Abstract

The spectral response and band features of cesium-covered GaAs have been investigated by using a spectral-response measuring instrument at room temperature. We find that the shape of the spectral- response curves is almost identical if the vacuum level is greater than the energy level of the conduction band minimum; otherwise, the shape changes with time. The preservation or change in the shape is attributed to the evolution of a surface barrier. By calculation of the derivatives of the spectral response, the band features of GaAs can be determined. We find six peaks in the spectral-response derivatives. These peaks are in excellent agreement with the photon energy positions determined by the transitions from different valence band peaks to different conduction band valleys.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Faraci, A. R. Pennisi, F. Gozzo, S. La Rosa, and G. Margaritondo, “Cs bonding at the Cs/GaAs(110) interface,” Phys. Rev. B 53, 3987–3992 (1996).
    [CrossRef]
  2. R. Cao, K. Miyano, T. Kendelewicz, I. Lindau, and W. E. Spicer, “Metallization and Fermi-level movement at the Cs/GaAs(110) interface,” Phys. Rev. B 39, 12655–12663 (1989).
    [CrossRef]
  3. V. L. Alperovich and D. Paget, “Diffusion and ordering of Cs adatoms on GaAs(001) studies by reflectance anisotropy spectroscopy,” Phys. Rev. B 56, R15565–R15568 (1997).
    [CrossRef]
  4. C. Hogan, D. Paget, Y. Garreau, M. Sauvage, G. Onida, L. Reining, P. Chiaradia, and V. Corradini, “Early stages of cesium adsorption on the As-rich c(2×8) reconstruction of GaAs(001): adsorption sites and Cs-induced chemical bonds,” Phys. Rev. B 68, 205313 (2003).
    [CrossRef]
  5. L. J. Whitman, J. A. Stroscio, R. A. Dragoset, and R. J. Celotta, “Geometric and electronic properties of Cs structures on III–V (110) surfaces: from 1D and 2D insulators to 3D metals,” Phys. Rev. Lett. 66, 1338–1341 (1991).
    [CrossRef] [PubMed]
  6. G. Faraci, A. R. Pennisi, and G. Margaritondo, “Catalytic oxidation of the GaAs(110) surface promoted by a Cs overlayer,” Phys. Rev. B 53, 13851–13856 (1996).
    [CrossRef]
  7. G. V. Benemanskaya, D. V. Daineka, and G. E. Frank-Kamenetskaya, “Electronic properties of the Cs covered GaAs(100) Ga-rich surface,” Solid State Commun. 114, 285–289 (2000).
    [CrossRef]
  8. J. J. Scheer and J. van Laar, “GaAs-Cs: a new type of photoemitter,” Solid State Commun. 3, 189–193 (1965).
    [CrossRef]
  9. M. L. Cohen and J. C. Phillips, “Spectral analysis of photoemissive yields in Si, Ge, GaAs, GaSb, InAs, and InSb,” Phys. Rev. 139, A912–A920 (1965).
    [CrossRef]
  10. A. A. Turnbull and G. B. Evans, “Photoemission from GaAs-Cs-O,” J. Phys. D 1, 155–160 (1968).
    [CrossRef]
  11. D. E. Aspnes, C. G. Olson, and D. W. Lynch, “Ordering and absolute energies of the L6c and X6c conduction band minima in GaAs,” Phys. Rev. Lett. 37, 766–769 (1976).
    [CrossRef]
  12. F. H. Pollak, “Study of semiconductor surfaces and interfaces using electromodulation,” Surf. Interface Anal. 31, 938–953(2001).
    [CrossRef]
  13. H.-J. Drouhin, C. Hermann, and G. Lampel, “Photoemission from activated gallium arsenide. I. very-high-resolution energy distribution curves,” Phys. Rev. B 31, 3859–3871 (1985).
    [CrossRef]
  14. I. Shalish, “Effect of Van Hove singularities on the photovoltage spectra of semiconductors,” Phys. Rev. B 66, 165214 (2002).
    [CrossRef]
  15. B. K. Chang, X. Q. Du, L. Liu, Z. Y. Zong, R. G. Fu, and Y. S. Qian, “Automatic recording system of dynamic spectral response and its applications,” Proc. SPIE 5209, 209–218 (2003).
    [CrossRef]
  16. Z. Yang, B. K. Chang, J. J. Zou, J. J. Qiao, P. Gao, Y. P. Zeng, and H. Li, “Comparison between gradient-doping GaAs photocathode and uniform-doping GaAs photocathode,” Appl. Opt. 46, 7035–7019 (2007).
    [CrossRef] [PubMed]
  17. L. W. James and J. L. Moll, “Transport properties of GaAs obtained from photoemission measurements,” Phys. Rev. 183, 740–753 (1969).
    [CrossRef]
  18. G. A. Antypas, L. W. James, and J. J. Uebbing, “Operation of III–V semiconductor photocathodes in the semitransparent mode,” J. Appl. Phys. 41, 2888–2894 (1970).
    [CrossRef]
  19. J. J. Zou, B. K. Chang, Z. Yang, Y. J. Zhang, and J. L. Qiao, “Evolution of surface potential barrier for negative-electron-affinity GaAs photocathodes,” J. Appl. Phys. 105, 013714 (2009).
    [CrossRef]
  20. P. Sen, D. S. Pickard, J. E. Schneider, M. A. McCord, R. F. Pease, A. W. Baum, and K. A. Costello, “Lifetime and reliability results for a negative electron affinity photocathode in a demountable vacuum system,” J. Vac. Sci. Technol. B 16, 3380–3384 (1998).
    [CrossRef]
  21. R. Calabres, V. Guidi, P. Lenisa, B. Maciga, G. Ciullo, G. Della, G. P. Egeni, G. Lamanna, V. Rigato, V. Rudello, B. Yang, S. Zandolin, and L. Tecchio, “Surface analysis of a GaAs electron source using Rutherford backscattering spectroscopy,” Appl. Phys. Lett. 65, 301–302 (1994).
    [CrossRef]
  22. J. J. Zou, B. K. Chang, Z. Yang, J. L. Qiao, and Y. P. Zeng, “Stability and photoemission characteristics for GaAs photocathodes in a demountable vacuum system,” Appl. Phys. Lett. 92, 172102 (2008).
    [CrossRef]
  23. L. Van Hove, “The occurrence of singularities in the elastic frequency distribution of a crystal,” Phys. Rev. 89, 1189–1193(1953).
    [CrossRef]
  24. J. S. Blakemore, “Semiconducting and other major properties of gallium arsenide,” J. Appl. Phys. 53, R123–R181 (1982).
    [CrossRef]

2009 (1)

J. J. Zou, B. K. Chang, Z. Yang, Y. J. Zhang, and J. L. Qiao, “Evolution of surface potential barrier for negative-electron-affinity GaAs photocathodes,” J. Appl. Phys. 105, 013714 (2009).
[CrossRef]

2008 (1)

J. J. Zou, B. K. Chang, Z. Yang, J. L. Qiao, and Y. P. Zeng, “Stability and photoemission characteristics for GaAs photocathodes in a demountable vacuum system,” Appl. Phys. Lett. 92, 172102 (2008).
[CrossRef]

2007 (1)

2003 (2)

B. K. Chang, X. Q. Du, L. Liu, Z. Y. Zong, R. G. Fu, and Y. S. Qian, “Automatic recording system of dynamic spectral response and its applications,” Proc. SPIE 5209, 209–218 (2003).
[CrossRef]

C. Hogan, D. Paget, Y. Garreau, M. Sauvage, G. Onida, L. Reining, P. Chiaradia, and V. Corradini, “Early stages of cesium adsorption on the As-rich c(2×8) reconstruction of GaAs(001): adsorption sites and Cs-induced chemical bonds,” Phys. Rev. B 68, 205313 (2003).
[CrossRef]

2002 (1)

I. Shalish, “Effect of Van Hove singularities on the photovoltage spectra of semiconductors,” Phys. Rev. B 66, 165214 (2002).
[CrossRef]

2001 (1)

F. H. Pollak, “Study of semiconductor surfaces and interfaces using electromodulation,” Surf. Interface Anal. 31, 938–953(2001).
[CrossRef]

2000 (1)

G. V. Benemanskaya, D. V. Daineka, and G. E. Frank-Kamenetskaya, “Electronic properties of the Cs covered GaAs(100) Ga-rich surface,” Solid State Commun. 114, 285–289 (2000).
[CrossRef]

1998 (1)

P. Sen, D. S. Pickard, J. E. Schneider, M. A. McCord, R. F. Pease, A. W. Baum, and K. A. Costello, “Lifetime and reliability results for a negative electron affinity photocathode in a demountable vacuum system,” J. Vac. Sci. Technol. B 16, 3380–3384 (1998).
[CrossRef]

1997 (1)

V. L. Alperovich and D. Paget, “Diffusion and ordering of Cs adatoms on GaAs(001) studies by reflectance anisotropy spectroscopy,” Phys. Rev. B 56, R15565–R15568 (1997).
[CrossRef]

1996 (2)

G. Faraci, A. R. Pennisi, and G. Margaritondo, “Catalytic oxidation of the GaAs(110) surface promoted by a Cs overlayer,” Phys. Rev. B 53, 13851–13856 (1996).
[CrossRef]

G. Faraci, A. R. Pennisi, F. Gozzo, S. La Rosa, and G. Margaritondo, “Cs bonding at the Cs/GaAs(110) interface,” Phys. Rev. B 53, 3987–3992 (1996).
[CrossRef]

1994 (1)

R. Calabres, V. Guidi, P. Lenisa, B. Maciga, G. Ciullo, G. Della, G. P. Egeni, G. Lamanna, V. Rigato, V. Rudello, B. Yang, S. Zandolin, and L. Tecchio, “Surface analysis of a GaAs electron source using Rutherford backscattering spectroscopy,” Appl. Phys. Lett. 65, 301–302 (1994).
[CrossRef]

1991 (1)

L. J. Whitman, J. A. Stroscio, R. A. Dragoset, and R. J. Celotta, “Geometric and electronic properties of Cs structures on III–V (110) surfaces: from 1D and 2D insulators to 3D metals,” Phys. Rev. Lett. 66, 1338–1341 (1991).
[CrossRef] [PubMed]

1989 (1)

R. Cao, K. Miyano, T. Kendelewicz, I. Lindau, and W. E. Spicer, “Metallization and Fermi-level movement at the Cs/GaAs(110) interface,” Phys. Rev. B 39, 12655–12663 (1989).
[CrossRef]

1985 (1)

H.-J. Drouhin, C. Hermann, and G. Lampel, “Photoemission from activated gallium arsenide. I. very-high-resolution energy distribution curves,” Phys. Rev. B 31, 3859–3871 (1985).
[CrossRef]

1982 (1)

J. S. Blakemore, “Semiconducting and other major properties of gallium arsenide,” J. Appl. Phys. 53, R123–R181 (1982).
[CrossRef]

1976 (1)

D. E. Aspnes, C. G. Olson, and D. W. Lynch, “Ordering and absolute energies of the L6c and X6c conduction band minima in GaAs,” Phys. Rev. Lett. 37, 766–769 (1976).
[CrossRef]

1970 (1)

G. A. Antypas, L. W. James, and J. J. Uebbing, “Operation of III–V semiconductor photocathodes in the semitransparent mode,” J. Appl. Phys. 41, 2888–2894 (1970).
[CrossRef]

1969 (1)

L. W. James and J. L. Moll, “Transport properties of GaAs obtained from photoemission measurements,” Phys. Rev. 183, 740–753 (1969).
[CrossRef]

1968 (1)

A. A. Turnbull and G. B. Evans, “Photoemission from GaAs-Cs-O,” J. Phys. D 1, 155–160 (1968).
[CrossRef]

1965 (2)

J. J. Scheer and J. van Laar, “GaAs-Cs: a new type of photoemitter,” Solid State Commun. 3, 189–193 (1965).
[CrossRef]

M. L. Cohen and J. C. Phillips, “Spectral analysis of photoemissive yields in Si, Ge, GaAs, GaSb, InAs, and InSb,” Phys. Rev. 139, A912–A920 (1965).
[CrossRef]

1953 (1)

L. Van Hove, “The occurrence of singularities in the elastic frequency distribution of a crystal,” Phys. Rev. 89, 1189–1193(1953).
[CrossRef]

Alperovich, V. L.

V. L. Alperovich and D. Paget, “Diffusion and ordering of Cs adatoms on GaAs(001) studies by reflectance anisotropy spectroscopy,” Phys. Rev. B 56, R15565–R15568 (1997).
[CrossRef]

Antypas, G. A.

G. A. Antypas, L. W. James, and J. J. Uebbing, “Operation of III–V semiconductor photocathodes in the semitransparent mode,” J. Appl. Phys. 41, 2888–2894 (1970).
[CrossRef]

Aspnes, D. E.

D. E. Aspnes, C. G. Olson, and D. W. Lynch, “Ordering and absolute energies of the L6c and X6c conduction band minima in GaAs,” Phys. Rev. Lett. 37, 766–769 (1976).
[CrossRef]

Baum, A. W.

P. Sen, D. S. Pickard, J. E. Schneider, M. A. McCord, R. F. Pease, A. W. Baum, and K. A. Costello, “Lifetime and reliability results for a negative electron affinity photocathode in a demountable vacuum system,” J. Vac. Sci. Technol. B 16, 3380–3384 (1998).
[CrossRef]

Benemanskaya, G. V.

G. V. Benemanskaya, D. V. Daineka, and G. E. Frank-Kamenetskaya, “Electronic properties of the Cs covered GaAs(100) Ga-rich surface,” Solid State Commun. 114, 285–289 (2000).
[CrossRef]

Blakemore, J. S.

J. S. Blakemore, “Semiconducting and other major properties of gallium arsenide,” J. Appl. Phys. 53, R123–R181 (1982).
[CrossRef]

Calabres, R.

R. Calabres, V. Guidi, P. Lenisa, B. Maciga, G. Ciullo, G. Della, G. P. Egeni, G. Lamanna, V. Rigato, V. Rudello, B. Yang, S. Zandolin, and L. Tecchio, “Surface analysis of a GaAs electron source using Rutherford backscattering spectroscopy,” Appl. Phys. Lett. 65, 301–302 (1994).
[CrossRef]

Cao, R.

R. Cao, K. Miyano, T. Kendelewicz, I. Lindau, and W. E. Spicer, “Metallization and Fermi-level movement at the Cs/GaAs(110) interface,” Phys. Rev. B 39, 12655–12663 (1989).
[CrossRef]

Celotta, R. J.

L. J. Whitman, J. A. Stroscio, R. A. Dragoset, and R. J. Celotta, “Geometric and electronic properties of Cs structures on III–V (110) surfaces: from 1D and 2D insulators to 3D metals,” Phys. Rev. Lett. 66, 1338–1341 (1991).
[CrossRef] [PubMed]

Chang, B. K.

J. J. Zou, B. K. Chang, Z. Yang, Y. J. Zhang, and J. L. Qiao, “Evolution of surface potential barrier for negative-electron-affinity GaAs photocathodes,” J. Appl. Phys. 105, 013714 (2009).
[CrossRef]

J. J. Zou, B. K. Chang, Z. Yang, J. L. Qiao, and Y. P. Zeng, “Stability and photoemission characteristics for GaAs photocathodes in a demountable vacuum system,” Appl. Phys. Lett. 92, 172102 (2008).
[CrossRef]

Z. Yang, B. K. Chang, J. J. Zou, J. J. Qiao, P. Gao, Y. P. Zeng, and H. Li, “Comparison between gradient-doping GaAs photocathode and uniform-doping GaAs photocathode,” Appl. Opt. 46, 7035–7019 (2007).
[CrossRef] [PubMed]

B. K. Chang, X. Q. Du, L. Liu, Z. Y. Zong, R. G. Fu, and Y. S. Qian, “Automatic recording system of dynamic spectral response and its applications,” Proc. SPIE 5209, 209–218 (2003).
[CrossRef]

Chiaradia, P.

C. Hogan, D. Paget, Y. Garreau, M. Sauvage, G. Onida, L. Reining, P. Chiaradia, and V. Corradini, “Early stages of cesium adsorption on the As-rich c(2×8) reconstruction of GaAs(001): adsorption sites and Cs-induced chemical bonds,” Phys. Rev. B 68, 205313 (2003).
[CrossRef]

Ciullo, G.

R. Calabres, V. Guidi, P. Lenisa, B. Maciga, G. Ciullo, G. Della, G. P. Egeni, G. Lamanna, V. Rigato, V. Rudello, B. Yang, S. Zandolin, and L. Tecchio, “Surface analysis of a GaAs electron source using Rutherford backscattering spectroscopy,” Appl. Phys. Lett. 65, 301–302 (1994).
[CrossRef]

Cohen, M. L.

M. L. Cohen and J. C. Phillips, “Spectral analysis of photoemissive yields in Si, Ge, GaAs, GaSb, InAs, and InSb,” Phys. Rev. 139, A912–A920 (1965).
[CrossRef]

Corradini, V.

C. Hogan, D. Paget, Y. Garreau, M. Sauvage, G. Onida, L. Reining, P. Chiaradia, and V. Corradini, “Early stages of cesium adsorption on the As-rich c(2×8) reconstruction of GaAs(001): adsorption sites and Cs-induced chemical bonds,” Phys. Rev. B 68, 205313 (2003).
[CrossRef]

Costello, K. A.

P. Sen, D. S. Pickard, J. E. Schneider, M. A. McCord, R. F. Pease, A. W. Baum, and K. A. Costello, “Lifetime and reliability results for a negative electron affinity photocathode in a demountable vacuum system,” J. Vac. Sci. Technol. B 16, 3380–3384 (1998).
[CrossRef]

Daineka, D. V.

G. V. Benemanskaya, D. V. Daineka, and G. E. Frank-Kamenetskaya, “Electronic properties of the Cs covered GaAs(100) Ga-rich surface,” Solid State Commun. 114, 285–289 (2000).
[CrossRef]

Della, G.

R. Calabres, V. Guidi, P. Lenisa, B. Maciga, G. Ciullo, G. Della, G. P. Egeni, G. Lamanna, V. Rigato, V. Rudello, B. Yang, S. Zandolin, and L. Tecchio, “Surface analysis of a GaAs electron source using Rutherford backscattering spectroscopy,” Appl. Phys. Lett. 65, 301–302 (1994).
[CrossRef]

Dragoset, R. A.

L. J. Whitman, J. A. Stroscio, R. A. Dragoset, and R. J. Celotta, “Geometric and electronic properties of Cs structures on III–V (110) surfaces: from 1D and 2D insulators to 3D metals,” Phys. Rev. Lett. 66, 1338–1341 (1991).
[CrossRef] [PubMed]

Drouhin, H.-J.

H.-J. Drouhin, C. Hermann, and G. Lampel, “Photoemission from activated gallium arsenide. I. very-high-resolution energy distribution curves,” Phys. Rev. B 31, 3859–3871 (1985).
[CrossRef]

Du, X. Q.

B. K. Chang, X. Q. Du, L. Liu, Z. Y. Zong, R. G. Fu, and Y. S. Qian, “Automatic recording system of dynamic spectral response and its applications,” Proc. SPIE 5209, 209–218 (2003).
[CrossRef]

Egeni, G. P.

R. Calabres, V. Guidi, P. Lenisa, B. Maciga, G. Ciullo, G. Della, G. P. Egeni, G. Lamanna, V. Rigato, V. Rudello, B. Yang, S. Zandolin, and L. Tecchio, “Surface analysis of a GaAs electron source using Rutherford backscattering spectroscopy,” Appl. Phys. Lett. 65, 301–302 (1994).
[CrossRef]

Evans, G. B.

A. A. Turnbull and G. B. Evans, “Photoemission from GaAs-Cs-O,” J. Phys. D 1, 155–160 (1968).
[CrossRef]

Faraci, G.

G. Faraci, A. R. Pennisi, and G. Margaritondo, “Catalytic oxidation of the GaAs(110) surface promoted by a Cs overlayer,” Phys. Rev. B 53, 13851–13856 (1996).
[CrossRef]

G. Faraci, A. R. Pennisi, F. Gozzo, S. La Rosa, and G. Margaritondo, “Cs bonding at the Cs/GaAs(110) interface,” Phys. Rev. B 53, 3987–3992 (1996).
[CrossRef]

Frank-Kamenetskaya, G. E.

G. V. Benemanskaya, D. V. Daineka, and G. E. Frank-Kamenetskaya, “Electronic properties of the Cs covered GaAs(100) Ga-rich surface,” Solid State Commun. 114, 285–289 (2000).
[CrossRef]

Fu, R. G.

B. K. Chang, X. Q. Du, L. Liu, Z. Y. Zong, R. G. Fu, and Y. S. Qian, “Automatic recording system of dynamic spectral response and its applications,” Proc. SPIE 5209, 209–218 (2003).
[CrossRef]

Gao, P.

Garreau, Y.

C. Hogan, D. Paget, Y. Garreau, M. Sauvage, G. Onida, L. Reining, P. Chiaradia, and V. Corradini, “Early stages of cesium adsorption on the As-rich c(2×8) reconstruction of GaAs(001): adsorption sites and Cs-induced chemical bonds,” Phys. Rev. B 68, 205313 (2003).
[CrossRef]

Gozzo, F.

G. Faraci, A. R. Pennisi, F. Gozzo, S. La Rosa, and G. Margaritondo, “Cs bonding at the Cs/GaAs(110) interface,” Phys. Rev. B 53, 3987–3992 (1996).
[CrossRef]

Guidi, V.

R. Calabres, V. Guidi, P. Lenisa, B. Maciga, G. Ciullo, G. Della, G. P. Egeni, G. Lamanna, V. Rigato, V. Rudello, B. Yang, S. Zandolin, and L. Tecchio, “Surface analysis of a GaAs electron source using Rutherford backscattering spectroscopy,” Appl. Phys. Lett. 65, 301–302 (1994).
[CrossRef]

Hermann, C.

H.-J. Drouhin, C. Hermann, and G. Lampel, “Photoemission from activated gallium arsenide. I. very-high-resolution energy distribution curves,” Phys. Rev. B 31, 3859–3871 (1985).
[CrossRef]

Hogan, C.

C. Hogan, D. Paget, Y. Garreau, M. Sauvage, G. Onida, L. Reining, P. Chiaradia, and V. Corradini, “Early stages of cesium adsorption on the As-rich c(2×8) reconstruction of GaAs(001): adsorption sites and Cs-induced chemical bonds,” Phys. Rev. B 68, 205313 (2003).
[CrossRef]

James, L. W.

G. A. Antypas, L. W. James, and J. J. Uebbing, “Operation of III–V semiconductor photocathodes in the semitransparent mode,” J. Appl. Phys. 41, 2888–2894 (1970).
[CrossRef]

L. W. James and J. L. Moll, “Transport properties of GaAs obtained from photoemission measurements,” Phys. Rev. 183, 740–753 (1969).
[CrossRef]

Kendelewicz, T.

R. Cao, K. Miyano, T. Kendelewicz, I. Lindau, and W. E. Spicer, “Metallization and Fermi-level movement at the Cs/GaAs(110) interface,” Phys. Rev. B 39, 12655–12663 (1989).
[CrossRef]

Lamanna, G.

R. Calabres, V. Guidi, P. Lenisa, B. Maciga, G. Ciullo, G. Della, G. P. Egeni, G. Lamanna, V. Rigato, V. Rudello, B. Yang, S. Zandolin, and L. Tecchio, “Surface analysis of a GaAs electron source using Rutherford backscattering spectroscopy,” Appl. Phys. Lett. 65, 301–302 (1994).
[CrossRef]

Lampel, G.

H.-J. Drouhin, C. Hermann, and G. Lampel, “Photoemission from activated gallium arsenide. I. very-high-resolution energy distribution curves,” Phys. Rev. B 31, 3859–3871 (1985).
[CrossRef]

Lenisa, P.

R. Calabres, V. Guidi, P. Lenisa, B. Maciga, G. Ciullo, G. Della, G. P. Egeni, G. Lamanna, V. Rigato, V. Rudello, B. Yang, S. Zandolin, and L. Tecchio, “Surface analysis of a GaAs electron source using Rutherford backscattering spectroscopy,” Appl. Phys. Lett. 65, 301–302 (1994).
[CrossRef]

Li, H.

Lindau, I.

R. Cao, K. Miyano, T. Kendelewicz, I. Lindau, and W. E. Spicer, “Metallization and Fermi-level movement at the Cs/GaAs(110) interface,” Phys. Rev. B 39, 12655–12663 (1989).
[CrossRef]

Liu, L.

B. K. Chang, X. Q. Du, L. Liu, Z. Y. Zong, R. G. Fu, and Y. S. Qian, “Automatic recording system of dynamic spectral response and its applications,” Proc. SPIE 5209, 209–218 (2003).
[CrossRef]

Lynch, D. W.

D. E. Aspnes, C. G. Olson, and D. W. Lynch, “Ordering and absolute energies of the L6c and X6c conduction band minima in GaAs,” Phys. Rev. Lett. 37, 766–769 (1976).
[CrossRef]

Maciga, B.

R. Calabres, V. Guidi, P. Lenisa, B. Maciga, G. Ciullo, G. Della, G. P. Egeni, G. Lamanna, V. Rigato, V. Rudello, B. Yang, S. Zandolin, and L. Tecchio, “Surface analysis of a GaAs electron source using Rutherford backscattering spectroscopy,” Appl. Phys. Lett. 65, 301–302 (1994).
[CrossRef]

Margaritondo, G.

G. Faraci, A. R. Pennisi, and G. Margaritondo, “Catalytic oxidation of the GaAs(110) surface promoted by a Cs overlayer,” Phys. Rev. B 53, 13851–13856 (1996).
[CrossRef]

G. Faraci, A. R. Pennisi, F. Gozzo, S. La Rosa, and G. Margaritondo, “Cs bonding at the Cs/GaAs(110) interface,” Phys. Rev. B 53, 3987–3992 (1996).
[CrossRef]

McCord, M. A.

P. Sen, D. S. Pickard, J. E. Schneider, M. A. McCord, R. F. Pease, A. W. Baum, and K. A. Costello, “Lifetime and reliability results for a negative electron affinity photocathode in a demountable vacuum system,” J. Vac. Sci. Technol. B 16, 3380–3384 (1998).
[CrossRef]

Miyano, K.

R. Cao, K. Miyano, T. Kendelewicz, I. Lindau, and W. E. Spicer, “Metallization and Fermi-level movement at the Cs/GaAs(110) interface,” Phys. Rev. B 39, 12655–12663 (1989).
[CrossRef]

Moll, J. L.

L. W. James and J. L. Moll, “Transport properties of GaAs obtained from photoemission measurements,” Phys. Rev. 183, 740–753 (1969).
[CrossRef]

Olson, C. G.

D. E. Aspnes, C. G. Olson, and D. W. Lynch, “Ordering and absolute energies of the L6c and X6c conduction band minima in GaAs,” Phys. Rev. Lett. 37, 766–769 (1976).
[CrossRef]

Onida, G.

C. Hogan, D. Paget, Y. Garreau, M. Sauvage, G. Onida, L. Reining, P. Chiaradia, and V. Corradini, “Early stages of cesium adsorption on the As-rich c(2×8) reconstruction of GaAs(001): adsorption sites and Cs-induced chemical bonds,” Phys. Rev. B 68, 205313 (2003).
[CrossRef]

Paget, D.

C. Hogan, D. Paget, Y. Garreau, M. Sauvage, G. Onida, L. Reining, P. Chiaradia, and V. Corradini, “Early stages of cesium adsorption on the As-rich c(2×8) reconstruction of GaAs(001): adsorption sites and Cs-induced chemical bonds,” Phys. Rev. B 68, 205313 (2003).
[CrossRef]

V. L. Alperovich and D. Paget, “Diffusion and ordering of Cs adatoms on GaAs(001) studies by reflectance anisotropy spectroscopy,” Phys. Rev. B 56, R15565–R15568 (1997).
[CrossRef]

Pease, R. F.

P. Sen, D. S. Pickard, J. E. Schneider, M. A. McCord, R. F. Pease, A. W. Baum, and K. A. Costello, “Lifetime and reliability results for a negative electron affinity photocathode in a demountable vacuum system,” J. Vac. Sci. Technol. B 16, 3380–3384 (1998).
[CrossRef]

Pennisi, A. R.

G. Faraci, A. R. Pennisi, F. Gozzo, S. La Rosa, and G. Margaritondo, “Cs bonding at the Cs/GaAs(110) interface,” Phys. Rev. B 53, 3987–3992 (1996).
[CrossRef]

G. Faraci, A. R. Pennisi, and G. Margaritondo, “Catalytic oxidation of the GaAs(110) surface promoted by a Cs overlayer,” Phys. Rev. B 53, 13851–13856 (1996).
[CrossRef]

Phillips, J. C.

M. L. Cohen and J. C. Phillips, “Spectral analysis of photoemissive yields in Si, Ge, GaAs, GaSb, InAs, and InSb,” Phys. Rev. 139, A912–A920 (1965).
[CrossRef]

Pickard, D. S.

P. Sen, D. S. Pickard, J. E. Schneider, M. A. McCord, R. F. Pease, A. W. Baum, and K. A. Costello, “Lifetime and reliability results for a negative electron affinity photocathode in a demountable vacuum system,” J. Vac. Sci. Technol. B 16, 3380–3384 (1998).
[CrossRef]

Pollak, F. H.

F. H. Pollak, “Study of semiconductor surfaces and interfaces using electromodulation,” Surf. Interface Anal. 31, 938–953(2001).
[CrossRef]

Qian, Y. S.

B. K. Chang, X. Q. Du, L. Liu, Z. Y. Zong, R. G. Fu, and Y. S. Qian, “Automatic recording system of dynamic spectral response and its applications,” Proc. SPIE 5209, 209–218 (2003).
[CrossRef]

Qiao, J. J.

Qiao, J. L.

J. J. Zou, B. K. Chang, Z. Yang, Y. J. Zhang, and J. L. Qiao, “Evolution of surface potential barrier for negative-electron-affinity GaAs photocathodes,” J. Appl. Phys. 105, 013714 (2009).
[CrossRef]

J. J. Zou, B. K. Chang, Z. Yang, J. L. Qiao, and Y. P. Zeng, “Stability and photoemission characteristics for GaAs photocathodes in a demountable vacuum system,” Appl. Phys. Lett. 92, 172102 (2008).
[CrossRef]

Reining, L.

C. Hogan, D. Paget, Y. Garreau, M. Sauvage, G. Onida, L. Reining, P. Chiaradia, and V. Corradini, “Early stages of cesium adsorption on the As-rich c(2×8) reconstruction of GaAs(001): adsorption sites and Cs-induced chemical bonds,” Phys. Rev. B 68, 205313 (2003).
[CrossRef]

Rigato, V.

R. Calabres, V. Guidi, P. Lenisa, B. Maciga, G. Ciullo, G. Della, G. P. Egeni, G. Lamanna, V. Rigato, V. Rudello, B. Yang, S. Zandolin, and L. Tecchio, “Surface analysis of a GaAs electron source using Rutherford backscattering spectroscopy,” Appl. Phys. Lett. 65, 301–302 (1994).
[CrossRef]

Rosa, S. La

G. Faraci, A. R. Pennisi, F. Gozzo, S. La Rosa, and G. Margaritondo, “Cs bonding at the Cs/GaAs(110) interface,” Phys. Rev. B 53, 3987–3992 (1996).
[CrossRef]

Rudello, V.

R. Calabres, V. Guidi, P. Lenisa, B. Maciga, G. Ciullo, G. Della, G. P. Egeni, G. Lamanna, V. Rigato, V. Rudello, B. Yang, S. Zandolin, and L. Tecchio, “Surface analysis of a GaAs electron source using Rutherford backscattering spectroscopy,” Appl. Phys. Lett. 65, 301–302 (1994).
[CrossRef]

Sauvage, M.

C. Hogan, D. Paget, Y. Garreau, M. Sauvage, G. Onida, L. Reining, P. Chiaradia, and V. Corradini, “Early stages of cesium adsorption on the As-rich c(2×8) reconstruction of GaAs(001): adsorption sites and Cs-induced chemical bonds,” Phys. Rev. B 68, 205313 (2003).
[CrossRef]

Scheer, J. J.

J. J. Scheer and J. van Laar, “GaAs-Cs: a new type of photoemitter,” Solid State Commun. 3, 189–193 (1965).
[CrossRef]

Schneider, J. E.

P. Sen, D. S. Pickard, J. E. Schneider, M. A. McCord, R. F. Pease, A. W. Baum, and K. A. Costello, “Lifetime and reliability results for a negative electron affinity photocathode in a demountable vacuum system,” J. Vac. Sci. Technol. B 16, 3380–3384 (1998).
[CrossRef]

Sen, P.

P. Sen, D. S. Pickard, J. E. Schneider, M. A. McCord, R. F. Pease, A. W. Baum, and K. A. Costello, “Lifetime and reliability results for a negative electron affinity photocathode in a demountable vacuum system,” J. Vac. Sci. Technol. B 16, 3380–3384 (1998).
[CrossRef]

Shalish, I.

I. Shalish, “Effect of Van Hove singularities on the photovoltage spectra of semiconductors,” Phys. Rev. B 66, 165214 (2002).
[CrossRef]

Spicer, W. E.

R. Cao, K. Miyano, T. Kendelewicz, I. Lindau, and W. E. Spicer, “Metallization and Fermi-level movement at the Cs/GaAs(110) interface,” Phys. Rev. B 39, 12655–12663 (1989).
[CrossRef]

Stroscio, J. A.

L. J. Whitman, J. A. Stroscio, R. A. Dragoset, and R. J. Celotta, “Geometric and electronic properties of Cs structures on III–V (110) surfaces: from 1D and 2D insulators to 3D metals,” Phys. Rev. Lett. 66, 1338–1341 (1991).
[CrossRef] [PubMed]

Tecchio, L.

R. Calabres, V. Guidi, P. Lenisa, B. Maciga, G. Ciullo, G. Della, G. P. Egeni, G. Lamanna, V. Rigato, V. Rudello, B. Yang, S. Zandolin, and L. Tecchio, “Surface analysis of a GaAs electron source using Rutherford backscattering spectroscopy,” Appl. Phys. Lett. 65, 301–302 (1994).
[CrossRef]

Turnbull, A. A.

A. A. Turnbull and G. B. Evans, “Photoemission from GaAs-Cs-O,” J. Phys. D 1, 155–160 (1968).
[CrossRef]

Uebbing, J. J.

G. A. Antypas, L. W. James, and J. J. Uebbing, “Operation of III–V semiconductor photocathodes in the semitransparent mode,” J. Appl. Phys. 41, 2888–2894 (1970).
[CrossRef]

Van Hove, L.

L. Van Hove, “The occurrence of singularities in the elastic frequency distribution of a crystal,” Phys. Rev. 89, 1189–1193(1953).
[CrossRef]

van Laar, J.

J. J. Scheer and J. van Laar, “GaAs-Cs: a new type of photoemitter,” Solid State Commun. 3, 189–193 (1965).
[CrossRef]

Whitman, L. J.

L. J. Whitman, J. A. Stroscio, R. A. Dragoset, and R. J. Celotta, “Geometric and electronic properties of Cs structures on III–V (110) surfaces: from 1D and 2D insulators to 3D metals,” Phys. Rev. Lett. 66, 1338–1341 (1991).
[CrossRef] [PubMed]

Yang, B.

R. Calabres, V. Guidi, P. Lenisa, B. Maciga, G. Ciullo, G. Della, G. P. Egeni, G. Lamanna, V. Rigato, V. Rudello, B. Yang, S. Zandolin, and L. Tecchio, “Surface analysis of a GaAs electron source using Rutherford backscattering spectroscopy,” Appl. Phys. Lett. 65, 301–302 (1994).
[CrossRef]

Yang, Z.

J. J. Zou, B. K. Chang, Z. Yang, Y. J. Zhang, and J. L. Qiao, “Evolution of surface potential barrier for negative-electron-affinity GaAs photocathodes,” J. Appl. Phys. 105, 013714 (2009).
[CrossRef]

J. J. Zou, B. K. Chang, Z. Yang, J. L. Qiao, and Y. P. Zeng, “Stability and photoemission characteristics for GaAs photocathodes in a demountable vacuum system,” Appl. Phys. Lett. 92, 172102 (2008).
[CrossRef]

Z. Yang, B. K. Chang, J. J. Zou, J. J. Qiao, P. Gao, Y. P. Zeng, and H. Li, “Comparison between gradient-doping GaAs photocathode and uniform-doping GaAs photocathode,” Appl. Opt. 46, 7035–7019 (2007).
[CrossRef] [PubMed]

Zandolin, S.

R. Calabres, V. Guidi, P. Lenisa, B. Maciga, G. Ciullo, G. Della, G. P. Egeni, G. Lamanna, V. Rigato, V. Rudello, B. Yang, S. Zandolin, and L. Tecchio, “Surface analysis of a GaAs electron source using Rutherford backscattering spectroscopy,” Appl. Phys. Lett. 65, 301–302 (1994).
[CrossRef]

Zeng, Y. P.

J. J. Zou, B. K. Chang, Z. Yang, J. L. Qiao, and Y. P. Zeng, “Stability and photoemission characteristics for GaAs photocathodes in a demountable vacuum system,” Appl. Phys. Lett. 92, 172102 (2008).
[CrossRef]

Z. Yang, B. K. Chang, J. J. Zou, J. J. Qiao, P. Gao, Y. P. Zeng, and H. Li, “Comparison between gradient-doping GaAs photocathode and uniform-doping GaAs photocathode,” Appl. Opt. 46, 7035–7019 (2007).
[CrossRef] [PubMed]

Zhang, Y. J.

J. J. Zou, B. K. Chang, Z. Yang, Y. J. Zhang, and J. L. Qiao, “Evolution of surface potential barrier for negative-electron-affinity GaAs photocathodes,” J. Appl. Phys. 105, 013714 (2009).
[CrossRef]

Zong, Z. Y.

B. K. Chang, X. Q. Du, L. Liu, Z. Y. Zong, R. G. Fu, and Y. S. Qian, “Automatic recording system of dynamic spectral response and its applications,” Proc. SPIE 5209, 209–218 (2003).
[CrossRef]

Zou, J. J.

J. J. Zou, B. K. Chang, Z. Yang, Y. J. Zhang, and J. L. Qiao, “Evolution of surface potential barrier for negative-electron-affinity GaAs photocathodes,” J. Appl. Phys. 105, 013714 (2009).
[CrossRef]

J. J. Zou, B. K. Chang, Z. Yang, J. L. Qiao, and Y. P. Zeng, “Stability and photoemission characteristics for GaAs photocathodes in a demountable vacuum system,” Appl. Phys. Lett. 92, 172102 (2008).
[CrossRef]

Z. Yang, B. K. Chang, J. J. Zou, J. J. Qiao, P. Gao, Y. P. Zeng, and H. Li, “Comparison between gradient-doping GaAs photocathode and uniform-doping GaAs photocathode,” Appl. Opt. 46, 7035–7019 (2007).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

R. Calabres, V. Guidi, P. Lenisa, B. Maciga, G. Ciullo, G. Della, G. P. Egeni, G. Lamanna, V. Rigato, V. Rudello, B. Yang, S. Zandolin, and L. Tecchio, “Surface analysis of a GaAs electron source using Rutherford backscattering spectroscopy,” Appl. Phys. Lett. 65, 301–302 (1994).
[CrossRef]

J. J. Zou, B. K. Chang, Z. Yang, J. L. Qiao, and Y. P. Zeng, “Stability and photoemission characteristics for GaAs photocathodes in a demountable vacuum system,” Appl. Phys. Lett. 92, 172102 (2008).
[CrossRef]

J. Appl. Phys. (3)

G. A. Antypas, L. W. James, and J. J. Uebbing, “Operation of III–V semiconductor photocathodes in the semitransparent mode,” J. Appl. Phys. 41, 2888–2894 (1970).
[CrossRef]

J. J. Zou, B. K. Chang, Z. Yang, Y. J. Zhang, and J. L. Qiao, “Evolution of surface potential barrier for negative-electron-affinity GaAs photocathodes,” J. Appl. Phys. 105, 013714 (2009).
[CrossRef]

J. S. Blakemore, “Semiconducting and other major properties of gallium arsenide,” J. Appl. Phys. 53, R123–R181 (1982).
[CrossRef]

J. Phys. D (1)

A. A. Turnbull and G. B. Evans, “Photoemission from GaAs-Cs-O,” J. Phys. D 1, 155–160 (1968).
[CrossRef]

J. Vac. Sci. Technol. B (1)

P. Sen, D. S. Pickard, J. E. Schneider, M. A. McCord, R. F. Pease, A. W. Baum, and K. A. Costello, “Lifetime and reliability results for a negative electron affinity photocathode in a demountable vacuum system,” J. Vac. Sci. Technol. B 16, 3380–3384 (1998).
[CrossRef]

Phys. Rev. (3)

L. Van Hove, “The occurrence of singularities in the elastic frequency distribution of a crystal,” Phys. Rev. 89, 1189–1193(1953).
[CrossRef]

L. W. James and J. L. Moll, “Transport properties of GaAs obtained from photoemission measurements,” Phys. Rev. 183, 740–753 (1969).
[CrossRef]

M. L. Cohen and J. C. Phillips, “Spectral analysis of photoemissive yields in Si, Ge, GaAs, GaSb, InAs, and InSb,” Phys. Rev. 139, A912–A920 (1965).
[CrossRef]

Phys. Rev. B (7)

H.-J. Drouhin, C. Hermann, and G. Lampel, “Photoemission from activated gallium arsenide. I. very-high-resolution energy distribution curves,” Phys. Rev. B 31, 3859–3871 (1985).
[CrossRef]

I. Shalish, “Effect of Van Hove singularities on the photovoltage spectra of semiconductors,” Phys. Rev. B 66, 165214 (2002).
[CrossRef]

G. Faraci, A. R. Pennisi, and G. Margaritondo, “Catalytic oxidation of the GaAs(110) surface promoted by a Cs overlayer,” Phys. Rev. B 53, 13851–13856 (1996).
[CrossRef]

G. Faraci, A. R. Pennisi, F. Gozzo, S. La Rosa, and G. Margaritondo, “Cs bonding at the Cs/GaAs(110) interface,” Phys. Rev. B 53, 3987–3992 (1996).
[CrossRef]

R. Cao, K. Miyano, T. Kendelewicz, I. Lindau, and W. E. Spicer, “Metallization and Fermi-level movement at the Cs/GaAs(110) interface,” Phys. Rev. B 39, 12655–12663 (1989).
[CrossRef]

V. L. Alperovich and D. Paget, “Diffusion and ordering of Cs adatoms on GaAs(001) studies by reflectance anisotropy spectroscopy,” Phys. Rev. B 56, R15565–R15568 (1997).
[CrossRef]

C. Hogan, D. Paget, Y. Garreau, M. Sauvage, G. Onida, L. Reining, P. Chiaradia, and V. Corradini, “Early stages of cesium adsorption on the As-rich c(2×8) reconstruction of GaAs(001): adsorption sites and Cs-induced chemical bonds,” Phys. Rev. B 68, 205313 (2003).
[CrossRef]

Phys. Rev. Lett. (2)

L. J. Whitman, J. A. Stroscio, R. A. Dragoset, and R. J. Celotta, “Geometric and electronic properties of Cs structures on III–V (110) surfaces: from 1D and 2D insulators to 3D metals,” Phys. Rev. Lett. 66, 1338–1341 (1991).
[CrossRef] [PubMed]

D. E. Aspnes, C. G. Olson, and D. W. Lynch, “Ordering and absolute energies of the L6c and X6c conduction band minima in GaAs,” Phys. Rev. Lett. 37, 766–769 (1976).
[CrossRef]

Proc. SPIE (1)

B. K. Chang, X. Q. Du, L. Liu, Z. Y. Zong, R. G. Fu, and Y. S. Qian, “Automatic recording system of dynamic spectral response and its applications,” Proc. SPIE 5209, 209–218 (2003).
[CrossRef]

Solid State Commun. (2)

G. V. Benemanskaya, D. V. Daineka, and G. E. Frank-Kamenetskaya, “Electronic properties of the Cs covered GaAs(100) Ga-rich surface,” Solid State Commun. 114, 285–289 (2000).
[CrossRef]

J. J. Scheer and J. van Laar, “GaAs-Cs: a new type of photoemitter,” Solid State Commun. 3, 189–193 (1965).
[CrossRef]

Surf. Interface Anal. (1)

F. H. Pollak, “Study of semiconductor surfaces and interfaces using electromodulation,” Surf. Interface Anal. 31, 938–953(2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Photocurrent from the GaAs–Cs photocathode as a function of time. There are two processes: A, adsorption process ( 0 240 min ); B, degradation process ( 240 600 min ). The number marked on the photocurrent line presents the serial number of the spectral-response curve measured at that moment. Curves 1 to 10 were measured at 90, 116, 198, 240, 261, 300, 329, 358, 410, and 585 min , respectively.

Fig. 2
Fig. 2

(a) Spectral response as a function of adsorption time of Cs on the GaAs surface. (b) Spectral response as a function of degradation time of GaAs–Cs photocathode. The number on the spectral-response curve corresponds to the number marked on the photocurrent line in Fig. 1.

Fig. 3
Fig. 3

Semiconductor–vacuum interface and surface barrier for Cs-covered GaAs.

Fig. 4
Fig. 4

Spectral-response derivatives: The positions of the structural features in the spectra are E ( A 1 ) = 1.41 eV , E ( A 2 ) = 1.75 eV , E ( A 3 ) = 1.90 eV , E ( A 4 ) = 2.05 eV , E ( A 5 ) = 2.20 eV , and E ( A 6 ) = 2.30 eV .

Fig. 5
Fig. 5

Electron energy as a function of reduced wave vector for the uppermost part of the valence band system and for the lowest sets of conduction band minima (as taken from [24]). The energy origin is at the maximum of the upper valence bands ( Γ 8 ). Energy gaps are shown as appropriate for room temperature. The energy of every transition denoted by arrow is E ( 1 ) = 1.42 eV , E ( 2 ) = 1.71 eV , E ( 2 ) = 1.76 eV , E ( 3 ) = 1.90 eV , E ( 4 ) = 2.05 eV , E ( 5 ) = 2.24 eV , and E ( 6 ) = 2.30 eV .

Metrics