Abstract

We demonstrate energy-transfer microcavity dye lasers pumped by an InGaN-based violet laser diode. We obtain the oscillation wavelength range from 500 to 610nm using a combination of Coumarin dyes as a donor and Pyrromethene and Rhodamine dyes as acceptors. The operational lifetime of the mixed Coumarin 540A (C540A)/Pyrromethene 567 laser was improved by 14 times compared with the C540A laser. We dope a singlet oxygen quencher into the mixed C540A/Rhodamine 6G laser, resulting in an improvement in the operational lifetime by 10 times compared with the laser without the quencher.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Granlund, M. Theander, M. Berggren, M. Andersson, A. Ruzeckas, G. Björk, and M. Granström, “A polythiophene microcavity laser,” Chem. Phys. Lett. 288, 879–884 (1998).
    [CrossRef]
  2. S. Riechel, U. Lemmer, J. Feldmann, S. Berleb, A. G. Mückl, W. Brütting, A. Gombert, and V. Wittwer, “Very compact tunable solid-state laser utilizing a thin-film organic semiconductor,” Opt. Lett. 26, 593–595 (2001).
    [CrossRef]
  3. Y. Oki, K. Aso, D. Zuo, N. J. Vasa, and M. Maeda, “Wide-wavelength-range operation of a distributed-feedback dye laser with a plastic waveguide,” Jpn. J. Appl. Phys. 41, 6370–6374 (2002).
    [CrossRef]
  4. T. Riedl, T. Rabe, H.-H. Johannes, W. Kowalsky, J. Wang, T. Weimann, P. Hinze, B. Nehls, T. Farrell, and U. Scherf, “Tunable organic thin-film laser pumped by an inorganic violet diode laser,” Appl. Phys. Lett. 88, 241116 (2006).
    [CrossRef]
  5. H. Sakata and H. Takeuchi, “Green-emitting organic vertical-cavity laser pumped by InGaN-based laser diode,” Electron. Lett. 43, 1431–1433 (2007).
    [CrossRef]
  6. T. H. Nhung, M. Canva, F. Chaput, H. Goudket, G. Roger, A. Brun, D. D. Manh, N. D. Hung, and J.-P. Boilot, “Dye energy transfer in xerogel matrices and application to solid-state dye lasers,” Opt. Commun. 232, 343–351 (2004).
    [CrossRef]
  7. Y. Yang, G. Qian, D. Su, and M. Wang, “Photostability of pyrromethene 567 doped in ORMOSILs with various additives,” Opt. Commun. 239, 415–420 (2004).
    [CrossRef]
  8. B. May, X. Poteau, D. Yuan, and R. G. Brown, “A study of a highly efficient resonance energy transfer between 7-N,N-diethylamino-4-methylcoumarin and 9-butyl-4-butylamino-1,8-naphthalimide,” Dyes Pigm. 42, 79–84 (1999).
    [CrossRef]
  9. Y. Yang, G. Qian, D. Su, Z. Wang, and M. Wang, “Energy transfer mechanism between laser dyes doped in ORMOSILs,” Chem. Phys. Lett. 402, 389–394 (2005).
    [CrossRef]
  10. M. A. Khader, “Lasing characteristics of Rhodamine B and Rhodamine 6G as a sensitizer in sol-gel silica,” Opt. Laser Technol. 40, 445–452 (2008).
    [CrossRef]
  11. K. Sonoyama, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Lowering threshold by energy transfer between two dyes in cholesteric liquid crystal distributed feedback lasers,” Appl. Phys. Express 1, 032002 (2008).
    [CrossRef]
  12. M. Ahmad, M. D. Rahn, and T. A. King, “Singlet oxygen and dye-triplet-state quenching in solid-state dye lasers consisting of Pyrromethene 567-doped poly (methyl methacrylate),” Appl. Opt. 38, 6337–6341 (1999).
    [CrossRef]

2008 (2)

M. A. Khader, “Lasing characteristics of Rhodamine B and Rhodamine 6G as a sensitizer in sol-gel silica,” Opt. Laser Technol. 40, 445–452 (2008).
[CrossRef]

K. Sonoyama, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Lowering threshold by energy transfer between two dyes in cholesteric liquid crystal distributed feedback lasers,” Appl. Phys. Express 1, 032002 (2008).
[CrossRef]

2007 (1)

H. Sakata and H. Takeuchi, “Green-emitting organic vertical-cavity laser pumped by InGaN-based laser diode,” Electron. Lett. 43, 1431–1433 (2007).
[CrossRef]

2006 (1)

T. Riedl, T. Rabe, H.-H. Johannes, W. Kowalsky, J. Wang, T. Weimann, P. Hinze, B. Nehls, T. Farrell, and U. Scherf, “Tunable organic thin-film laser pumped by an inorganic violet diode laser,” Appl. Phys. Lett. 88, 241116 (2006).
[CrossRef]

2005 (1)

Y. Yang, G. Qian, D. Su, Z. Wang, and M. Wang, “Energy transfer mechanism between laser dyes doped in ORMOSILs,” Chem. Phys. Lett. 402, 389–394 (2005).
[CrossRef]

2004 (2)

T. H. Nhung, M. Canva, F. Chaput, H. Goudket, G. Roger, A. Brun, D. D. Manh, N. D. Hung, and J.-P. Boilot, “Dye energy transfer in xerogel matrices and application to solid-state dye lasers,” Opt. Commun. 232, 343–351 (2004).
[CrossRef]

Y. Yang, G. Qian, D. Su, and M. Wang, “Photostability of pyrromethene 567 doped in ORMOSILs with various additives,” Opt. Commun. 239, 415–420 (2004).
[CrossRef]

2002 (1)

Y. Oki, K. Aso, D. Zuo, N. J. Vasa, and M. Maeda, “Wide-wavelength-range operation of a distributed-feedback dye laser with a plastic waveguide,” Jpn. J. Appl. Phys. 41, 6370–6374 (2002).
[CrossRef]

2001 (1)

1999 (2)

B. May, X. Poteau, D. Yuan, and R. G. Brown, “A study of a highly efficient resonance energy transfer between 7-N,N-diethylamino-4-methylcoumarin and 9-butyl-4-butylamino-1,8-naphthalimide,” Dyes Pigm. 42, 79–84 (1999).
[CrossRef]

M. Ahmad, M. D. Rahn, and T. A. King, “Singlet oxygen and dye-triplet-state quenching in solid-state dye lasers consisting of Pyrromethene 567-doped poly (methyl methacrylate),” Appl. Opt. 38, 6337–6341 (1999).
[CrossRef]

1998 (1)

T. Granlund, M. Theander, M. Berggren, M. Andersson, A. Ruzeckas, G. Björk, and M. Granström, “A polythiophene microcavity laser,” Chem. Phys. Lett. 288, 879–884 (1998).
[CrossRef]

Ahmad, M.

Andersson, M.

T. Granlund, M. Theander, M. Berggren, M. Andersson, A. Ruzeckas, G. Björk, and M. Granström, “A polythiophene microcavity laser,” Chem. Phys. Lett. 288, 879–884 (1998).
[CrossRef]

Aso, K.

Y. Oki, K. Aso, D. Zuo, N. J. Vasa, and M. Maeda, “Wide-wavelength-range operation of a distributed-feedback dye laser with a plastic waveguide,” Jpn. J. Appl. Phys. 41, 6370–6374 (2002).
[CrossRef]

Berggren, M.

T. Granlund, M. Theander, M. Berggren, M. Andersson, A. Ruzeckas, G. Björk, and M. Granström, “A polythiophene microcavity laser,” Chem. Phys. Lett. 288, 879–884 (1998).
[CrossRef]

Berleb, S.

Björk, G.

T. Granlund, M. Theander, M. Berggren, M. Andersson, A. Ruzeckas, G. Björk, and M. Granström, “A polythiophene microcavity laser,” Chem. Phys. Lett. 288, 879–884 (1998).
[CrossRef]

Boilot, J.-P.

T. H. Nhung, M. Canva, F. Chaput, H. Goudket, G. Roger, A. Brun, D. D. Manh, N. D. Hung, and J.-P. Boilot, “Dye energy transfer in xerogel matrices and application to solid-state dye lasers,” Opt. Commun. 232, 343–351 (2004).
[CrossRef]

Brown, R. G.

B. May, X. Poteau, D. Yuan, and R. G. Brown, “A study of a highly efficient resonance energy transfer between 7-N,N-diethylamino-4-methylcoumarin and 9-butyl-4-butylamino-1,8-naphthalimide,” Dyes Pigm. 42, 79–84 (1999).
[CrossRef]

Brun, A.

T. H. Nhung, M. Canva, F. Chaput, H. Goudket, G. Roger, A. Brun, D. D. Manh, N. D. Hung, and J.-P. Boilot, “Dye energy transfer in xerogel matrices and application to solid-state dye lasers,” Opt. Commun. 232, 343–351 (2004).
[CrossRef]

Brütting, W.

Canva, M.

T. H. Nhung, M. Canva, F. Chaput, H. Goudket, G. Roger, A. Brun, D. D. Manh, N. D. Hung, and J.-P. Boilot, “Dye energy transfer in xerogel matrices and application to solid-state dye lasers,” Opt. Commun. 232, 343–351 (2004).
[CrossRef]

Chaput, F.

T. H. Nhung, M. Canva, F. Chaput, H. Goudket, G. Roger, A. Brun, D. D. Manh, N. D. Hung, and J.-P. Boilot, “Dye energy transfer in xerogel matrices and application to solid-state dye lasers,” Opt. Commun. 232, 343–351 (2004).
[CrossRef]

Farrell, T.

T. Riedl, T. Rabe, H.-H. Johannes, W. Kowalsky, J. Wang, T. Weimann, P. Hinze, B. Nehls, T. Farrell, and U. Scherf, “Tunable organic thin-film laser pumped by an inorganic violet diode laser,” Appl. Phys. Lett. 88, 241116 (2006).
[CrossRef]

Feldmann, J.

Gombert, A.

Goudket, H.

T. H. Nhung, M. Canva, F. Chaput, H. Goudket, G. Roger, A. Brun, D. D. Manh, N. D. Hung, and J.-P. Boilot, “Dye energy transfer in xerogel matrices and application to solid-state dye lasers,” Opt. Commun. 232, 343–351 (2004).
[CrossRef]

Granlund, T.

T. Granlund, M. Theander, M. Berggren, M. Andersson, A. Ruzeckas, G. Björk, and M. Granström, “A polythiophene microcavity laser,” Chem. Phys. Lett. 288, 879–884 (1998).
[CrossRef]

Granström, M.

T. Granlund, M. Theander, M. Berggren, M. Andersson, A. Ruzeckas, G. Björk, and M. Granström, “A polythiophene microcavity laser,” Chem. Phys. Lett. 288, 879–884 (1998).
[CrossRef]

Hinze, P.

T. Riedl, T. Rabe, H.-H. Johannes, W. Kowalsky, J. Wang, T. Weimann, P. Hinze, B. Nehls, T. Farrell, and U. Scherf, “Tunable organic thin-film laser pumped by an inorganic violet diode laser,” Appl. Phys. Lett. 88, 241116 (2006).
[CrossRef]

Hung, N. D.

T. H. Nhung, M. Canva, F. Chaput, H. Goudket, G. Roger, A. Brun, D. D. Manh, N. D. Hung, and J.-P. Boilot, “Dye energy transfer in xerogel matrices and application to solid-state dye lasers,” Opt. Commun. 232, 343–351 (2004).
[CrossRef]

Ishikawa, K.

K. Sonoyama, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Lowering threshold by energy transfer between two dyes in cholesteric liquid crystal distributed feedback lasers,” Appl. Phys. Express 1, 032002 (2008).
[CrossRef]

Johannes, H.-H.

T. Riedl, T. Rabe, H.-H. Johannes, W. Kowalsky, J. Wang, T. Weimann, P. Hinze, B. Nehls, T. Farrell, and U. Scherf, “Tunable organic thin-film laser pumped by an inorganic violet diode laser,” Appl. Phys. Lett. 88, 241116 (2006).
[CrossRef]

Khader, M. A.

M. A. Khader, “Lasing characteristics of Rhodamine B and Rhodamine 6G as a sensitizer in sol-gel silica,” Opt. Laser Technol. 40, 445–452 (2008).
[CrossRef]

King, T. A.

Kowalsky, W.

T. Riedl, T. Rabe, H.-H. Johannes, W. Kowalsky, J. Wang, T. Weimann, P. Hinze, B. Nehls, T. Farrell, and U. Scherf, “Tunable organic thin-film laser pumped by an inorganic violet diode laser,” Appl. Phys. Lett. 88, 241116 (2006).
[CrossRef]

Lemmer, U.

Maeda, M.

Y. Oki, K. Aso, D. Zuo, N. J. Vasa, and M. Maeda, “Wide-wavelength-range operation of a distributed-feedback dye laser with a plastic waveguide,” Jpn. J. Appl. Phys. 41, 6370–6374 (2002).
[CrossRef]

Manh, D. D.

T. H. Nhung, M. Canva, F. Chaput, H. Goudket, G. Roger, A. Brun, D. D. Manh, N. D. Hung, and J.-P. Boilot, “Dye energy transfer in xerogel matrices and application to solid-state dye lasers,” Opt. Commun. 232, 343–351 (2004).
[CrossRef]

May, B.

B. May, X. Poteau, D. Yuan, and R. G. Brown, “A study of a highly efficient resonance energy transfer between 7-N,N-diethylamino-4-methylcoumarin and 9-butyl-4-butylamino-1,8-naphthalimide,” Dyes Pigm. 42, 79–84 (1999).
[CrossRef]

Mückl, A. G.

Nehls, B.

T. Riedl, T. Rabe, H.-H. Johannes, W. Kowalsky, J. Wang, T. Weimann, P. Hinze, B. Nehls, T. Farrell, and U. Scherf, “Tunable organic thin-film laser pumped by an inorganic violet diode laser,” Appl. Phys. Lett. 88, 241116 (2006).
[CrossRef]

Nhung, T. H.

T. H. Nhung, M. Canva, F. Chaput, H. Goudket, G. Roger, A. Brun, D. D. Manh, N. D. Hung, and J.-P. Boilot, “Dye energy transfer in xerogel matrices and application to solid-state dye lasers,” Opt. Commun. 232, 343–351 (2004).
[CrossRef]

Oki, Y.

Y. Oki, K. Aso, D. Zuo, N. J. Vasa, and M. Maeda, “Wide-wavelength-range operation of a distributed-feedback dye laser with a plastic waveguide,” Jpn. J. Appl. Phys. 41, 6370–6374 (2002).
[CrossRef]

Poteau, X.

B. May, X. Poteau, D. Yuan, and R. G. Brown, “A study of a highly efficient resonance energy transfer between 7-N,N-diethylamino-4-methylcoumarin and 9-butyl-4-butylamino-1,8-naphthalimide,” Dyes Pigm. 42, 79–84 (1999).
[CrossRef]

Qian, G.

Y. Yang, G. Qian, D. Su, Z. Wang, and M. Wang, “Energy transfer mechanism between laser dyes doped in ORMOSILs,” Chem. Phys. Lett. 402, 389–394 (2005).
[CrossRef]

Y. Yang, G. Qian, D. Su, and M. Wang, “Photostability of pyrromethene 567 doped in ORMOSILs with various additives,” Opt. Commun. 239, 415–420 (2004).
[CrossRef]

Rabe, T.

T. Riedl, T. Rabe, H.-H. Johannes, W. Kowalsky, J. Wang, T. Weimann, P. Hinze, B. Nehls, T. Farrell, and U. Scherf, “Tunable organic thin-film laser pumped by an inorganic violet diode laser,” Appl. Phys. Lett. 88, 241116 (2006).
[CrossRef]

Rahn, M. D.

Riechel, S.

Riedl, T.

T. Riedl, T. Rabe, H.-H. Johannes, W. Kowalsky, J. Wang, T. Weimann, P. Hinze, B. Nehls, T. Farrell, and U. Scherf, “Tunable organic thin-film laser pumped by an inorganic violet diode laser,” Appl. Phys. Lett. 88, 241116 (2006).
[CrossRef]

Roger, G.

T. H. Nhung, M. Canva, F. Chaput, H. Goudket, G. Roger, A. Brun, D. D. Manh, N. D. Hung, and J.-P. Boilot, “Dye energy transfer in xerogel matrices and application to solid-state dye lasers,” Opt. Commun. 232, 343–351 (2004).
[CrossRef]

Ruzeckas, A.

T. Granlund, M. Theander, M. Berggren, M. Andersson, A. Ruzeckas, G. Björk, and M. Granström, “A polythiophene microcavity laser,” Chem. Phys. Lett. 288, 879–884 (1998).
[CrossRef]

Sakata, H.

H. Sakata and H. Takeuchi, “Green-emitting organic vertical-cavity laser pumped by InGaN-based laser diode,” Electron. Lett. 43, 1431–1433 (2007).
[CrossRef]

Scherf, U.

T. Riedl, T. Rabe, H.-H. Johannes, W. Kowalsky, J. Wang, T. Weimann, P. Hinze, B. Nehls, T. Farrell, and U. Scherf, “Tunable organic thin-film laser pumped by an inorganic violet diode laser,” Appl. Phys. Lett. 88, 241116 (2006).
[CrossRef]

Sonoyama, K.

K. Sonoyama, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Lowering threshold by energy transfer between two dyes in cholesteric liquid crystal distributed feedback lasers,” Appl. Phys. Express 1, 032002 (2008).
[CrossRef]

Su, D.

Y. Yang, G. Qian, D. Su, Z. Wang, and M. Wang, “Energy transfer mechanism between laser dyes doped in ORMOSILs,” Chem. Phys. Lett. 402, 389–394 (2005).
[CrossRef]

Y. Yang, G. Qian, D. Su, and M. Wang, “Photostability of pyrromethene 567 doped in ORMOSILs with various additives,” Opt. Commun. 239, 415–420 (2004).
[CrossRef]

Takanishi, Y.

K. Sonoyama, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Lowering threshold by energy transfer between two dyes in cholesteric liquid crystal distributed feedback lasers,” Appl. Phys. Express 1, 032002 (2008).
[CrossRef]

Takeuchi, H.

H. Sakata and H. Takeuchi, “Green-emitting organic vertical-cavity laser pumped by InGaN-based laser diode,” Electron. Lett. 43, 1431–1433 (2007).
[CrossRef]

Takezoe, H.

K. Sonoyama, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Lowering threshold by energy transfer between two dyes in cholesteric liquid crystal distributed feedback lasers,” Appl. Phys. Express 1, 032002 (2008).
[CrossRef]

Theander, M.

T. Granlund, M. Theander, M. Berggren, M. Andersson, A. Ruzeckas, G. Björk, and M. Granström, “A polythiophene microcavity laser,” Chem. Phys. Lett. 288, 879–884 (1998).
[CrossRef]

Vasa, N. J.

Y. Oki, K. Aso, D. Zuo, N. J. Vasa, and M. Maeda, “Wide-wavelength-range operation of a distributed-feedback dye laser with a plastic waveguide,” Jpn. J. Appl. Phys. 41, 6370–6374 (2002).
[CrossRef]

Wang, J.

T. Riedl, T. Rabe, H.-H. Johannes, W. Kowalsky, J. Wang, T. Weimann, P. Hinze, B. Nehls, T. Farrell, and U. Scherf, “Tunable organic thin-film laser pumped by an inorganic violet diode laser,” Appl. Phys. Lett. 88, 241116 (2006).
[CrossRef]

Wang, M.

Y. Yang, G. Qian, D. Su, Z. Wang, and M. Wang, “Energy transfer mechanism between laser dyes doped in ORMOSILs,” Chem. Phys. Lett. 402, 389–394 (2005).
[CrossRef]

Y. Yang, G. Qian, D. Su, and M. Wang, “Photostability of pyrromethene 567 doped in ORMOSILs with various additives,” Opt. Commun. 239, 415–420 (2004).
[CrossRef]

Wang, Z.

Y. Yang, G. Qian, D. Su, Z. Wang, and M. Wang, “Energy transfer mechanism between laser dyes doped in ORMOSILs,” Chem. Phys. Lett. 402, 389–394 (2005).
[CrossRef]

Weimann, T.

T. Riedl, T. Rabe, H.-H. Johannes, W. Kowalsky, J. Wang, T. Weimann, P. Hinze, B. Nehls, T. Farrell, and U. Scherf, “Tunable organic thin-film laser pumped by an inorganic violet diode laser,” Appl. Phys. Lett. 88, 241116 (2006).
[CrossRef]

Wittwer, V.

Yang, Y.

Y. Yang, G. Qian, D. Su, Z. Wang, and M. Wang, “Energy transfer mechanism between laser dyes doped in ORMOSILs,” Chem. Phys. Lett. 402, 389–394 (2005).
[CrossRef]

Y. Yang, G. Qian, D. Su, and M. Wang, “Photostability of pyrromethene 567 doped in ORMOSILs with various additives,” Opt. Commun. 239, 415–420 (2004).
[CrossRef]

Yuan, D.

B. May, X. Poteau, D. Yuan, and R. G. Brown, “A study of a highly efficient resonance energy transfer between 7-N,N-diethylamino-4-methylcoumarin and 9-butyl-4-butylamino-1,8-naphthalimide,” Dyes Pigm. 42, 79–84 (1999).
[CrossRef]

Zuo, D.

Y. Oki, K. Aso, D. Zuo, N. J. Vasa, and M. Maeda, “Wide-wavelength-range operation of a distributed-feedback dye laser with a plastic waveguide,” Jpn. J. Appl. Phys. 41, 6370–6374 (2002).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Express (1)

K. Sonoyama, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Lowering threshold by energy transfer between two dyes in cholesteric liquid crystal distributed feedback lasers,” Appl. Phys. Express 1, 032002 (2008).
[CrossRef]

Appl. Phys. Lett. (1)

T. Riedl, T. Rabe, H.-H. Johannes, W. Kowalsky, J. Wang, T. Weimann, P. Hinze, B. Nehls, T. Farrell, and U. Scherf, “Tunable organic thin-film laser pumped by an inorganic violet diode laser,” Appl. Phys. Lett. 88, 241116 (2006).
[CrossRef]

Chem. Phys. Lett. (2)

T. Granlund, M. Theander, M. Berggren, M. Andersson, A. Ruzeckas, G. Björk, and M. Granström, “A polythiophene microcavity laser,” Chem. Phys. Lett. 288, 879–884 (1998).
[CrossRef]

Y. Yang, G. Qian, D. Su, Z. Wang, and M. Wang, “Energy transfer mechanism between laser dyes doped in ORMOSILs,” Chem. Phys. Lett. 402, 389–394 (2005).
[CrossRef]

Dyes Pigm. (1)

B. May, X. Poteau, D. Yuan, and R. G. Brown, “A study of a highly efficient resonance energy transfer between 7-N,N-diethylamino-4-methylcoumarin and 9-butyl-4-butylamino-1,8-naphthalimide,” Dyes Pigm. 42, 79–84 (1999).
[CrossRef]

Electron. Lett. (1)

H. Sakata and H. Takeuchi, “Green-emitting organic vertical-cavity laser pumped by InGaN-based laser diode,” Electron. Lett. 43, 1431–1433 (2007).
[CrossRef]

Jpn. J. Appl. Phys. (1)

Y. Oki, K. Aso, D. Zuo, N. J. Vasa, and M. Maeda, “Wide-wavelength-range operation of a distributed-feedback dye laser with a plastic waveguide,” Jpn. J. Appl. Phys. 41, 6370–6374 (2002).
[CrossRef]

Opt. Commun. (2)

T. H. Nhung, M. Canva, F. Chaput, H. Goudket, G. Roger, A. Brun, D. D. Manh, N. D. Hung, and J.-P. Boilot, “Dye energy transfer in xerogel matrices and application to solid-state dye lasers,” Opt. Commun. 232, 343–351 (2004).
[CrossRef]

Y. Yang, G. Qian, D. Su, and M. Wang, “Photostability of pyrromethene 567 doped in ORMOSILs with various additives,” Opt. Commun. 239, 415–420 (2004).
[CrossRef]

Opt. Laser Technol. (1)

M. A. Khader, “Lasing characteristics of Rhodamine B and Rhodamine 6G as a sensitizer in sol-gel silica,” Opt. Laser Technol. 40, 445–452 (2008).
[CrossRef]

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Absorption and PL spectra of the PVK film doped with (a) C503 and (b) P567.

Fig. 2
Fig. 2

Input–output characteristics of the C503/P567 laser as a function of pump pulse energy. Inset: emission spectra of the C503/P567 laser pumped by a pulsed InGaN LD.

Fig. 3
Fig. 3

Dependence of lasing threshold of the C503 and C503/P567 lasers on the oscillation wavelength.

Fig. 4
Fig. 4

Dependence of lasing threshold of the C540, the C540A/Rh6G, and the C540A/RhB lasers on the oscillation wavelength.

Fig. 5
Fig. 5

Emission wavelength ranges of various dye lasers pumped by a pulsed InGaN LD: (a) C503, (b) C540A, (c) C503/P567, (d) C540A/Rh6G, and (e) C540A/RhB.

Fig. 6
Fig. 6

Normalized output intensity of the microcavity dye lasers as a function of number of pump pulses.

Fig. 7
Fig. 7

Normalized output intensity of the C540A/Rh6G laser with various concentrations of DABCO as a function of number of pump pulses.

Fig. 8
Fig. 8

Normalized output intensity of the C540A/P567 laser with various concentrations of DABCO as a function of number of pump pulses.

Metrics