Abstract

Using the high spatial resolution of focused laser beams, we probe the thermal properties of micrometer-sized single droplets and grains. Volumes as small as 0.5nl are analyzed and possible improvements to picoliter are discussed.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Fukuyama, H. Kobatake, I. Minato, K. Takahashi, T. Tsukuda, and S. Awaji, “Establishment of noncontact AC calorimetry of high-temperature melts using solid platinum spheres as a reference,” in Proceedings of the 16th Symposium on Thermophysical Properties (2006), p. 937.
  2. S. R. Choi, J. Kim, and D. Kim, “3 ω method to measure thermal properties of electrically conducting small-volume liquid,” Rev. Sci. Instrum. 78, 084902 (2007).
    [CrossRef] [PubMed]
  3. S. R. Choi and D. Kim, “Real-time thermal characterization of 12 nl fluid samples in a microchannel,” Rev. Sci. Instrum. 79, 064901 (2008).
    [CrossRef] [PubMed]
  4. Y. Zhang and S. Tadigadapa, “Thermal characterization of liquids and polymer thin films using a microcalorimeter,” Appl. Phys. Lett. 86, 034101 (2005).
    [CrossRef]
  5. T. K. Hakala, J. J. Toppari, and P. Törmä, “A hybrid method for calorimetry with subnanoliter samples using Schottky junctions,” J. Appl. Phys. 101, 034512 (2007)
    [CrossRef]
  6. H. Kobatake, H. Fukuyama, I. Minato, T. Tsukada, and S. Awaji, “Noncontact measurement of thermal conductivity of liquid silicon in a static magnetic field,” Appl. Phys. Lett. 90, 094102 (2007).
    [CrossRef]
  7. H. Fukuyama, K. Takahashi, S. Sakashita, H. Kobatake, T. Tsukada, and S. Awaji, “Noncontact modulated laser calorimetry for liquid austenitic stainless steel in dc magnetic field,” ISIJ Int. 49, 1436–1442 (2009).
    [CrossRef]
  8. S. R. Choi and D. Kim, “Measurement of thermal properties of microfluidic samples using laser point heating thermometry,” Thermochim. Acta 455, 11–15 (2007).
    [CrossRef]
  9. J.-P. Bourgoin, S. Doiron, M. Deveaux, and A. Haché, “Single laser beam measurement of thermal diffusivity,” Appl. Opt. 47, 6530–6534 (2008).
    [CrossRef] [PubMed]
  10. J.-P. Bourgoin, “Laser measurement of thermal properties of micron- and nanometer-sized samples,” Master’s thesis (Université de Moncton, 2010).
  11. M. Gugliotti, M. S. Baptista, L. G. Dias, and M. J. Politi, “Single-beam interface thermal lensing ,” Appl. Opt. 38, 1213–1215 (1999).
    [CrossRef]
  12. F. Kreith and M. Bohn, Principles of Heat Transfer, 6th ed. (Thomson Learning, 2001).
  13. J. P. Holman, Heat Transfer, 10th ed. (McGraw-Hill, 2010).
  14. W. M. Rohsenow, J. P. Hartnett, and Y. I. Cho, Handbook of Heat Transfer, 3rd ed. (McGraw-Hill, 1998).

2010 (2)

J.-P. Bourgoin, “Laser measurement of thermal properties of micron- and nanometer-sized samples,” Master’s thesis (Université de Moncton, 2010).

J. P. Holman, Heat Transfer, 10th ed. (McGraw-Hill, 2010).

2009 (1)

H. Fukuyama, K. Takahashi, S. Sakashita, H. Kobatake, T. Tsukada, and S. Awaji, “Noncontact modulated laser calorimetry for liquid austenitic stainless steel in dc magnetic field,” ISIJ Int. 49, 1436–1442 (2009).
[CrossRef]

2008 (2)

S. R. Choi and D. Kim, “Real-time thermal characterization of 12 nl fluid samples in a microchannel,” Rev. Sci. Instrum. 79, 064901 (2008).
[CrossRef] [PubMed]

J.-P. Bourgoin, S. Doiron, M. Deveaux, and A. Haché, “Single laser beam measurement of thermal diffusivity,” Appl. Opt. 47, 6530–6534 (2008).
[CrossRef] [PubMed]

2007 (4)

S. R. Choi, J. Kim, and D. Kim, “3 ω method to measure thermal properties of electrically conducting small-volume liquid,” Rev. Sci. Instrum. 78, 084902 (2007).
[CrossRef] [PubMed]

S. R. Choi and D. Kim, “Measurement of thermal properties of microfluidic samples using laser point heating thermometry,” Thermochim. Acta 455, 11–15 (2007).
[CrossRef]

T. K. Hakala, J. J. Toppari, and P. Törmä, “A hybrid method for calorimetry with subnanoliter samples using Schottky junctions,” J. Appl. Phys. 101, 034512 (2007)
[CrossRef]

H. Kobatake, H. Fukuyama, I. Minato, T. Tsukada, and S. Awaji, “Noncontact measurement of thermal conductivity of liquid silicon in a static magnetic field,” Appl. Phys. Lett. 90, 094102 (2007).
[CrossRef]

2006 (1)

H. Fukuyama, H. Kobatake, I. Minato, K. Takahashi, T. Tsukuda, and S. Awaji, “Establishment of noncontact AC calorimetry of high-temperature melts using solid platinum spheres as a reference,” in Proceedings of the 16th Symposium on Thermophysical Properties (2006), p. 937.

2005 (1)

Y. Zhang and S. Tadigadapa, “Thermal characterization of liquids and polymer thin films using a microcalorimeter,” Appl. Phys. Lett. 86, 034101 (2005).
[CrossRef]

2001 (1)

F. Kreith and M. Bohn, Principles of Heat Transfer, 6th ed. (Thomson Learning, 2001).

1999 (1)

M. Gugliotti, M. S. Baptista, L. G. Dias, and M. J. Politi, “Single-beam interface thermal lensing ,” Appl. Opt. 38, 1213–1215 (1999).
[CrossRef]

1998 (1)

W. M. Rohsenow, J. P. Hartnett, and Y. I. Cho, Handbook of Heat Transfer, 3rd ed. (McGraw-Hill, 1998).

Awaji, S.

H. Fukuyama, K. Takahashi, S. Sakashita, H. Kobatake, T. Tsukada, and S. Awaji, “Noncontact modulated laser calorimetry for liquid austenitic stainless steel in dc magnetic field,” ISIJ Int. 49, 1436–1442 (2009).
[CrossRef]

H. Kobatake, H. Fukuyama, I. Minato, T. Tsukada, and S. Awaji, “Noncontact measurement of thermal conductivity of liquid silicon in a static magnetic field,” Appl. Phys. Lett. 90, 094102 (2007).
[CrossRef]

H. Fukuyama, H. Kobatake, I. Minato, K. Takahashi, T. Tsukuda, and S. Awaji, “Establishment of noncontact AC calorimetry of high-temperature melts using solid platinum spheres as a reference,” in Proceedings of the 16th Symposium on Thermophysical Properties (2006), p. 937.

Baptista, M. S.

M. Gugliotti, M. S. Baptista, L. G. Dias, and M. J. Politi, “Single-beam interface thermal lensing ,” Appl. Opt. 38, 1213–1215 (1999).
[CrossRef]

Bohn, M.

F. Kreith and M. Bohn, Principles of Heat Transfer, 6th ed. (Thomson Learning, 2001).

Bourgoin, J.-P.

J.-P. Bourgoin, “Laser measurement of thermal properties of micron- and nanometer-sized samples,” Master’s thesis (Université de Moncton, 2010).

J.-P. Bourgoin, S. Doiron, M. Deveaux, and A. Haché, “Single laser beam measurement of thermal diffusivity,” Appl. Opt. 47, 6530–6534 (2008).
[CrossRef] [PubMed]

Cho, Y. I.

W. M. Rohsenow, J. P. Hartnett, and Y. I. Cho, Handbook of Heat Transfer, 3rd ed. (McGraw-Hill, 1998).

Choi, S. R.

S. R. Choi and D. Kim, “Real-time thermal characterization of 12 nl fluid samples in a microchannel,” Rev. Sci. Instrum. 79, 064901 (2008).
[CrossRef] [PubMed]

S. R. Choi, J. Kim, and D. Kim, “3 ω method to measure thermal properties of electrically conducting small-volume liquid,” Rev. Sci. Instrum. 78, 084902 (2007).
[CrossRef] [PubMed]

S. R. Choi and D. Kim, “Measurement of thermal properties of microfluidic samples using laser point heating thermometry,” Thermochim. Acta 455, 11–15 (2007).
[CrossRef]

Deveaux, M.

Dias, L. G.

M. Gugliotti, M. S. Baptista, L. G. Dias, and M. J. Politi, “Single-beam interface thermal lensing ,” Appl. Opt. 38, 1213–1215 (1999).
[CrossRef]

Doiron, S.

Fukuyama, H.

H. Fukuyama, K. Takahashi, S. Sakashita, H. Kobatake, T. Tsukada, and S. Awaji, “Noncontact modulated laser calorimetry for liquid austenitic stainless steel in dc magnetic field,” ISIJ Int. 49, 1436–1442 (2009).
[CrossRef]

H. Kobatake, H. Fukuyama, I. Minato, T. Tsukada, and S. Awaji, “Noncontact measurement of thermal conductivity of liquid silicon in a static magnetic field,” Appl. Phys. Lett. 90, 094102 (2007).
[CrossRef]

H. Fukuyama, H. Kobatake, I. Minato, K. Takahashi, T. Tsukuda, and S. Awaji, “Establishment of noncontact AC calorimetry of high-temperature melts using solid platinum spheres as a reference,” in Proceedings of the 16th Symposium on Thermophysical Properties (2006), p. 937.

Gugliotti, M.

M. Gugliotti, M. S. Baptista, L. G. Dias, and M. J. Politi, “Single-beam interface thermal lensing ,” Appl. Opt. 38, 1213–1215 (1999).
[CrossRef]

Haché, A.

Hakala, T. K.

T. K. Hakala, J. J. Toppari, and P. Törmä, “A hybrid method for calorimetry with subnanoliter samples using Schottky junctions,” J. Appl. Phys. 101, 034512 (2007)
[CrossRef]

Hartnett, J. P.

W. M. Rohsenow, J. P. Hartnett, and Y. I. Cho, Handbook of Heat Transfer, 3rd ed. (McGraw-Hill, 1998).

Holman, J. P.

J. P. Holman, Heat Transfer, 10th ed. (McGraw-Hill, 2010).

Kim, D.

S. R. Choi and D. Kim, “Real-time thermal characterization of 12 nl fluid samples in a microchannel,” Rev. Sci. Instrum. 79, 064901 (2008).
[CrossRef] [PubMed]

S. R. Choi, J. Kim, and D. Kim, “3 ω method to measure thermal properties of electrically conducting small-volume liquid,” Rev. Sci. Instrum. 78, 084902 (2007).
[CrossRef] [PubMed]

S. R. Choi and D. Kim, “Measurement of thermal properties of microfluidic samples using laser point heating thermometry,” Thermochim. Acta 455, 11–15 (2007).
[CrossRef]

Kim, J.

S. R. Choi, J. Kim, and D. Kim, “3 ω method to measure thermal properties of electrically conducting small-volume liquid,” Rev. Sci. Instrum. 78, 084902 (2007).
[CrossRef] [PubMed]

Kobatake, H.

H. Fukuyama, K. Takahashi, S. Sakashita, H. Kobatake, T. Tsukada, and S. Awaji, “Noncontact modulated laser calorimetry for liquid austenitic stainless steel in dc magnetic field,” ISIJ Int. 49, 1436–1442 (2009).
[CrossRef]

H. Kobatake, H. Fukuyama, I. Minato, T. Tsukada, and S. Awaji, “Noncontact measurement of thermal conductivity of liquid silicon in a static magnetic field,” Appl. Phys. Lett. 90, 094102 (2007).
[CrossRef]

H. Fukuyama, H. Kobatake, I. Minato, K. Takahashi, T. Tsukuda, and S. Awaji, “Establishment of noncontact AC calorimetry of high-temperature melts using solid platinum spheres as a reference,” in Proceedings of the 16th Symposium on Thermophysical Properties (2006), p. 937.

Kreith, F.

F. Kreith and M. Bohn, Principles of Heat Transfer, 6th ed. (Thomson Learning, 2001).

Minato, I.

H. Kobatake, H. Fukuyama, I. Minato, T. Tsukada, and S. Awaji, “Noncontact measurement of thermal conductivity of liquid silicon in a static magnetic field,” Appl. Phys. Lett. 90, 094102 (2007).
[CrossRef]

H. Fukuyama, H. Kobatake, I. Minato, K. Takahashi, T. Tsukuda, and S. Awaji, “Establishment of noncontact AC calorimetry of high-temperature melts using solid platinum spheres as a reference,” in Proceedings of the 16th Symposium on Thermophysical Properties (2006), p. 937.

Politi, M. J.

M. Gugliotti, M. S. Baptista, L. G. Dias, and M. J. Politi, “Single-beam interface thermal lensing ,” Appl. Opt. 38, 1213–1215 (1999).
[CrossRef]

Rohsenow, W. M.

W. M. Rohsenow, J. P. Hartnett, and Y. I. Cho, Handbook of Heat Transfer, 3rd ed. (McGraw-Hill, 1998).

Sakashita, S.

H. Fukuyama, K. Takahashi, S. Sakashita, H. Kobatake, T. Tsukada, and S. Awaji, “Noncontact modulated laser calorimetry for liquid austenitic stainless steel in dc magnetic field,” ISIJ Int. 49, 1436–1442 (2009).
[CrossRef]

Tadigadapa, S.

Y. Zhang and S. Tadigadapa, “Thermal characterization of liquids and polymer thin films using a microcalorimeter,” Appl. Phys. Lett. 86, 034101 (2005).
[CrossRef]

Takahashi, K.

H. Fukuyama, K. Takahashi, S. Sakashita, H. Kobatake, T. Tsukada, and S. Awaji, “Noncontact modulated laser calorimetry for liquid austenitic stainless steel in dc magnetic field,” ISIJ Int. 49, 1436–1442 (2009).
[CrossRef]

H. Fukuyama, H. Kobatake, I. Minato, K. Takahashi, T. Tsukuda, and S. Awaji, “Establishment of noncontact AC calorimetry of high-temperature melts using solid platinum spheres as a reference,” in Proceedings of the 16th Symposium on Thermophysical Properties (2006), p. 937.

Toppari, J. J.

T. K. Hakala, J. J. Toppari, and P. Törmä, “A hybrid method for calorimetry with subnanoliter samples using Schottky junctions,” J. Appl. Phys. 101, 034512 (2007)
[CrossRef]

Törmä, P.

T. K. Hakala, J. J. Toppari, and P. Törmä, “A hybrid method for calorimetry with subnanoliter samples using Schottky junctions,” J. Appl. Phys. 101, 034512 (2007)
[CrossRef]

Tsukada, T.

H. Fukuyama, K. Takahashi, S. Sakashita, H. Kobatake, T. Tsukada, and S. Awaji, “Noncontact modulated laser calorimetry for liquid austenitic stainless steel in dc magnetic field,” ISIJ Int. 49, 1436–1442 (2009).
[CrossRef]

H. Kobatake, H. Fukuyama, I. Minato, T. Tsukada, and S. Awaji, “Noncontact measurement of thermal conductivity of liquid silicon in a static magnetic field,” Appl. Phys. Lett. 90, 094102 (2007).
[CrossRef]

Tsukuda, T.

H. Fukuyama, H. Kobatake, I. Minato, K. Takahashi, T. Tsukuda, and S. Awaji, “Establishment of noncontact AC calorimetry of high-temperature melts using solid platinum spheres as a reference,” in Proceedings of the 16th Symposium on Thermophysical Properties (2006), p. 937.

Zhang, Y.

Y. Zhang and S. Tadigadapa, “Thermal characterization of liquids and polymer thin films using a microcalorimeter,” Appl. Phys. Lett. 86, 034101 (2005).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

H. Kobatake, H. Fukuyama, I. Minato, T. Tsukada, and S. Awaji, “Noncontact measurement of thermal conductivity of liquid silicon in a static magnetic field,” Appl. Phys. Lett. 90, 094102 (2007).
[CrossRef]

Y. Zhang and S. Tadigadapa, “Thermal characterization of liquids and polymer thin films using a microcalorimeter,” Appl. Phys. Lett. 86, 034101 (2005).
[CrossRef]

ISIJ Int. (1)

H. Fukuyama, K. Takahashi, S. Sakashita, H. Kobatake, T. Tsukada, and S. Awaji, “Noncontact modulated laser calorimetry for liquid austenitic stainless steel in dc magnetic field,” ISIJ Int. 49, 1436–1442 (2009).
[CrossRef]

J. Appl. Phys. (1)

T. K. Hakala, J. J. Toppari, and P. Törmä, “A hybrid method for calorimetry with subnanoliter samples using Schottky junctions,” J. Appl. Phys. 101, 034512 (2007)
[CrossRef]

Rev. Sci. Instrum. (2)

S. R. Choi, J. Kim, and D. Kim, “3 ω method to measure thermal properties of electrically conducting small-volume liquid,” Rev. Sci. Instrum. 78, 084902 (2007).
[CrossRef] [PubMed]

S. R. Choi and D. Kim, “Real-time thermal characterization of 12 nl fluid samples in a microchannel,” Rev. Sci. Instrum. 79, 064901 (2008).
[CrossRef] [PubMed]

Single-beam interface thermal lensing (1)

M. Gugliotti, M. S. Baptista, L. G. Dias, and M. J. Politi, “Single-beam interface thermal lensing ,” Appl. Opt. 38, 1213–1215 (1999).
[CrossRef]

Thermochim. Acta (1)

S. R. Choi and D. Kim, “Measurement of thermal properties of microfluidic samples using laser point heating thermometry,” Thermochim. Acta 455, 11–15 (2007).
[CrossRef]

Other (5)

J.-P. Bourgoin, “Laser measurement of thermal properties of micron- and nanometer-sized samples,” Master’s thesis (Université de Moncton, 2010).

F. Kreith and M. Bohn, Principles of Heat Transfer, 6th ed. (Thomson Learning, 2001).

J. P. Holman, Heat Transfer, 10th ed. (McGraw-Hill, 2010).

W. M. Rohsenow, J. P. Hartnett, and Y. I. Cho, Handbook of Heat Transfer, 3rd ed. (McGraw-Hill, 1998).

H. Fukuyama, H. Kobatake, I. Minato, K. Takahashi, T. Tsukuda, and S. Awaji, “Establishment of noncontact AC calorimetry of high-temperature melts using solid platinum spheres as a reference,” in Proceedings of the 16th Symposium on Thermophysical Properties (2006), p. 937.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Thermal lens effect at the interface of two media.

Fig. 2
Fig. 2

Dual laser beam setup for measuring thermal properties of small volumes.

Fig. 3
Fig. 3

Probe signal modulation for liquid droplets of 50 μl in volume. Measurements are normalized to air.

Fig. 4
Fig. 4

Probe modulation on mercury droplets of various sizes.

Fig. 5
Fig. 5

Thermal profile of a mercury droplet with 325 μm diameter.

Fig. 6
Fig. 6

Thermal profile of a nickel particle with 100 μm diameter.

Fig. 7
Fig. 7

Thermal profile of an iron flake.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

V 1 C V 2 C V 1 w 3 .
d q = Δ T d A d L 1 2 ( 1 k 1 + 1 k 2 ) d t ,
d q = α I 0 e 4 ( r w ) 2 ln ( 2 ) d t ,
h c = 1 L g ( A c A 2 k 1 k 2 k 1 + k 2 + A v A k f ) ,

Metrics