Lancaster, and P. Mak, “Mitigation of growth of laser initiated surface damage in fused silica using a 4.6-micron wavelength laser,” Proc. SPIE 6403, 64030M (2006).
[CrossRef]

Penetrante, B. M.

R. M. Brusasco, B. M. Penetrante, J. A. Butler, and L. W. Hrubesh, “Localized CO2 laser treatment for mitigation of 351 nm damage growth on fused silica,” Proc. SPIE 4679, 40–47 (2002).
[CrossRef]

L. W. Hrubesh, M. A. Norton, W. A. Molander, E. E. Donohue, S. M. Maricle, B. M. Penetrante, R. M. Brusasco, W. Grundler, J. A. Butler, J. W. Carr, R. M. Hill, L. J. Summers, M. D. Feit, A. Rubenchik, M. H. Key, P. J. Wegner, A. K. Burnham, L. A. Hackel, and M. R. Kozlowski, “Methods for mitigating surface damage growth in NIF final optics,” Proc. SPIE 4679, 23–33 (2002).
[CrossRef]

Pilon, L.

Ravizza, F. L.

M. J. Matthews, I. L. Bass, G. M. Guss, C. C. Widmayer, and F. L. Ravizza, “Downstream intensification effects associated with CO2 laser mitigation of fused silica,” Proc. SPIE 6720, 67200A (2007).
[CrossRef]

Rubenchik, A.

L. W. Hrubesh, M. A. Norton, W. A. Molander, E. E. Donohue, S. M. Maricle, B. M. Penetrante, R. M. Brusasco, W. Grundler, J. A. Butler, J. W. Carr, R. M. Hill, L. J. Summers, M. D. Feit, A. Rubenchik, M. H. Key, P. J. Wegner, A. K. Burnham, L. A. Hackel, and M. R. Kozlowski, “Methods for mitigating surface damage growth in NIF final optics,” Proc. SPIE 4679, 23–33 (2002).
[CrossRef]

Rubenchik, A. M.

M. A. Norton, J. J. Adams, C. W. Carr, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, J. A. Jarboe, M. J. Matthews, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage in fused silica: diameter to depth ratio,” Proc. SPIE 6720, 67200H (2007).
[CrossRef]

M. D. Feit and A. M. Rubenchik, “Mechanisms of CO2 laser mitigation of laser damage growth in fused silica,” Proc. SPIE 4932, 91–102 (2003).
[CrossRef]

M. A. Norton, L. W. Hrubesh, W. Zhouling, E. E. Donohue, M. D. Feit, M. R. Kozlowski, D. Milam, K. P. Neeb, W. A. Molander, A. M. Rubenchik, W. D. Sell, and P. Wegner, “Growth of laser initiated damage in fused silica at 351 nm,” Proc. SPIE 4347, 468–468 (2001).
[CrossRef]

Rullier, J. L.

S. Palmier, L. Gallais, M. Commandre, P. Cormont, R. Courchinoux, L. Lamaignere, J. L. Rullier, and P. Legros, “Optimization of a laser mitigation process in damaged fused silica,” Appl. Surf. Sci. 255, 5532–5536 (2009).
[CrossRef]

Sell, W. D.

M. A. Norton, L. W. Hrubesh, W. Zhouling, E. E. Donohue, M. D. Feit, M. R. Kozlowski, D. Milam, K. P. Neeb, W. A. Molander, A. M. Rubenchik, W. D. Sell, and P. Wegner, “Growth of laser initiated damage in fused silica at 351 nm,” Proc. SPIE 4347, 468–468 (2001).
[CrossRef]

Spaeth, M. L.

M. A. Norton, J. J. Adams, C. W. Carr, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, J. A. Jarboe, M. J. Matthews, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage in fused silica: diameter to depth ratio,” Proc. SPIE 6720, 67200H (2007).
[CrossRef]

Stolken, J. S.

M. J. Matthews, R. M. Vignes, D. Cooke, S. T. Yang, and J. S. Stolken, “Analysis of micro-structural relaxation phenomena in laser-modified fused silica using confocal Raman microscopy,” Opt. Lett. 35, 1311–1313 (2010).
[CrossRef] [PubMed]

S. Elhadj, M. J. Matthews, S. T. Yang, D. Cooke, J. S. Stolken, R. M. Vignes, V. G. Draggoo, and S. E. Bisson, “Determination of the intrinsic temperature dependent thermal conductivity from analysis of surface temperature of laser irradiated materials,” Appl. Phys. Lett. 96, 071110 –071112 (2010).
[CrossRef]

Sullivan, J.

Z. Jian, J. Sullivan, J. Zayac, and T. D. Bennett, “Structural modification of silica glass by laser scanning,” J. Appl. Phys. 95, 5475–5482 (2004).
[CrossRef]

Summers, L. J.

L. W. Hrubesh, M. A. Norton, W. A. Molander, E. E. Donohue, S. M. Maricle, B. M. Penetrante, R. M. Brusasco, W. Grundler, J. A. Butler, J. W. Carr, R. M. Hill, L. J. Summers, M. D. Feit, A. Rubenchik, M. H. Key, P. J. Wegner, A. K. Burnham, L. A. Hackel, and M. R. Kozlowski, “Methods for mitigating surface damage growth in NIF final optics,” Proc. SPIE 4679, 23–33 (2002).
[CrossRef]

Vignes, R. M.

M. J. Matthews, R. M. Vignes, D. Cooke, S. T. Yang, and J. S. Stolken, “Analysis of micro-structural relaxation phenomena in laser-modified fused silica using confocal Raman microscopy,” Opt. Lett. 35, 1311–1313 (2010).
[CrossRef] [PubMed]

S. Elhadj, M. J. Matthews, S. T. Yang, D. Cooke, J. S. Stolken, R. M. Vignes, V. G. Draggoo, and S. E. Bisson, “Determination of the intrinsic temperature dependent thermal conductivity from analysis of surface temperature of laser irradiated materials,” Appl. Phys. Lett. 96, 071110 –071112 (2010).
[CrossRef]

Villarreal, F. J.

Wegner, P.

M. A. Norton, L. W. Hrubesh, W. Zhouling, E. E. Donohue, M. D. Feit, M. R. Kozlowski, D. Milam, K. P. Neeb, W. A. Molander, A. M. Rubenchik, W. D. Sell, and P. Wegner, “Growth of laser initiated damage in fused silica at 351 nm,” Proc. SPIE 4347, 468–468 (2001).
[CrossRef]

Wegner, P. J.

L. W. Hrubesh, M. A. Norton, W. A. Molander, E. E. Donohue, S. M. Maricle, B. M. Penetrante, R. M. Brusasco, W. Grundler, J. A. Butler, J. W. Carr, R. M. Hill, L. J. Summers, M. D. Feit, A. Rubenchik, M. H. Key, P. J. Wegner, A. K. Burnham, L. A. Hackel, and M. R. Kozlowski, “Methods for mitigating surface damage growth in NIF final optics,” Proc. SPIE 4679, 23–33 (2002).
[CrossRef]

Widmayer, C. C.

M. J. Matthews, I. L. Bass, G. M. Guss, C. C. Widmayer, and F. L. Ravizza, “Downstream intensification effects associated with CO2 laser mitigation of fused silica,” Proc. SPIE 6720, 67200A (2007).
[CrossRef]

Yang, S. T.

M. J. Matthews, R. M. Vignes, D. Cooke, S. T. Yang, and J. S. Stolken, “Analysis of micro-structural relaxation phenomena in laser-modified fused silica using confocal Raman microscopy,” Opt. Lett. 35, 1311–1313 (2010).
[CrossRef] [PubMed]

S. Elhadj, M. J. Matthews, S. T. Yang, D. Cooke, J. S. Stolken, R. M. Vignes, V. G. Draggoo, and S. E. Bisson, “Determination of the intrinsic temperature dependent thermal conductivity from analysis of surface temperature of laser irradiated materials,” Appl. Phys. Lett. 96, 071110 –071112 (2010).
[CrossRef]

S. T. Yang, M. J. Matthews, S. Elhadj, V. G. Draggoo, and S. E. Bisson, “Thermal transport in CO2 laser irradiated fused silica: in situ measurements and analysis,” J. Appl. Phys. 106, 1031061–1031067 (2009).

Zayac, J.

Z. Jian, J. Sullivan, J. Zayac, and T. D. Bennett, “Structural modification of silica glass by laser scanning,” J. Appl. Phys. 95, 5475–5482 (2004).
[CrossRef]

Zhouling, W.

M. A. Norton, L. W. Hrubesh, W. Zhouling, E. E. Donohue, M. D. Feit, M. R. Kozlowski, D. Milam, K. P. Neeb, W. A. Molander, A. M. Rubenchik, W. D. Sell, and P. Wegner, “Growth of laser initiated damage in fused silica at 351 nm,” Proc. SPIE 4347, 468–468 (2001).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

S. Elhadj, M. J. Matthews, S. T. Yang, D. Cooke, J. S. Stolken, R. M. Vignes, V. G. Draggoo, and S. E. Bisson, “Determination of the intrinsic temperature dependent thermal conductivity from analysis of surface temperature of laser irradiated materials,” Appl. Phys. Lett. 96, 071110 –071112 (2010).
[CrossRef]

Appl. Surf. Sci.

S. Palmier, L. Gallais, M. Commandre, P. Cormont, R. Courchinoux, L. Lamaignere, J. L. Rullier, and P. Legros, “Optimization of a laser mitigation process in damaged fused silica,” Appl. Surf. Sci. 255, 5532–5536 (2009).
[CrossRef]

J. Am. Ceram. Soc.

N. M. Parikh, “Effect of atmosphere on surface tension of glass,” J. Am. Ceram. Soc. 41, 18–22 (1958).
[CrossRef]

J. Appl. Phys.

Z. Jian, J. Sullivan, J. Zayac, and T. D. Bennett, “Structural modification of silica glass by laser scanning,” J. Appl. Phys. 95, 5475–5482 (2004).
[CrossRef]

S. T. Yang, M. J. Matthews, S. Elhadj, V. G. Draggoo, and S. E. Bisson, “Thermal transport in CO2 laser irradiated fused silica: in situ measurements and analysis,” J. Appl. Phys. 106, 1031061–1031067 (2009).

R. H. Doremus, “Viscosity of silica,” J. Appl. Phys. 92, 7619–7629 (2002).
[CrossRef]

Opt. Lett.

Phys. Rev. B

A. E. Geissberger and F. L. Galeener, “Raman studies of vitreous SiO2 versus fictive temperature,” Phys. Rev. B 28, 3266–3271 (1983).
[CrossRef]

Proc. SPIE

M. D. Feit and A. M. Rubenchik, “Mechanisms of CO2 laser mitigation of laser damage growth in fused silica,” Proc. SPIE 4932, 91–102 (2003).
[CrossRef]

G. Guss, I. Bass, V. Draggoo, R. Hackel, S. Payne, M. Lancaster, and P. Mak, “Mitigation of growth of laser initiated surface damage in fused silica using a 4.6-micron wavelength laser,” Proc. SPIE 6403, 64030M (2006).
[CrossRef]

M. J. Matthews, I. L. Bass, G. M. Guss, C. C. Widmayer, and F. L. Ravizza, “Downstream intensification effects associated with CO2 laser mitigation of fused silica,” Proc. SPIE 6720, 67200A (2007).
[CrossRef]

M. A. Norton, J. J. Adams, C. W. Carr, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, J. A. Jarboe, M. J. Matthews, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage in fused silica: diameter to depth ratio,” Proc. SPIE 6720, 67200H (2007).
[CrossRef]

M. A. Norton, L. W. Hrubesh, W. Zhouling, E. E. Donohue, M. D. Feit, M. R. Kozlowski, D. Milam, K. P. Neeb, W. A. Molander, A. M. Rubenchik, W. D. Sell, and P. Wegner, “Growth of laser initiated damage in fused silica at 351 nm,” Proc. SPIE 4347, 468–468 (2001).
[CrossRef]

L. W. Hrubesh, M. A. Norton, W. A. Molander, E. E. Donohue, S. M. Maricle, B. M. Penetrante, R. M. Brusasco, W. Grundler, J. A. Butler, J. W. Carr, R. M. Hill, L. J. Summers, M. D. Feit, A. Rubenchik, M. H. Key, P. J. Wegner, A. K. Burnham, L. A. Hackel, and M. R. Kozlowski, “Methods for mitigating surface damage growth in NIF final optics,” Proc. SPIE 4679, 23–33 (2002).
[CrossRef]

R. M. Brusasco, B. M. Penetrante, J. A. Butler, and L. W. Hrubesh, “Localized CO2 laser treatment for mitigation of 351 nm damage growth on fused silica,” Proc. SPIE 4679, 40–47 (2002).
[CrossRef]

I. L. Bass, V. G. Draggoo, G. M. Guss, R. P. Hackel, and M. A. Norton, “Mitigation of laser damage growth in fused silica NIF optics with a galvanometer scanned CO2 laser,” Proc. SPIE 6261, 62612A (2006).
[CrossRef]

I. L. Bass, G. M. Guss, and R. P. Hackel, “Mitigation of laser damage growth in fused silica with a galvanometer scanned CO2 laser,” Proc. SPIE 5991, 59910C (2005).
[CrossRef]

Other

O. S. Heavens, Optical Properties of Thin Solid Films (Dover, 1965), Eq. 4(116), p. 77.

H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, 2nd ed. (Oxford U. Press, 2000).

M. v. Allmen and A. Blatter, Laser-Beam Interactions with Materials, 2nd ed., Springer Series in Materials Science (Springer, 1995).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Room temperature absorption spectrum of fused silica reproduced from Ref. [9]. The absorption coefficient at 4.6 μm is about 2 orders of magnitude lower than that at 10.6 μm .

Fig. 2
Fig. 2

Experimental layout for absorption measurements and damage mitigation trials using 4.6 and 10.6 μm lasers. The solid (dashed-dotted) line shows the beam path for the 4.6 μm ( 10.6 μm ) laser. The optical components are denoted by the following symbols: VA, variable attenuator; BS, beam splitter used for sampling incident 4.6 μm light; BP, wedged plate oriented at Brewster angle for separating 4.6 μm laser light from the black body radiation emitted from sample surface; L1/L2, ZnSe lenses; FS, fused silica sample; DET1/DET2, MCT detectors coupled with integrating spheres; and MCT is the IR-sensitive thermal camera.

Fig. 3
Fig. 3

Results from the measurement of α ( T ) at 4.6 μm showing (a) the measured 4.6 μm transmission through a thin fused silica plate, (b) the extracted extinction coefficient κ based on the measured transmission with a linear least-squares fit, and (c) the calculated fused silica α and α 1 at 4.6 μm as a function of temperature. The error bars in (a) and (b) represent 1 standard deviation from four measurements.

Fig. 4
Fig. 4

Contour plots of the temperature distribution in fused silica at t = 10 s for (a)  4.6 μm and (b)  10.6 μm laser heating with a 354 μm 1 / e beam radius at power levels of P = 7.6 W ( 4.6 μm ) and P = 5.2 W ( 10.6 μm ).

Fig. 5
Fig. 5

Comparison of the calculated spatial and temporal temperature profiles of laser-heated fused silica using a 4.6 μm laser (solid curve) versus that using a 10.6 μm laser (dashed curve). (a) Radial temperature profile comparison at z = 0 and t = 10 s , (b) axial temperature profile comparison at r = 0 and t = 10 s , and (c) temporal temperature profile comparison at r = z = 0 .

Fig. 6
Fig. 6

Measured (symbols) and calculated (curves) peak surface temperature at the end of a 10 s exposure versus incident 4.6 μm laser power for beam radii of 140, 216, and 332 μm .

Fig. 7
Fig. 7

Comparison of the measured and predicted radial surface temperature profile for 4.6 μm laser-heated fused silica, 10 s after laser turn-on. The laser power was 4.6 W and the 1 / e beam radius was 216 μm .

Fig. 8
Fig. 8

Comparison of measured and calculated peak surface temperature as a function of time of a 4.6 μm laser-heated fused silica. The laser power was 4.6 W and the beam radius was 216 μm . The laser was turned on at t = 0 and turned off at t = 10 s .

Fig. 9
Fig. 9

Fictive temperature profiles measured at beam center (i.e., r = 0 ) as a function of depth in fused silica for 4.6 (□) and 10.6 μm (△) irradiated sites. The sites were exposed for a total of (a) 10 and (b)  300 s with fluences that were chosen to limit surface temperatures to < 2000 K . Curves are the calculated thermodynamic temperature profiles just prior to laser turn-off.

Fig. 10
Fig. 10

(a) Calculated effective crack healing depth z eff as a function of laser power for both 4.6 and 10.6 μm cases, and (b) a comparison of the FOM for each laser, as defined in the text, plotted against z eff .

Fig. 11
Fig. 11

Side view of damage track (a) before and (b) after irradiation with a 4.6 μm laser. The damage track extends 225 μm below the surface, as indicated by the white bar. After laser heating, the cracks are entirely erased, leaving a shallow crater as shown in (c) and (d).

Fig. 12
Fig. 12

Side views of damage tracks (a) before and (b) after heating by 10.6 μm laser. Crack healing extended to only 40 μm below the surface.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ρ C p T t ( k T ) = Q ,
T z ( P , a , z ) = ( 1 R ) P 2 a k π ( 1 Erf ( z / a ) ) Exp ( ( z / a ) 2 ) + T 0 ,
P o a = 2 k π ( 1 R ) ( T p T 0 ) ,

Metrics