Abstract

We propose microwave-enhanced spark-induced breakdown spectroscopy with the same measurement and analysis processes as in laser-induced breakdown spectroscopy, but with a different plasma generation mechanism. The size and lifetime of the plasma generated can contribute to increased measurement accuracy and expand its applicability to industrial measurement, such as an exhaust gas analyzer for automobile engine development and its regulation, which has been hard to operate by laser at an engineering evaluation site. The use of microwaves in this application helps lower the cost, reduce the system size, and increase the ease of operation to make it commercially viable. A microwave frequency of 2.45GHz was used to enhance the volume and lifetime of the plasma at atmospheric condition even at elevated pressure.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. J. Radziemski, “From LASER to LIBS, the path of technology development,” Spectrochim. Acta Part B 57, 1109-1113(2002).
    [CrossRef]
  2. T. X. Phuoc and F. P. White, “Laser-induced spark for measurements of the fuel-to-air ratio of a combustible mixture,” Fuel 81, 1761-1765 (2002).
    [CrossRef]
  3. P. Stavropoulos, A. Michalakou, G. Skevis, and S. Couris, “Quantitative local equivalence ratio determination in laminar premixed methane-air flames by laser induced breakdown spectroscopy (LIBS),” Chem. Phys. Lett. 404, 309-314(2005).
    [CrossRef]
  4. P. Stavropoulos, A. Michalakou, G. Skevis, and S. Couris, “Laser-induced breakdown spectroscopy as an analytical tool for equivalence ratio measurement in methane-air premixed flames,” Spectrochim. Acta Part B 60, 1092-1097 (2005).
    [CrossRef]
  5. V. Sturm and R. Noll, “Laser-induced breakdown spectroscopy of gas mixture of air, CO2, N2, and C3H8 for simultaneous C, H, O, and N measurement,” Appl. Opt. 42, 6221-6225 (2003).
    [CrossRef] [PubMed]
  6. F. Ferioli and S. G. Buckley, “Measurements of hydrocarbons using laser-induced breakdown spectroscopy,” Combust. Flame 144, 435-447 (2006).
    [CrossRef]
  7. V. Hohreiter, J. E. Carranza, and D. W. Hahn, “Temporal analysis of laser-induced plasma properties as related to laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 59, 327-333 (2004).
    [CrossRef]
  8. P. Stavropoulos, C. Palagas, G. N. Angelopoulos, D. N. Papamantellos, and S. Couris, “Calibration measurement in laser-induced breakdown spectroscopy using nanosecond and picosecond lasers,” Spectrochim. Acta Part B 59, 1885-1892 (2004).
    [CrossRef]
  9. Y. Ikeda, A. Nishiyama, N. Kawahara, E. Tomita, and T. Nakayama, “Local equivalence ratio measurement of CH4/air and C3H8/air laminar flames by laser-induced breakdown,” in Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit (AIAA2006), paper AIAA 2006-965.
  10. A. J. R. Hunter, S. J. Davis, L. G. Piper, K. W. Holtzclaw, and M. E. Fraser, “Spark-induced breakdown spectroscopy: a new technique for monitoring heavy metals,” Appl. Spectrosc. 54, 575-582 (2000).
    [CrossRef]
  11. A. J. R. Hunter, R. T. Wainner, L. G. Piper, and S. J. Davis, “Rapid field screening of soils for heavy metals with spark-induced breakdown spectroscopy,” Appl. Opt. 42, 2102-2109(2003).
    [CrossRef] [PubMed]
  12. J. Uebbing, J. Brust, W. Sdorra, F. Leis, and K. Niemax, “Reheating of a laser-produced plasma by a second pulse laser,” Appl. Spectrosc. 45, 1419-1423 (1991).
    [CrossRef]
  13. D. A. Cremers, L. J. Radziemski, and T. R. Loree, “Spectrochemical analysis of liquids using the laser spark,” Appl. Spectrosc. 38, 721-729 (1984).
    [CrossRef]
  14. V. I. Babushok, F. C. DeLucia Jr., J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser ablation and plasma: laser induced breakdown spectroscopy signal enhancement,” Spectrochim. Acta Part B 61, 999-1014 (2006).
    [CrossRef]
  15. N. Kawahara, E. Tomita, T. Nakayama, Y. Ikeda, and A. Nishiyama, “Spatial and temporal characteristics of laser-induced air plasma,” in Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit (AIAA, 2006), paper 2006-1461.
  16. Y. Ikeda, N. Kawahara, and E. Tomita, “Time-series A/F analysis in a SI engine by micro-local chemiluminescence technique,” presented at the Sixth International Symposium on Diagnostics and Modeling of Combustion in Internal Combustion Engines, Yokohama, Japan, 2-5 August 2004, paper C3-3.
  17. Y. Ikeda, A. Nishiyama, N. Kawahara, E. Tomita, S. Arimoto, and A. Takeuchi, “In-spark-plug sensor for analyzing the initial flame and its structure in an SI engine,” paper 2005-01-0644 (SAE International, 2005).
  18. N. Kawahara, E. Tomita, A. Takeuchi, S. Arimoto, Y. Ikeda, and A. Nishiyama, “Measurement of flame propagation characteristics in an SI engine using micro-local chemiluminescence technique,” paper 2005-01-0645 (SAE International, 2005).
  19. Y. Ikeda, A. Nishiyama, S. M. Kim, A. Takeuchi, E. Winklhofer, and T. Baritaud, “Cyclic variation of local A/F and mixture quality in SI engine using local chemiluminescence,” Proceedings of the 7th International Symposium on Internal Combustion Diagnostics (Springer, 2006), pp. 277-284.
  20. Y. Ikeda, A. Nishiyama, Y. Wachi, and M. Kaneko, “Research and development of microwave plasma combustion engine, part I,” paper 2009-01-1050 (SAE International2009).
  21. Y. Ikeda, A. Nishiyama, H. Katano, M. Kaneko, and H. Jeong, “Research and development of microwave plasma combustion engine, part II,” paper 2009-01-1049 (SAE International2009).
  22. J. B. Heywood, Internal Combustion Engine Fundamentals (McGraw-Hill, 1988).
  23. N. Kawahara, E. Tomita, S. Takemoto, and Y. Ikeda, “Fuel concentration measurement of premixed mixture using spark-induced breakdown spectroscopy,” Spectrochim. Acta Part B 64, 1085-1092 (2009).
    [CrossRef]
  24. J. O. Hornkohl, C. G. Parigger, and J. W. L. Lewis, “Temperature measurements from CN spectra in a laser-induced plasma,” J. Quant. Spectrosc. Radiat. Transfer 46, 405 -411 (1991).
    [CrossRef]

2009 (1)

N. Kawahara, E. Tomita, S. Takemoto, and Y. Ikeda, “Fuel concentration measurement of premixed mixture using spark-induced breakdown spectroscopy,” Spectrochim. Acta Part B 64, 1085-1092 (2009).
[CrossRef]

2006 (2)

V. I. Babushok, F. C. DeLucia Jr., J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser ablation and plasma: laser induced breakdown spectroscopy signal enhancement,” Spectrochim. Acta Part B 61, 999-1014 (2006).
[CrossRef]

F. Ferioli and S. G. Buckley, “Measurements of hydrocarbons using laser-induced breakdown spectroscopy,” Combust. Flame 144, 435-447 (2006).
[CrossRef]

2005 (2)

P. Stavropoulos, A. Michalakou, G. Skevis, and S. Couris, “Quantitative local equivalence ratio determination in laminar premixed methane-air flames by laser induced breakdown spectroscopy (LIBS),” Chem. Phys. Lett. 404, 309-314(2005).
[CrossRef]

P. Stavropoulos, A. Michalakou, G. Skevis, and S. Couris, “Laser-induced breakdown spectroscopy as an analytical tool for equivalence ratio measurement in methane-air premixed flames,” Spectrochim. Acta Part B 60, 1092-1097 (2005).
[CrossRef]

2004 (2)

V. Hohreiter, J. E. Carranza, and D. W. Hahn, “Temporal analysis of laser-induced plasma properties as related to laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 59, 327-333 (2004).
[CrossRef]

P. Stavropoulos, C. Palagas, G. N. Angelopoulos, D. N. Papamantellos, and S. Couris, “Calibration measurement in laser-induced breakdown spectroscopy using nanosecond and picosecond lasers,” Spectrochim. Acta Part B 59, 1885-1892 (2004).
[CrossRef]

2003 (2)

2002 (2)

L. J. Radziemski, “From LASER to LIBS, the path of technology development,” Spectrochim. Acta Part B 57, 1109-1113(2002).
[CrossRef]

T. X. Phuoc and F. P. White, “Laser-induced spark for measurements of the fuel-to-air ratio of a combustible mixture,” Fuel 81, 1761-1765 (2002).
[CrossRef]

2000 (1)

1991 (2)

J. Uebbing, J. Brust, W. Sdorra, F. Leis, and K. Niemax, “Reheating of a laser-produced plasma by a second pulse laser,” Appl. Spectrosc. 45, 1419-1423 (1991).
[CrossRef]

J. O. Hornkohl, C. G. Parigger, and J. W. L. Lewis, “Temperature measurements from CN spectra in a laser-induced plasma,” J. Quant. Spectrosc. Radiat. Transfer 46, 405 -411 (1991).
[CrossRef]

1984 (1)

Angelopoulos, G. N.

P. Stavropoulos, C. Palagas, G. N. Angelopoulos, D. N. Papamantellos, and S. Couris, “Calibration measurement in laser-induced breakdown spectroscopy using nanosecond and picosecond lasers,” Spectrochim. Acta Part B 59, 1885-1892 (2004).
[CrossRef]

Arimoto, S.

Y. Ikeda, A. Nishiyama, N. Kawahara, E. Tomita, S. Arimoto, and A. Takeuchi, “In-spark-plug sensor for analyzing the initial flame and its structure in an SI engine,” paper 2005-01-0644 (SAE International, 2005).

N. Kawahara, E. Tomita, A. Takeuchi, S. Arimoto, Y. Ikeda, and A. Nishiyama, “Measurement of flame propagation characteristics in an SI engine using micro-local chemiluminescence technique,” paper 2005-01-0645 (SAE International, 2005).

Babushok, V. I.

V. I. Babushok, F. C. DeLucia Jr., J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser ablation and plasma: laser induced breakdown spectroscopy signal enhancement,” Spectrochim. Acta Part B 61, 999-1014 (2006).
[CrossRef]

Baritaud, T.

Y. Ikeda, A. Nishiyama, S. M. Kim, A. Takeuchi, E. Winklhofer, and T. Baritaud, “Cyclic variation of local A/F and mixture quality in SI engine using local chemiluminescence,” Proceedings of the 7th International Symposium on Internal Combustion Diagnostics (Springer, 2006), pp. 277-284.

Brust, J.

Buckley, S. G.

F. Ferioli and S. G. Buckley, “Measurements of hydrocarbons using laser-induced breakdown spectroscopy,” Combust. Flame 144, 435-447 (2006).
[CrossRef]

Carranza, J. E.

V. Hohreiter, J. E. Carranza, and D. W. Hahn, “Temporal analysis of laser-induced plasma properties as related to laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 59, 327-333 (2004).
[CrossRef]

Couris, S.

P. Stavropoulos, A. Michalakou, G. Skevis, and S. Couris, “Laser-induced breakdown spectroscopy as an analytical tool for equivalence ratio measurement in methane-air premixed flames,” Spectrochim. Acta Part B 60, 1092-1097 (2005).
[CrossRef]

P. Stavropoulos, A. Michalakou, G. Skevis, and S. Couris, “Quantitative local equivalence ratio determination in laminar premixed methane-air flames by laser induced breakdown spectroscopy (LIBS),” Chem. Phys. Lett. 404, 309-314(2005).
[CrossRef]

P. Stavropoulos, C. Palagas, G. N. Angelopoulos, D. N. Papamantellos, and S. Couris, “Calibration measurement in laser-induced breakdown spectroscopy using nanosecond and picosecond lasers,” Spectrochim. Acta Part B 59, 1885-1892 (2004).
[CrossRef]

Cremers, D. A.

Davis, S. J.

DeLucia, F. C.

V. I. Babushok, F. C. DeLucia Jr., J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser ablation and plasma: laser induced breakdown spectroscopy signal enhancement,” Spectrochim. Acta Part B 61, 999-1014 (2006).
[CrossRef]

Ferioli, F.

F. Ferioli and S. G. Buckley, “Measurements of hydrocarbons using laser-induced breakdown spectroscopy,” Combust. Flame 144, 435-447 (2006).
[CrossRef]

Fraser, M. E.

Gottfried, J. L.

V. I. Babushok, F. C. DeLucia Jr., J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser ablation and plasma: laser induced breakdown spectroscopy signal enhancement,” Spectrochim. Acta Part B 61, 999-1014 (2006).
[CrossRef]

Hahn, D. W.

V. Hohreiter, J. E. Carranza, and D. W. Hahn, “Temporal analysis of laser-induced plasma properties as related to laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 59, 327-333 (2004).
[CrossRef]

Heywood, J. B.

J. B. Heywood, Internal Combustion Engine Fundamentals (McGraw-Hill, 1988).

Hohreiter, V.

V. Hohreiter, J. E. Carranza, and D. W. Hahn, “Temporal analysis of laser-induced plasma properties as related to laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 59, 327-333 (2004).
[CrossRef]

Holtzclaw, K. W.

Hornkohl, J. O.

J. O. Hornkohl, C. G. Parigger, and J. W. L. Lewis, “Temperature measurements from CN spectra in a laser-induced plasma,” J. Quant. Spectrosc. Radiat. Transfer 46, 405 -411 (1991).
[CrossRef]

Hunter, A. J. R.

Ikeda, Y.

N. Kawahara, E. Tomita, S. Takemoto, and Y. Ikeda, “Fuel concentration measurement of premixed mixture using spark-induced breakdown spectroscopy,” Spectrochim. Acta Part B 64, 1085-1092 (2009).
[CrossRef]

Y. Ikeda, A. Nishiyama, H. Katano, M. Kaneko, and H. Jeong, “Research and development of microwave plasma combustion engine, part II,” paper 2009-01-1049 (SAE International2009).

Y. Ikeda, A. Nishiyama, Y. Wachi, and M. Kaneko, “Research and development of microwave plasma combustion engine, part I,” paper 2009-01-1050 (SAE International2009).

Y. Ikeda, A. Nishiyama, S. M. Kim, A. Takeuchi, E. Winklhofer, and T. Baritaud, “Cyclic variation of local A/F and mixture quality in SI engine using local chemiluminescence,” Proceedings of the 7th International Symposium on Internal Combustion Diagnostics (Springer, 2006), pp. 277-284.

Y. Ikeda, A. Nishiyama, N. Kawahara, E. Tomita, and T. Nakayama, “Local equivalence ratio measurement of CH4/air and C3H8/air laminar flames by laser-induced breakdown,” in Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit (AIAA2006), paper AIAA 2006-965.

N. Kawahara, E. Tomita, A. Takeuchi, S. Arimoto, Y. Ikeda, and A. Nishiyama, “Measurement of flame propagation characteristics in an SI engine using micro-local chemiluminescence technique,” paper 2005-01-0645 (SAE International, 2005).

N. Kawahara, E. Tomita, T. Nakayama, Y. Ikeda, and A. Nishiyama, “Spatial and temporal characteristics of laser-induced air plasma,” in Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit (AIAA, 2006), paper 2006-1461.

Y. Ikeda, N. Kawahara, and E. Tomita, “Time-series A/F analysis in a SI engine by micro-local chemiluminescence technique,” presented at the Sixth International Symposium on Diagnostics and Modeling of Combustion in Internal Combustion Engines, Yokohama, Japan, 2-5 August 2004, paper C3-3.

Y. Ikeda, A. Nishiyama, N. Kawahara, E. Tomita, S. Arimoto, and A. Takeuchi, “In-spark-plug sensor for analyzing the initial flame and its structure in an SI engine,” paper 2005-01-0644 (SAE International, 2005).

Jeong, H.

Y. Ikeda, A. Nishiyama, H. Katano, M. Kaneko, and H. Jeong, “Research and development of microwave plasma combustion engine, part II,” paper 2009-01-1049 (SAE International2009).

Kaneko, M.

Y. Ikeda, A. Nishiyama, Y. Wachi, and M. Kaneko, “Research and development of microwave plasma combustion engine, part I,” paper 2009-01-1050 (SAE International2009).

Y. Ikeda, A. Nishiyama, H. Katano, M. Kaneko, and H. Jeong, “Research and development of microwave plasma combustion engine, part II,” paper 2009-01-1049 (SAE International2009).

Katano, H.

Y. Ikeda, A. Nishiyama, H. Katano, M. Kaneko, and H. Jeong, “Research and development of microwave plasma combustion engine, part II,” paper 2009-01-1049 (SAE International2009).

Kawahara, N.

N. Kawahara, E. Tomita, S. Takemoto, and Y. Ikeda, “Fuel concentration measurement of premixed mixture using spark-induced breakdown spectroscopy,” Spectrochim. Acta Part B 64, 1085-1092 (2009).
[CrossRef]

Y. Ikeda, N. Kawahara, and E. Tomita, “Time-series A/F analysis in a SI engine by micro-local chemiluminescence technique,” presented at the Sixth International Symposium on Diagnostics and Modeling of Combustion in Internal Combustion Engines, Yokohama, Japan, 2-5 August 2004, paper C3-3.

N. Kawahara, E. Tomita, A. Takeuchi, S. Arimoto, Y. Ikeda, and A. Nishiyama, “Measurement of flame propagation characteristics in an SI engine using micro-local chemiluminescence technique,” paper 2005-01-0645 (SAE International, 2005).

Y. Ikeda, A. Nishiyama, N. Kawahara, E. Tomita, S. Arimoto, and A. Takeuchi, “In-spark-plug sensor for analyzing the initial flame and its structure in an SI engine,” paper 2005-01-0644 (SAE International, 2005).

N. Kawahara, E. Tomita, T. Nakayama, Y. Ikeda, and A. Nishiyama, “Spatial and temporal characteristics of laser-induced air plasma,” in Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit (AIAA, 2006), paper 2006-1461.

Y. Ikeda, A. Nishiyama, N. Kawahara, E. Tomita, and T. Nakayama, “Local equivalence ratio measurement of CH4/air and C3H8/air laminar flames by laser-induced breakdown,” in Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit (AIAA2006), paper AIAA 2006-965.

Kim, S. M.

Y. Ikeda, A. Nishiyama, S. M. Kim, A. Takeuchi, E. Winklhofer, and T. Baritaud, “Cyclic variation of local A/F and mixture quality in SI engine using local chemiluminescence,” Proceedings of the 7th International Symposium on Internal Combustion Diagnostics (Springer, 2006), pp. 277-284.

Leis, F.

Lewis, J. W. L.

J. O. Hornkohl, C. G. Parigger, and J. W. L. Lewis, “Temperature measurements from CN spectra in a laser-induced plasma,” J. Quant. Spectrosc. Radiat. Transfer 46, 405 -411 (1991).
[CrossRef]

Loree, T. R.

Michalakou, A.

P. Stavropoulos, A. Michalakou, G. Skevis, and S. Couris, “Laser-induced breakdown spectroscopy as an analytical tool for equivalence ratio measurement in methane-air premixed flames,” Spectrochim. Acta Part B 60, 1092-1097 (2005).
[CrossRef]

P. Stavropoulos, A. Michalakou, G. Skevis, and S. Couris, “Quantitative local equivalence ratio determination in laminar premixed methane-air flames by laser induced breakdown spectroscopy (LIBS),” Chem. Phys. Lett. 404, 309-314(2005).
[CrossRef]

Miziolek, A. W.

V. I. Babushok, F. C. DeLucia Jr., J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser ablation and plasma: laser induced breakdown spectroscopy signal enhancement,” Spectrochim. Acta Part B 61, 999-1014 (2006).
[CrossRef]

Munson, C. A.

V. I. Babushok, F. C. DeLucia Jr., J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser ablation and plasma: laser induced breakdown spectroscopy signal enhancement,” Spectrochim. Acta Part B 61, 999-1014 (2006).
[CrossRef]

Nakayama, T.

N. Kawahara, E. Tomita, T. Nakayama, Y. Ikeda, and A. Nishiyama, “Spatial and temporal characteristics of laser-induced air plasma,” in Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit (AIAA, 2006), paper 2006-1461.

Y. Ikeda, A. Nishiyama, N. Kawahara, E. Tomita, and T. Nakayama, “Local equivalence ratio measurement of CH4/air and C3H8/air laminar flames by laser-induced breakdown,” in Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit (AIAA2006), paper AIAA 2006-965.

Niemax, K.

Nishiyama, A.

N. Kawahara, E. Tomita, T. Nakayama, Y. Ikeda, and A. Nishiyama, “Spatial and temporal characteristics of laser-induced air plasma,” in Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit (AIAA, 2006), paper 2006-1461.

Y. Ikeda, A. Nishiyama, N. Kawahara, E. Tomita, S. Arimoto, and A. Takeuchi, “In-spark-plug sensor for analyzing the initial flame and its structure in an SI engine,” paper 2005-01-0644 (SAE International, 2005).

N. Kawahara, E. Tomita, A. Takeuchi, S. Arimoto, Y. Ikeda, and A. Nishiyama, “Measurement of flame propagation characteristics in an SI engine using micro-local chemiluminescence technique,” paper 2005-01-0645 (SAE International, 2005).

Y. Ikeda, A. Nishiyama, N. Kawahara, E. Tomita, and T. Nakayama, “Local equivalence ratio measurement of CH4/air and C3H8/air laminar flames by laser-induced breakdown,” in Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit (AIAA2006), paper AIAA 2006-965.

Y. Ikeda, A. Nishiyama, S. M. Kim, A. Takeuchi, E. Winklhofer, and T. Baritaud, “Cyclic variation of local A/F and mixture quality in SI engine using local chemiluminescence,” Proceedings of the 7th International Symposium on Internal Combustion Diagnostics (Springer, 2006), pp. 277-284.

Y. Ikeda, A. Nishiyama, Y. Wachi, and M. Kaneko, “Research and development of microwave plasma combustion engine, part I,” paper 2009-01-1050 (SAE International2009).

Y. Ikeda, A. Nishiyama, H. Katano, M. Kaneko, and H. Jeong, “Research and development of microwave plasma combustion engine, part II,” paper 2009-01-1049 (SAE International2009).

Noll, R.

Palagas, C.

P. Stavropoulos, C. Palagas, G. N. Angelopoulos, D. N. Papamantellos, and S. Couris, “Calibration measurement in laser-induced breakdown spectroscopy using nanosecond and picosecond lasers,” Spectrochim. Acta Part B 59, 1885-1892 (2004).
[CrossRef]

Papamantellos, D. N.

P. Stavropoulos, C. Palagas, G. N. Angelopoulos, D. N. Papamantellos, and S. Couris, “Calibration measurement in laser-induced breakdown spectroscopy using nanosecond and picosecond lasers,” Spectrochim. Acta Part B 59, 1885-1892 (2004).
[CrossRef]

Parigger, C. G.

J. O. Hornkohl, C. G. Parigger, and J. W. L. Lewis, “Temperature measurements from CN spectra in a laser-induced plasma,” J. Quant. Spectrosc. Radiat. Transfer 46, 405 -411 (1991).
[CrossRef]

Phuoc, T. X.

T. X. Phuoc and F. P. White, “Laser-induced spark for measurements of the fuel-to-air ratio of a combustible mixture,” Fuel 81, 1761-1765 (2002).
[CrossRef]

Piper, L. G.

Radziemski, L. J.

L. J. Radziemski, “From LASER to LIBS, the path of technology development,” Spectrochim. Acta Part B 57, 1109-1113(2002).
[CrossRef]

D. A. Cremers, L. J. Radziemski, and T. R. Loree, “Spectrochemical analysis of liquids using the laser spark,” Appl. Spectrosc. 38, 721-729 (1984).
[CrossRef]

Sdorra, W.

Skevis, G.

P. Stavropoulos, A. Michalakou, G. Skevis, and S. Couris, “Quantitative local equivalence ratio determination in laminar premixed methane-air flames by laser induced breakdown spectroscopy (LIBS),” Chem. Phys. Lett. 404, 309-314(2005).
[CrossRef]

P. Stavropoulos, A. Michalakou, G. Skevis, and S. Couris, “Laser-induced breakdown spectroscopy as an analytical tool for equivalence ratio measurement in methane-air premixed flames,” Spectrochim. Acta Part B 60, 1092-1097 (2005).
[CrossRef]

Stavropoulos, P.

P. Stavropoulos, A. Michalakou, G. Skevis, and S. Couris, “Laser-induced breakdown spectroscopy as an analytical tool for equivalence ratio measurement in methane-air premixed flames,” Spectrochim. Acta Part B 60, 1092-1097 (2005).
[CrossRef]

P. Stavropoulos, A. Michalakou, G. Skevis, and S. Couris, “Quantitative local equivalence ratio determination in laminar premixed methane-air flames by laser induced breakdown spectroscopy (LIBS),” Chem. Phys. Lett. 404, 309-314(2005).
[CrossRef]

P. Stavropoulos, C. Palagas, G. N. Angelopoulos, D. N. Papamantellos, and S. Couris, “Calibration measurement in laser-induced breakdown spectroscopy using nanosecond and picosecond lasers,” Spectrochim. Acta Part B 59, 1885-1892 (2004).
[CrossRef]

Sturm, V.

Takemoto, S.

N. Kawahara, E. Tomita, S. Takemoto, and Y. Ikeda, “Fuel concentration measurement of premixed mixture using spark-induced breakdown spectroscopy,” Spectrochim. Acta Part B 64, 1085-1092 (2009).
[CrossRef]

Takeuchi, A.

N. Kawahara, E. Tomita, A. Takeuchi, S. Arimoto, Y. Ikeda, and A. Nishiyama, “Measurement of flame propagation characteristics in an SI engine using micro-local chemiluminescence technique,” paper 2005-01-0645 (SAE International, 2005).

Y. Ikeda, A. Nishiyama, S. M. Kim, A. Takeuchi, E. Winklhofer, and T. Baritaud, “Cyclic variation of local A/F and mixture quality in SI engine using local chemiluminescence,” Proceedings of the 7th International Symposium on Internal Combustion Diagnostics (Springer, 2006), pp. 277-284.

Y. Ikeda, A. Nishiyama, N. Kawahara, E. Tomita, S. Arimoto, and A. Takeuchi, “In-spark-plug sensor for analyzing the initial flame and its structure in an SI engine,” paper 2005-01-0644 (SAE International, 2005).

Tomita, E.

N. Kawahara, E. Tomita, S. Takemoto, and Y. Ikeda, “Fuel concentration measurement of premixed mixture using spark-induced breakdown spectroscopy,” Spectrochim. Acta Part B 64, 1085-1092 (2009).
[CrossRef]

Y. Ikeda, A. Nishiyama, N. Kawahara, E. Tomita, S. Arimoto, and A. Takeuchi, “In-spark-plug sensor for analyzing the initial flame and its structure in an SI engine,” paper 2005-01-0644 (SAE International, 2005).

N. Kawahara, E. Tomita, A. Takeuchi, S. Arimoto, Y. Ikeda, and A. Nishiyama, “Measurement of flame propagation characteristics in an SI engine using micro-local chemiluminescence technique,” paper 2005-01-0645 (SAE International, 2005).

Y. Ikeda, N. Kawahara, and E. Tomita, “Time-series A/F analysis in a SI engine by micro-local chemiluminescence technique,” presented at the Sixth International Symposium on Diagnostics and Modeling of Combustion in Internal Combustion Engines, Yokohama, Japan, 2-5 August 2004, paper C3-3.

N. Kawahara, E. Tomita, T. Nakayama, Y. Ikeda, and A. Nishiyama, “Spatial and temporal characteristics of laser-induced air plasma,” in Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit (AIAA, 2006), paper 2006-1461.

Y. Ikeda, A. Nishiyama, N. Kawahara, E. Tomita, and T. Nakayama, “Local equivalence ratio measurement of CH4/air and C3H8/air laminar flames by laser-induced breakdown,” in Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit (AIAA2006), paper AIAA 2006-965.

Uebbing, J.

Wachi, Y.

Y. Ikeda, A. Nishiyama, Y. Wachi, and M. Kaneko, “Research and development of microwave plasma combustion engine, part I,” paper 2009-01-1050 (SAE International2009).

Wainner, R. T.

White, F. P.

T. X. Phuoc and F. P. White, “Laser-induced spark for measurements of the fuel-to-air ratio of a combustible mixture,” Fuel 81, 1761-1765 (2002).
[CrossRef]

Winklhofer, E.

Y. Ikeda, A. Nishiyama, S. M. Kim, A. Takeuchi, E. Winklhofer, and T. Baritaud, “Cyclic variation of local A/F and mixture quality in SI engine using local chemiluminescence,” Proceedings of the 7th International Symposium on Internal Combustion Diagnostics (Springer, 2006), pp. 277-284.

Appl. Opt. (2)

Appl. Spectrosc. (3)

Chem. Phys. Lett. (1)

P. Stavropoulos, A. Michalakou, G. Skevis, and S. Couris, “Quantitative local equivalence ratio determination in laminar premixed methane-air flames by laser induced breakdown spectroscopy (LIBS),” Chem. Phys. Lett. 404, 309-314(2005).
[CrossRef]

Combust. Flame (1)

F. Ferioli and S. G. Buckley, “Measurements of hydrocarbons using laser-induced breakdown spectroscopy,” Combust. Flame 144, 435-447 (2006).
[CrossRef]

Fuel (1)

T. X. Phuoc and F. P. White, “Laser-induced spark for measurements of the fuel-to-air ratio of a combustible mixture,” Fuel 81, 1761-1765 (2002).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (1)

J. O. Hornkohl, C. G. Parigger, and J. W. L. Lewis, “Temperature measurements from CN spectra in a laser-induced plasma,” J. Quant. Spectrosc. Radiat. Transfer 46, 405 -411 (1991).
[CrossRef]

Spectrochim. Acta Part B (6)

N. Kawahara, E. Tomita, S. Takemoto, and Y. Ikeda, “Fuel concentration measurement of premixed mixture using spark-induced breakdown spectroscopy,” Spectrochim. Acta Part B 64, 1085-1092 (2009).
[CrossRef]

L. J. Radziemski, “From LASER to LIBS, the path of technology development,” Spectrochim. Acta Part B 57, 1109-1113(2002).
[CrossRef]

P. Stavropoulos, A. Michalakou, G. Skevis, and S. Couris, “Laser-induced breakdown spectroscopy as an analytical tool for equivalence ratio measurement in methane-air premixed flames,” Spectrochim. Acta Part B 60, 1092-1097 (2005).
[CrossRef]

V. Hohreiter, J. E. Carranza, and D. W. Hahn, “Temporal analysis of laser-induced plasma properties as related to laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 59, 327-333 (2004).
[CrossRef]

P. Stavropoulos, C. Palagas, G. N. Angelopoulos, D. N. Papamantellos, and S. Couris, “Calibration measurement in laser-induced breakdown spectroscopy using nanosecond and picosecond lasers,” Spectrochim. Acta Part B 59, 1885-1892 (2004).
[CrossRef]

V. I. Babushok, F. C. DeLucia Jr., J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser ablation and plasma: laser induced breakdown spectroscopy signal enhancement,” Spectrochim. Acta Part B 61, 999-1014 (2006).
[CrossRef]

Other (9)

N. Kawahara, E. Tomita, T. Nakayama, Y. Ikeda, and A. Nishiyama, “Spatial and temporal characteristics of laser-induced air plasma,” in Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit (AIAA, 2006), paper 2006-1461.

Y. Ikeda, N. Kawahara, and E. Tomita, “Time-series A/F analysis in a SI engine by micro-local chemiluminescence technique,” presented at the Sixth International Symposium on Diagnostics and Modeling of Combustion in Internal Combustion Engines, Yokohama, Japan, 2-5 August 2004, paper C3-3.

Y. Ikeda, A. Nishiyama, N. Kawahara, E. Tomita, S. Arimoto, and A. Takeuchi, “In-spark-plug sensor for analyzing the initial flame and its structure in an SI engine,” paper 2005-01-0644 (SAE International, 2005).

N. Kawahara, E. Tomita, A. Takeuchi, S. Arimoto, Y. Ikeda, and A. Nishiyama, “Measurement of flame propagation characteristics in an SI engine using micro-local chemiluminescence technique,” paper 2005-01-0645 (SAE International, 2005).

Y. Ikeda, A. Nishiyama, S. M. Kim, A. Takeuchi, E. Winklhofer, and T. Baritaud, “Cyclic variation of local A/F and mixture quality in SI engine using local chemiluminescence,” Proceedings of the 7th International Symposium on Internal Combustion Diagnostics (Springer, 2006), pp. 277-284.

Y. Ikeda, A. Nishiyama, Y. Wachi, and M. Kaneko, “Research and development of microwave plasma combustion engine, part I,” paper 2009-01-1050 (SAE International2009).

Y. Ikeda, A. Nishiyama, H. Katano, M. Kaneko, and H. Jeong, “Research and development of microwave plasma combustion engine, part II,” paper 2009-01-1049 (SAE International2009).

J. B. Heywood, Internal Combustion Engine Fundamentals (McGraw-Hill, 1988).

Y. Ikeda, A. Nishiyama, N. Kawahara, E. Tomita, and T. Nakayama, “Local equivalence ratio measurement of CH4/air and C3H8/air laminar flames by laser-induced breakdown,” in Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit (AIAA2006), paper AIAA 2006-965.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of the measurement system for LIBS and SIBS with microwave enhancement.

Fig. 2
Fig. 2

Photographic images of spark-induced plasma and microwave-enhanced plasma: gas, air; spark, 20–30 mJ; microwave, 500 W, 5 ms; camera; home video (33 fps).

Fig. 3
Fig. 3

Air spectrum of laser-induced plasma with and without microwave.

Fig. 4
Fig. 4

Air spectrum of spark-induced plasma with and without microwave. Spark energy is 20 30 mJ . (a) Spectrum with and without microwave of cumulated number 100. (b) Spectrum of wavelength region from 300 to 340 nm .

Fig. 5
Fig. 5

(a) Air spectrum for a variety of microwave input power. Cumulated number is 200. (b) Dependence of N 2 SPB ( 337 nm ) peak intensity for microwave power.

Fig. 6
Fig. 6

Air and exhaust gas spectrum of spark- induced plasma (a) without and (b) with microwave for an application.

Tables (1)

Tables Icon

Table 1 Experimental Conditions

Metrics