Abstract

Application of laser-induced breakdown spectroscopy (LIBS) to the identification of security threats is a growing area of research. This work presents LIBS spectra of vapor-phase chemical warfare agent simulants and typical rocket fuels. A large dataset of spectra was acquired using a variety of gas mixtures and background pressures and processed using partial least squares analysis. The five compounds studied were identified with a 99% success rate by the best method. The temporal behavior of the emission lines as a function of chamber pressure and gas mixture was also investigated, revealing some interesting trends that merit further study.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. C. DeLucia, Jr., A. C. Samuels, R. S. Harmon, R. A. Walters, K. L. McNesby, A. LaPointe, R. J. Winkel Jr., and A. W. Miziolek, “Laser-induced breakdown spectroscopy (LIBS): a promising versatile chemical sensor technology for hazardous material detection,” IEEE Sens. J. 5, 681-689 (2005).
    [CrossRef]
  2. J. L. Gottfried, F. C. Lucia, Jr., C. A. Munson, and A. W. Miziolek, “Strategies for residue explosives detection using laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 23, 205-216 (2008).
    [CrossRef]
  3. J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Standoff detection of chemical and biological threats using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 62, 353-363 (2008).
    [CrossRef] [PubMed]
  4. C. A. Munson, J. L. Gottfried, E. G. Snyder, J. F. C. De Lucia, B. Gullett, and A. W. Miziolek, “Detection of indoor biological hazards using the man-portable laser induced breakdown spectrometer,” Appl. Opt. 47, G48-G57 (2008).
    [CrossRef]
  5. A. W. Miziolek, V. Palleschi, and I. Schechter, eds., Laser-Induced Breakdown Spectroscopy (Cambridge U. Press, 2006).
    [CrossRef]
  6. J. D. Hybl, S. M. Tysk, S. R. Berry, and M. P. Jordan, “Laser-induced fluorescence-cued, laser-induced breakdown spectroscopy biological-agent detection,” Appl. Opt. 45, 8806-8814(2006).
    [CrossRef] [PubMed]
  7. R. G. Meyerand and A. F. Haught, “Gas breakdown at optical frequencies,” Phys. Rev. Lett. 11, 401-403 (1963).
    [CrossRef]
  8. P. Maker, R. Terhune, and C. Savage, “Optical third harmonic generation,” in Proceedings of the Third International Quantum Electronics Conference (Columbia University, 1963), p. 1559.
  9. L. Dudragne, P. Adam, and J. Amouroux, “Time-resolved laser-induced breakdown spectroscopy: application for qualitative and quantitative detection of fluorine, chlorine, sulfur, and carbon in air,” Appl. Spectrosc. 52, 1321-1327 (1998).
    [CrossRef]
  10. Y. L. Chen, J. W. L. Lewis, and C. Parigger, “Probability distribution of laser-induced breakdown and ignition of ammonia,” J. Quant. Spectrosc. Radiat. Transfer 66, 41-53 (2000).
    [CrossRef]
  11. T. X. Phuoc, C. M. White, and D. H. McNeill, “Laser spark ignition of a jet diffusion flame,” Opt. Lasers Eng. 38, 217-232 (2002).
    [CrossRef]
  12. V. N. Rai, J. P. Singh, C. Winstead, F.-Y. Yueh, and R. L. Cook, “Laser-induced breakdown spectroscopy of hydrocarbon flame and rocket engine simulator plume,” AIAA J. 41, 2192-2199 (2003).
    [CrossRef]
  13. D. Babankova, S. Civis, L. Juha, M. Bittner, J. Cihelka, M. Pfeifer, J. Skala, A. Bartnik, H. Fiedorowicz, J. Mikolajczyk, L. Ryc, and T. Sedivcova, “Optical and x-ray emission spectroscopy of high-power laser-induced dielectric breakdown in molecular gases and their mixtures,” J. Phys. Chem. A 110, 12113-12120 (2006).
    [CrossRef] [PubMed]
  14. J. P. Davis, A. L. Smith, C. Giranda, and M. Squicciarini, “Laser-induced plasma formation in Xe, Ar, N2, and O2 at the first four Nd:YAG harmonics,” Appl. Opt. 30, 4358-4364 (1991).
    [CrossRef] [PubMed]
  15. R. A. Armstrong, R. A. Lucht, and W. T. Rawlins, “Spectroscopic investigation of laser-initiated low-pressure plasmas in atmospheric gases,” Appl. Opt. 22, 1573-1577 (1983).
    [CrossRef] [PubMed]
  16. C. V. Bindhu, S. S. Harilal, M. S. Tillack, F. Najmabadi, and A. C. Gaeris, “Laser propagation and energy absorption by an Ar spark,” J. Appl. Phys. 94, 7402-7407 (2003).
    [CrossRef]
  17. N. Glumac and G. Elliott, “The effect of ambient pressure on laser-induced plasmas in air,” Opt. Lasers Eng. 45, 27-35 (2007).
    [CrossRef]
  18. G. Weyl, “Physics of laser-induced breakdown: an update,” in Laser-Induced Plasmas and Applications, L. J. Radziemski and D. A. Cremers, eds. (Marcel Dekker, 1989), pp. 1-69.
  19. C. A. Henry, P. K. Diwakar, and D. W. Hahn, “Investigation of helium addition for laser-induced plasma spectroscopy of pure gas phase systems: Analyte interactions and signal enhancement,” Spectrochim. Acta B 62, 1390-1398 (2007).
    [CrossRef]
  20. D. Miller, “Free jet sources,” in Atomic and Molecular Beam Methods, G. Scoles, ed. (Oxford U. Press, 1988), pp. 14-53.
  21. P.J.Linstrom and W.G.Mallard, eds., NIST Chemistry WebBook, NIST Standard Reference Database Number 69 (National Institute of Standards and Technology), http://webbook.nist.gov.
  22. F. Ferioli and S. G. Buckley, “Measurements of hydrocarbons using laser-induced breakdown spectroscopy,” Combust. Flame 144, 435-447 (2006).
    [CrossRef]
  23. D. H. Plemmons, C. Parigger, J. W. L. Lewis, and J. O. Hornkohl, “Analysis of combined spectra of NH and N2,” Appl. Opt. 37, 2493-2498 (1998).
    [CrossRef]
  24. J. L. Gottfried, F. C. De Lucia, Jr., C. A. Munson, and A. W. Miziolek, “Double-pulse standoff laser-induced breakdown spectroscopy for versatile hazardous materials detection,” Spectrochim. Acta B 62, 1405-1411 (2007).
    [CrossRef]
  25. K. Beebe, R. Pell, and M. Seasholtz, Chemometrics: A Practical Guide (Wiley, 1998).
  26. M. Barker and W. Rayens, “Partial least squares for discrimination,” J. Chemom. 17, 166-173 (2003).
    [CrossRef]
  27. R Development Core Team, R: a Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2009).
  28. B. Mevik and R. Wehrens, “The pls package: Principal component and partial least squares regression in R,” J. Stat. Softw. 18, 1-24 (2007).
  29. J. J. Remus, J. L. Gottfried, R. S. Harmon, A. Draucker, D. Baron, and R. Yohe, “Multivariate statistical analysis of LIBS spectra for archaeological applications--an example from the Coso Volcanic Field, CA--II: advanced statistical signal processing analysis,” NASLIBS 2009 (2009).

2008 (3)

2007 (4)

N. Glumac and G. Elliott, “The effect of ambient pressure on laser-induced plasmas in air,” Opt. Lasers Eng. 45, 27-35 (2007).
[CrossRef]

C. A. Henry, P. K. Diwakar, and D. W. Hahn, “Investigation of helium addition for laser-induced plasma spectroscopy of pure gas phase systems: Analyte interactions and signal enhancement,” Spectrochim. Acta B 62, 1390-1398 (2007).
[CrossRef]

J. L. Gottfried, F. C. De Lucia, Jr., C. A. Munson, and A. W. Miziolek, “Double-pulse standoff laser-induced breakdown spectroscopy for versatile hazardous materials detection,” Spectrochim. Acta B 62, 1405-1411 (2007).
[CrossRef]

B. Mevik and R. Wehrens, “The pls package: Principal component and partial least squares regression in R,” J. Stat. Softw. 18, 1-24 (2007).

2006 (3)

F. Ferioli and S. G. Buckley, “Measurements of hydrocarbons using laser-induced breakdown spectroscopy,” Combust. Flame 144, 435-447 (2006).
[CrossRef]

D. Babankova, S. Civis, L. Juha, M. Bittner, J. Cihelka, M. Pfeifer, J. Skala, A. Bartnik, H. Fiedorowicz, J. Mikolajczyk, L. Ryc, and T. Sedivcova, “Optical and x-ray emission spectroscopy of high-power laser-induced dielectric breakdown in molecular gases and their mixtures,” J. Phys. Chem. A 110, 12113-12120 (2006).
[CrossRef] [PubMed]

J. D. Hybl, S. M. Tysk, S. R. Berry, and M. P. Jordan, “Laser-induced fluorescence-cued, laser-induced breakdown spectroscopy biological-agent detection,” Appl. Opt. 45, 8806-8814(2006).
[CrossRef] [PubMed]

2005 (1)

F. C. DeLucia, Jr., A. C. Samuels, R. S. Harmon, R. A. Walters, K. L. McNesby, A. LaPointe, R. J. Winkel Jr., and A. W. Miziolek, “Laser-induced breakdown spectroscopy (LIBS): a promising versatile chemical sensor technology for hazardous material detection,” IEEE Sens. J. 5, 681-689 (2005).
[CrossRef]

2003 (3)

V. N. Rai, J. P. Singh, C. Winstead, F.-Y. Yueh, and R. L. Cook, “Laser-induced breakdown spectroscopy of hydrocarbon flame and rocket engine simulator plume,” AIAA J. 41, 2192-2199 (2003).
[CrossRef]

C. V. Bindhu, S. S. Harilal, M. S. Tillack, F. Najmabadi, and A. C. Gaeris, “Laser propagation and energy absorption by an Ar spark,” J. Appl. Phys. 94, 7402-7407 (2003).
[CrossRef]

M. Barker and W. Rayens, “Partial least squares for discrimination,” J. Chemom. 17, 166-173 (2003).
[CrossRef]

2002 (1)

T. X. Phuoc, C. M. White, and D. H. McNeill, “Laser spark ignition of a jet diffusion flame,” Opt. Lasers Eng. 38, 217-232 (2002).
[CrossRef]

2000 (1)

Y. L. Chen, J. W. L. Lewis, and C. Parigger, “Probability distribution of laser-induced breakdown and ignition of ammonia,” J. Quant. Spectrosc. Radiat. Transfer 66, 41-53 (2000).
[CrossRef]

1998 (2)

1991 (1)

1983 (1)

1963 (1)

R. G. Meyerand and A. F. Haught, “Gas breakdown at optical frequencies,” Phys. Rev. Lett. 11, 401-403 (1963).
[CrossRef]

Adam, P.

Amouroux, J.

Armstrong, R. A.

Babankova, D.

D. Babankova, S. Civis, L. Juha, M. Bittner, J. Cihelka, M. Pfeifer, J. Skala, A. Bartnik, H. Fiedorowicz, J. Mikolajczyk, L. Ryc, and T. Sedivcova, “Optical and x-ray emission spectroscopy of high-power laser-induced dielectric breakdown in molecular gases and their mixtures,” J. Phys. Chem. A 110, 12113-12120 (2006).
[CrossRef] [PubMed]

Barker, M.

M. Barker and W. Rayens, “Partial least squares for discrimination,” J. Chemom. 17, 166-173 (2003).
[CrossRef]

Baron, D.

J. J. Remus, J. L. Gottfried, R. S. Harmon, A. Draucker, D. Baron, and R. Yohe, “Multivariate statistical analysis of LIBS spectra for archaeological applications--an example from the Coso Volcanic Field, CA--II: advanced statistical signal processing analysis,” NASLIBS 2009 (2009).

Bartnik, A.

D. Babankova, S. Civis, L. Juha, M. Bittner, J. Cihelka, M. Pfeifer, J. Skala, A. Bartnik, H. Fiedorowicz, J. Mikolajczyk, L. Ryc, and T. Sedivcova, “Optical and x-ray emission spectroscopy of high-power laser-induced dielectric breakdown in molecular gases and their mixtures,” J. Phys. Chem. A 110, 12113-12120 (2006).
[CrossRef] [PubMed]

Beebe, K.

K. Beebe, R. Pell, and M. Seasholtz, Chemometrics: A Practical Guide (Wiley, 1998).

Berry, S. R.

Bindhu, C. V.

C. V. Bindhu, S. S. Harilal, M. S. Tillack, F. Najmabadi, and A. C. Gaeris, “Laser propagation and energy absorption by an Ar spark,” J. Appl. Phys. 94, 7402-7407 (2003).
[CrossRef]

Bittner, M.

D. Babankova, S. Civis, L. Juha, M. Bittner, J. Cihelka, M. Pfeifer, J. Skala, A. Bartnik, H. Fiedorowicz, J. Mikolajczyk, L. Ryc, and T. Sedivcova, “Optical and x-ray emission spectroscopy of high-power laser-induced dielectric breakdown in molecular gases and their mixtures,” J. Phys. Chem. A 110, 12113-12120 (2006).
[CrossRef] [PubMed]

Buckley, S. G.

F. Ferioli and S. G. Buckley, “Measurements of hydrocarbons using laser-induced breakdown spectroscopy,” Combust. Flame 144, 435-447 (2006).
[CrossRef]

Chen, Y. L.

Y. L. Chen, J. W. L. Lewis, and C. Parigger, “Probability distribution of laser-induced breakdown and ignition of ammonia,” J. Quant. Spectrosc. Radiat. Transfer 66, 41-53 (2000).
[CrossRef]

Cihelka, J.

D. Babankova, S. Civis, L. Juha, M. Bittner, J. Cihelka, M. Pfeifer, J. Skala, A. Bartnik, H. Fiedorowicz, J. Mikolajczyk, L. Ryc, and T. Sedivcova, “Optical and x-ray emission spectroscopy of high-power laser-induced dielectric breakdown in molecular gases and their mixtures,” J. Phys. Chem. A 110, 12113-12120 (2006).
[CrossRef] [PubMed]

Civis, S.

D. Babankova, S. Civis, L. Juha, M. Bittner, J. Cihelka, M. Pfeifer, J. Skala, A. Bartnik, H. Fiedorowicz, J. Mikolajczyk, L. Ryc, and T. Sedivcova, “Optical and x-ray emission spectroscopy of high-power laser-induced dielectric breakdown in molecular gases and their mixtures,” J. Phys. Chem. A 110, 12113-12120 (2006).
[CrossRef] [PubMed]

Cook, R. L.

V. N. Rai, J. P. Singh, C. Winstead, F.-Y. Yueh, and R. L. Cook, “Laser-induced breakdown spectroscopy of hydrocarbon flame and rocket engine simulator plume,” AIAA J. 41, 2192-2199 (2003).
[CrossRef]

Davis, J. P.

De Lucia, F. C.

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Standoff detection of chemical and biological threats using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 62, 353-363 (2008).
[CrossRef] [PubMed]

J. L. Gottfried, F. C. De Lucia, Jr., C. A. Munson, and A. W. Miziolek, “Double-pulse standoff laser-induced breakdown spectroscopy for versatile hazardous materials detection,” Spectrochim. Acta B 62, 1405-1411 (2007).
[CrossRef]

De Lucia, J. F. C.

DeLucia, F. C.

F. C. DeLucia, Jr., A. C. Samuels, R. S. Harmon, R. A. Walters, K. L. McNesby, A. LaPointe, R. J. Winkel Jr., and A. W. Miziolek, “Laser-induced breakdown spectroscopy (LIBS): a promising versatile chemical sensor technology for hazardous material detection,” IEEE Sens. J. 5, 681-689 (2005).
[CrossRef]

Diwakar, P. K.

C. A. Henry, P. K. Diwakar, and D. W. Hahn, “Investigation of helium addition for laser-induced plasma spectroscopy of pure gas phase systems: Analyte interactions and signal enhancement,” Spectrochim. Acta B 62, 1390-1398 (2007).
[CrossRef]

Draucker, A.

J. J. Remus, J. L. Gottfried, R. S. Harmon, A. Draucker, D. Baron, and R. Yohe, “Multivariate statistical analysis of LIBS spectra for archaeological applications--an example from the Coso Volcanic Field, CA--II: advanced statistical signal processing analysis,” NASLIBS 2009 (2009).

Dudragne, L.

Elliott, G.

N. Glumac and G. Elliott, “The effect of ambient pressure on laser-induced plasmas in air,” Opt. Lasers Eng. 45, 27-35 (2007).
[CrossRef]

Ferioli, F.

F. Ferioli and S. G. Buckley, “Measurements of hydrocarbons using laser-induced breakdown spectroscopy,” Combust. Flame 144, 435-447 (2006).
[CrossRef]

Fiedorowicz, H.

D. Babankova, S. Civis, L. Juha, M. Bittner, J. Cihelka, M. Pfeifer, J. Skala, A. Bartnik, H. Fiedorowicz, J. Mikolajczyk, L. Ryc, and T. Sedivcova, “Optical and x-ray emission spectroscopy of high-power laser-induced dielectric breakdown in molecular gases and their mixtures,” J. Phys. Chem. A 110, 12113-12120 (2006).
[CrossRef] [PubMed]

Gaeris, A. C.

C. V. Bindhu, S. S. Harilal, M. S. Tillack, F. Najmabadi, and A. C. Gaeris, “Laser propagation and energy absorption by an Ar spark,” J. Appl. Phys. 94, 7402-7407 (2003).
[CrossRef]

Giranda, C.

Glumac, N.

N. Glumac and G. Elliott, “The effect of ambient pressure on laser-induced plasmas in air,” Opt. Lasers Eng. 45, 27-35 (2007).
[CrossRef]

Gottfried, J. L.

C. A. Munson, J. L. Gottfried, E. G. Snyder, J. F. C. De Lucia, B. Gullett, and A. W. Miziolek, “Detection of indoor biological hazards using the man-portable laser induced breakdown spectrometer,” Appl. Opt. 47, G48-G57 (2008).
[CrossRef]

J. L. Gottfried, F. C. Lucia, Jr., C. A. Munson, and A. W. Miziolek, “Strategies for residue explosives detection using laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 23, 205-216 (2008).
[CrossRef]

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Standoff detection of chemical and biological threats using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 62, 353-363 (2008).
[CrossRef] [PubMed]

J. L. Gottfried, F. C. De Lucia, Jr., C. A. Munson, and A. W. Miziolek, “Double-pulse standoff laser-induced breakdown spectroscopy for versatile hazardous materials detection,” Spectrochim. Acta B 62, 1405-1411 (2007).
[CrossRef]

J. J. Remus, J. L. Gottfried, R. S. Harmon, A. Draucker, D. Baron, and R. Yohe, “Multivariate statistical analysis of LIBS spectra for archaeological applications--an example from the Coso Volcanic Field, CA--II: advanced statistical signal processing analysis,” NASLIBS 2009 (2009).

Gullett, B.

Hahn, D. W.

C. A. Henry, P. K. Diwakar, and D. W. Hahn, “Investigation of helium addition for laser-induced plasma spectroscopy of pure gas phase systems: Analyte interactions and signal enhancement,” Spectrochim. Acta B 62, 1390-1398 (2007).
[CrossRef]

Harilal, S. S.

C. V. Bindhu, S. S. Harilal, M. S. Tillack, F. Najmabadi, and A. C. Gaeris, “Laser propagation and energy absorption by an Ar spark,” J. Appl. Phys. 94, 7402-7407 (2003).
[CrossRef]

Harmon, R. S.

F. C. DeLucia, Jr., A. C. Samuels, R. S. Harmon, R. A. Walters, K. L. McNesby, A. LaPointe, R. J. Winkel Jr., and A. W. Miziolek, “Laser-induced breakdown spectroscopy (LIBS): a promising versatile chemical sensor technology for hazardous material detection,” IEEE Sens. J. 5, 681-689 (2005).
[CrossRef]

J. J. Remus, J. L. Gottfried, R. S. Harmon, A. Draucker, D. Baron, and R. Yohe, “Multivariate statistical analysis of LIBS spectra for archaeological applications--an example from the Coso Volcanic Field, CA--II: advanced statistical signal processing analysis,” NASLIBS 2009 (2009).

Haught, A. F.

R. G. Meyerand and A. F. Haught, “Gas breakdown at optical frequencies,” Phys. Rev. Lett. 11, 401-403 (1963).
[CrossRef]

Henry, C. A.

C. A. Henry, P. K. Diwakar, and D. W. Hahn, “Investigation of helium addition for laser-induced plasma spectroscopy of pure gas phase systems: Analyte interactions and signal enhancement,” Spectrochim. Acta B 62, 1390-1398 (2007).
[CrossRef]

Hornkohl, J. O.

Hybl, J. D.

Jordan, M. P.

Juha, L.

D. Babankova, S. Civis, L. Juha, M. Bittner, J. Cihelka, M. Pfeifer, J. Skala, A. Bartnik, H. Fiedorowicz, J. Mikolajczyk, L. Ryc, and T. Sedivcova, “Optical and x-ray emission spectroscopy of high-power laser-induced dielectric breakdown in molecular gases and their mixtures,” J. Phys. Chem. A 110, 12113-12120 (2006).
[CrossRef] [PubMed]

LaPointe, A.

F. C. DeLucia, Jr., A. C. Samuels, R. S. Harmon, R. A. Walters, K. L. McNesby, A. LaPointe, R. J. Winkel Jr., and A. W. Miziolek, “Laser-induced breakdown spectroscopy (LIBS): a promising versatile chemical sensor technology for hazardous material detection,” IEEE Sens. J. 5, 681-689 (2005).
[CrossRef]

Lewis, J. W. L.

Y. L. Chen, J. W. L. Lewis, and C. Parigger, “Probability distribution of laser-induced breakdown and ignition of ammonia,” J. Quant. Spectrosc. Radiat. Transfer 66, 41-53 (2000).
[CrossRef]

D. H. Plemmons, C. Parigger, J. W. L. Lewis, and J. O. Hornkohl, “Analysis of combined spectra of NH and N2,” Appl. Opt. 37, 2493-2498 (1998).
[CrossRef]

Lucht, R. A.

Lucia,, F. C.

J. L. Gottfried, F. C. Lucia, Jr., C. A. Munson, and A. W. Miziolek, “Strategies for residue explosives detection using laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 23, 205-216 (2008).
[CrossRef]

Maker, P.

P. Maker, R. Terhune, and C. Savage, “Optical third harmonic generation,” in Proceedings of the Third International Quantum Electronics Conference (Columbia University, 1963), p. 1559.

McNeill, D. H.

T. X. Phuoc, C. M. White, and D. H. McNeill, “Laser spark ignition of a jet diffusion flame,” Opt. Lasers Eng. 38, 217-232 (2002).
[CrossRef]

McNesby, K. L.

F. C. DeLucia, Jr., A. C. Samuels, R. S. Harmon, R. A. Walters, K. L. McNesby, A. LaPointe, R. J. Winkel Jr., and A. W. Miziolek, “Laser-induced breakdown spectroscopy (LIBS): a promising versatile chemical sensor technology for hazardous material detection,” IEEE Sens. J. 5, 681-689 (2005).
[CrossRef]

Mevik, B.

B. Mevik and R. Wehrens, “The pls package: Principal component and partial least squares regression in R,” J. Stat. Softw. 18, 1-24 (2007).

Meyerand, R. G.

R. G. Meyerand and A. F. Haught, “Gas breakdown at optical frequencies,” Phys. Rev. Lett. 11, 401-403 (1963).
[CrossRef]

Mikolajczyk, J.

D. Babankova, S. Civis, L. Juha, M. Bittner, J. Cihelka, M. Pfeifer, J. Skala, A. Bartnik, H. Fiedorowicz, J. Mikolajczyk, L. Ryc, and T. Sedivcova, “Optical and x-ray emission spectroscopy of high-power laser-induced dielectric breakdown in molecular gases and their mixtures,” J. Phys. Chem. A 110, 12113-12120 (2006).
[CrossRef] [PubMed]

Miller, D.

D. Miller, “Free jet sources,” in Atomic and Molecular Beam Methods, G. Scoles, ed. (Oxford U. Press, 1988), pp. 14-53.

Miziolek, A. W.

C. A. Munson, J. L. Gottfried, E. G. Snyder, J. F. C. De Lucia, B. Gullett, and A. W. Miziolek, “Detection of indoor biological hazards using the man-portable laser induced breakdown spectrometer,” Appl. Opt. 47, G48-G57 (2008).
[CrossRef]

J. L. Gottfried, F. C. Lucia, Jr., C. A. Munson, and A. W. Miziolek, “Strategies for residue explosives detection using laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 23, 205-216 (2008).
[CrossRef]

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Standoff detection of chemical and biological threats using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 62, 353-363 (2008).
[CrossRef] [PubMed]

J. L. Gottfried, F. C. De Lucia, Jr., C. A. Munson, and A. W. Miziolek, “Double-pulse standoff laser-induced breakdown spectroscopy for versatile hazardous materials detection,” Spectrochim. Acta B 62, 1405-1411 (2007).
[CrossRef]

F. C. DeLucia, Jr., A. C. Samuels, R. S. Harmon, R. A. Walters, K. L. McNesby, A. LaPointe, R. J. Winkel Jr., and A. W. Miziolek, “Laser-induced breakdown spectroscopy (LIBS): a promising versatile chemical sensor technology for hazardous material detection,” IEEE Sens. J. 5, 681-689 (2005).
[CrossRef]

Munson, C. A.

C. A. Munson, J. L. Gottfried, E. G. Snyder, J. F. C. De Lucia, B. Gullett, and A. W. Miziolek, “Detection of indoor biological hazards using the man-portable laser induced breakdown spectrometer,” Appl. Opt. 47, G48-G57 (2008).
[CrossRef]

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Standoff detection of chemical and biological threats using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 62, 353-363 (2008).
[CrossRef] [PubMed]

J. L. Gottfried, F. C. Lucia, Jr., C. A. Munson, and A. W. Miziolek, “Strategies for residue explosives detection using laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 23, 205-216 (2008).
[CrossRef]

J. L. Gottfried, F. C. De Lucia, Jr., C. A. Munson, and A. W. Miziolek, “Double-pulse standoff laser-induced breakdown spectroscopy for versatile hazardous materials detection,” Spectrochim. Acta B 62, 1405-1411 (2007).
[CrossRef]

Najmabadi, F.

C. V. Bindhu, S. S. Harilal, M. S. Tillack, F. Najmabadi, and A. C. Gaeris, “Laser propagation and energy absorption by an Ar spark,” J. Appl. Phys. 94, 7402-7407 (2003).
[CrossRef]

Parigger, C.

Y. L. Chen, J. W. L. Lewis, and C. Parigger, “Probability distribution of laser-induced breakdown and ignition of ammonia,” J. Quant. Spectrosc. Radiat. Transfer 66, 41-53 (2000).
[CrossRef]

D. H. Plemmons, C. Parigger, J. W. L. Lewis, and J. O. Hornkohl, “Analysis of combined spectra of NH and N2,” Appl. Opt. 37, 2493-2498 (1998).
[CrossRef]

Pell, R.

K. Beebe, R. Pell, and M. Seasholtz, Chemometrics: A Practical Guide (Wiley, 1998).

Pfeifer, M.

D. Babankova, S. Civis, L. Juha, M. Bittner, J. Cihelka, M. Pfeifer, J. Skala, A. Bartnik, H. Fiedorowicz, J. Mikolajczyk, L. Ryc, and T. Sedivcova, “Optical and x-ray emission spectroscopy of high-power laser-induced dielectric breakdown in molecular gases and their mixtures,” J. Phys. Chem. A 110, 12113-12120 (2006).
[CrossRef] [PubMed]

Phuoc, T. X.

T. X. Phuoc, C. M. White, and D. H. McNeill, “Laser spark ignition of a jet diffusion flame,” Opt. Lasers Eng. 38, 217-232 (2002).
[CrossRef]

Plemmons, D. H.

Rai, V. N.

V. N. Rai, J. P. Singh, C. Winstead, F.-Y. Yueh, and R. L. Cook, “Laser-induced breakdown spectroscopy of hydrocarbon flame and rocket engine simulator plume,” AIAA J. 41, 2192-2199 (2003).
[CrossRef]

Rawlins, W. T.

Rayens, W.

M. Barker and W. Rayens, “Partial least squares for discrimination,” J. Chemom. 17, 166-173 (2003).
[CrossRef]

Remus, J. J.

J. J. Remus, J. L. Gottfried, R. S. Harmon, A. Draucker, D. Baron, and R. Yohe, “Multivariate statistical analysis of LIBS spectra for archaeological applications--an example from the Coso Volcanic Field, CA--II: advanced statistical signal processing analysis,” NASLIBS 2009 (2009).

Ryc, L.

D. Babankova, S. Civis, L. Juha, M. Bittner, J. Cihelka, M. Pfeifer, J. Skala, A. Bartnik, H. Fiedorowicz, J. Mikolajczyk, L. Ryc, and T. Sedivcova, “Optical and x-ray emission spectroscopy of high-power laser-induced dielectric breakdown in molecular gases and their mixtures,” J. Phys. Chem. A 110, 12113-12120 (2006).
[CrossRef] [PubMed]

Samuels, A. C.

F. C. DeLucia, Jr., A. C. Samuels, R. S. Harmon, R. A. Walters, K. L. McNesby, A. LaPointe, R. J. Winkel Jr., and A. W. Miziolek, “Laser-induced breakdown spectroscopy (LIBS): a promising versatile chemical sensor technology for hazardous material detection,” IEEE Sens. J. 5, 681-689 (2005).
[CrossRef]

Savage, C.

P. Maker, R. Terhune, and C. Savage, “Optical third harmonic generation,” in Proceedings of the Third International Quantum Electronics Conference (Columbia University, 1963), p. 1559.

Seasholtz, M.

K. Beebe, R. Pell, and M. Seasholtz, Chemometrics: A Practical Guide (Wiley, 1998).

Sedivcova, T.

D. Babankova, S. Civis, L. Juha, M. Bittner, J. Cihelka, M. Pfeifer, J. Skala, A. Bartnik, H. Fiedorowicz, J. Mikolajczyk, L. Ryc, and T. Sedivcova, “Optical and x-ray emission spectroscopy of high-power laser-induced dielectric breakdown in molecular gases and their mixtures,” J. Phys. Chem. A 110, 12113-12120 (2006).
[CrossRef] [PubMed]

Singh, J. P.

V. N. Rai, J. P. Singh, C. Winstead, F.-Y. Yueh, and R. L. Cook, “Laser-induced breakdown spectroscopy of hydrocarbon flame and rocket engine simulator plume,” AIAA J. 41, 2192-2199 (2003).
[CrossRef]

Skala, J.

D. Babankova, S. Civis, L. Juha, M. Bittner, J. Cihelka, M. Pfeifer, J. Skala, A. Bartnik, H. Fiedorowicz, J. Mikolajczyk, L. Ryc, and T. Sedivcova, “Optical and x-ray emission spectroscopy of high-power laser-induced dielectric breakdown in molecular gases and their mixtures,” J. Phys. Chem. A 110, 12113-12120 (2006).
[CrossRef] [PubMed]

Smith, A. L.

Snyder, E. G.

Squicciarini, M.

Terhune, R.

P. Maker, R. Terhune, and C. Savage, “Optical third harmonic generation,” in Proceedings of the Third International Quantum Electronics Conference (Columbia University, 1963), p. 1559.

Tillack, M. S.

C. V. Bindhu, S. S. Harilal, M. S. Tillack, F. Najmabadi, and A. C. Gaeris, “Laser propagation and energy absorption by an Ar spark,” J. Appl. Phys. 94, 7402-7407 (2003).
[CrossRef]

Tysk, S. M.

Walters, R. A.

F. C. DeLucia, Jr., A. C. Samuels, R. S. Harmon, R. A. Walters, K. L. McNesby, A. LaPointe, R. J. Winkel Jr., and A. W. Miziolek, “Laser-induced breakdown spectroscopy (LIBS): a promising versatile chemical sensor technology for hazardous material detection,” IEEE Sens. J. 5, 681-689 (2005).
[CrossRef]

Wehrens, R.

B. Mevik and R. Wehrens, “The pls package: Principal component and partial least squares regression in R,” J. Stat. Softw. 18, 1-24 (2007).

Weyl, G.

G. Weyl, “Physics of laser-induced breakdown: an update,” in Laser-Induced Plasmas and Applications, L. J. Radziemski and D. A. Cremers, eds. (Marcel Dekker, 1989), pp. 1-69.

White, C. M.

T. X. Phuoc, C. M. White, and D. H. McNeill, “Laser spark ignition of a jet diffusion flame,” Opt. Lasers Eng. 38, 217-232 (2002).
[CrossRef]

Winkel, R. J.

F. C. DeLucia, Jr., A. C. Samuels, R. S. Harmon, R. A. Walters, K. L. McNesby, A. LaPointe, R. J. Winkel Jr., and A. W. Miziolek, “Laser-induced breakdown spectroscopy (LIBS): a promising versatile chemical sensor technology for hazardous material detection,” IEEE Sens. J. 5, 681-689 (2005).
[CrossRef]

Winstead, C.

V. N. Rai, J. P. Singh, C. Winstead, F.-Y. Yueh, and R. L. Cook, “Laser-induced breakdown spectroscopy of hydrocarbon flame and rocket engine simulator plume,” AIAA J. 41, 2192-2199 (2003).
[CrossRef]

Yohe, R.

J. J. Remus, J. L. Gottfried, R. S. Harmon, A. Draucker, D. Baron, and R. Yohe, “Multivariate statistical analysis of LIBS spectra for archaeological applications--an example from the Coso Volcanic Field, CA--II: advanced statistical signal processing analysis,” NASLIBS 2009 (2009).

Yueh, F.-Y.

V. N. Rai, J. P. Singh, C. Winstead, F.-Y. Yueh, and R. L. Cook, “Laser-induced breakdown spectroscopy of hydrocarbon flame and rocket engine simulator plume,” AIAA J. 41, 2192-2199 (2003).
[CrossRef]

AIAA J. (1)

V. N. Rai, J. P. Singh, C. Winstead, F.-Y. Yueh, and R. L. Cook, “Laser-induced breakdown spectroscopy of hydrocarbon flame and rocket engine simulator plume,” AIAA J. 41, 2192-2199 (2003).
[CrossRef]

Appl. Opt. (5)

Appl. Spectrosc. (2)

Combust. Flame (1)

F. Ferioli and S. G. Buckley, “Measurements of hydrocarbons using laser-induced breakdown spectroscopy,” Combust. Flame 144, 435-447 (2006).
[CrossRef]

IEEE Sens. J. (1)

F. C. DeLucia, Jr., A. C. Samuels, R. S. Harmon, R. A. Walters, K. L. McNesby, A. LaPointe, R. J. Winkel Jr., and A. W. Miziolek, “Laser-induced breakdown spectroscopy (LIBS): a promising versatile chemical sensor technology for hazardous material detection,” IEEE Sens. J. 5, 681-689 (2005).
[CrossRef]

J. Anal. At. Spectrom. (1)

J. L. Gottfried, F. C. Lucia, Jr., C. A. Munson, and A. W. Miziolek, “Strategies for residue explosives detection using laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 23, 205-216 (2008).
[CrossRef]

J. Appl. Phys. (1)

C. V. Bindhu, S. S. Harilal, M. S. Tillack, F. Najmabadi, and A. C. Gaeris, “Laser propagation and energy absorption by an Ar spark,” J. Appl. Phys. 94, 7402-7407 (2003).
[CrossRef]

J. Chemom. (1)

M. Barker and W. Rayens, “Partial least squares for discrimination,” J. Chemom. 17, 166-173 (2003).
[CrossRef]

J. Phys. Chem. A (1)

D. Babankova, S. Civis, L. Juha, M. Bittner, J. Cihelka, M. Pfeifer, J. Skala, A. Bartnik, H. Fiedorowicz, J. Mikolajczyk, L. Ryc, and T. Sedivcova, “Optical and x-ray emission spectroscopy of high-power laser-induced dielectric breakdown in molecular gases and their mixtures,” J. Phys. Chem. A 110, 12113-12120 (2006).
[CrossRef] [PubMed]

J. Quant. Spectrosc. Radiat. Transfer (1)

Y. L. Chen, J. W. L. Lewis, and C. Parigger, “Probability distribution of laser-induced breakdown and ignition of ammonia,” J. Quant. Spectrosc. Radiat. Transfer 66, 41-53 (2000).
[CrossRef]

J. Stat. Softw. (1)

B. Mevik and R. Wehrens, “The pls package: Principal component and partial least squares regression in R,” J. Stat. Softw. 18, 1-24 (2007).

Opt. Lasers Eng. (2)

T. X. Phuoc, C. M. White, and D. H. McNeill, “Laser spark ignition of a jet diffusion flame,” Opt. Lasers Eng. 38, 217-232 (2002).
[CrossRef]

N. Glumac and G. Elliott, “The effect of ambient pressure on laser-induced plasmas in air,” Opt. Lasers Eng. 45, 27-35 (2007).
[CrossRef]

Phys. Rev. Lett. (1)

R. G. Meyerand and A. F. Haught, “Gas breakdown at optical frequencies,” Phys. Rev. Lett. 11, 401-403 (1963).
[CrossRef]

Spectrochim. Acta B (2)

C. A. Henry, P. K. Diwakar, and D. W. Hahn, “Investigation of helium addition for laser-induced plasma spectroscopy of pure gas phase systems: Analyte interactions and signal enhancement,” Spectrochim. Acta B 62, 1390-1398 (2007).
[CrossRef]

J. L. Gottfried, F. C. De Lucia, Jr., C. A. Munson, and A. W. Miziolek, “Double-pulse standoff laser-induced breakdown spectroscopy for versatile hazardous materials detection,” Spectrochim. Acta B 62, 1405-1411 (2007).
[CrossRef]

Other (8)

K. Beebe, R. Pell, and M. Seasholtz, Chemometrics: A Practical Guide (Wiley, 1998).

J. J. Remus, J. L. Gottfried, R. S. Harmon, A. Draucker, D. Baron, and R. Yohe, “Multivariate statistical analysis of LIBS spectra for archaeological applications--an example from the Coso Volcanic Field, CA--II: advanced statistical signal processing analysis,” NASLIBS 2009 (2009).

R Development Core Team, R: a Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2009).

D. Miller, “Free jet sources,” in Atomic and Molecular Beam Methods, G. Scoles, ed. (Oxford U. Press, 1988), pp. 14-53.

P.J.Linstrom and W.G.Mallard, eds., NIST Chemistry WebBook, NIST Standard Reference Database Number 69 (National Institute of Standards and Technology), http://webbook.nist.gov.

G. Weyl, “Physics of laser-induced breakdown: an update,” in Laser-Induced Plasmas and Applications, L. J. Radziemski and D. A. Cremers, eds. (Marcel Dekker, 1989), pp. 1-69.

P. Maker, R. Terhune, and C. Savage, “Optical third harmonic generation,” in Proceedings of the Third International Quantum Electronics Conference (Columbia University, 1963), p. 1559.

A. W. Miziolek, V. Palleschi, and I. Schechter, eds., Laser-Induced Breakdown Spectroscopy (Cambridge U. Press, 2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

LIBS spectra of DIMP and DMMP in Ar, with emission lines marked by their carrier. Both spectra show the same lines but in different relative intensities. Features marked with an asterisk are due to higher-order diffractions. Unmarked lines are due to Ar.

Fig. 2
Fig. 2

LIBS spectra of DIMP and DMMP in N 2 . The elemental lines are still present but are suppressed relative to the spectra in Ar. The largest peaks all involve N from the carrier gas.

Fig. 3
Fig. 3

LIBS spectra of N 2 H 4 , MMH, and UDMH in Ar, with several lines labeled by their carrier. The major unmarked lines are due to Ar, which do not appear in the UDMH spectra because of its higher concentration.

Fig. 4
Fig. 4

LIBS spectra of N 2 H 4 , MMH, and UDMH in He with large transitions marked. The major unmarked lines are due to He.

Fig. 5
Fig. 5

Intensity of the hydrogen Balmer-α line for LIBS spectra of 1 % DMMP in Ar recorded at 1 μs intervals. Different traces represent different background pressures of Ar in the vacuum chamber: 4 × 10 4 Torr (circles), 0.3 Torr (squares), 10 Torr (triangles up), and 200 Torr (triangles down).

Fig. 6
Fig. 6

LIBS spectra of 1 % DMMP in Ar and 1 % DMMP in N 2 , shown as 100 ns slices at various times after the initiating laser pulse. The arrow marks the H α line, which continues to grow relative to the other transitions for the Ar spectra but which never increases markedly in the N 2 spectra.

Fig. 7
Fig. 7

ROC curves for DIMP, DMMP, MMH, and UDMH. The different curves represent different preprocessing methods: full-spectrum with 14 LVs (circles), lines-only with 5 LVs (squares), and lines-and-ratios with 16 LVs (triangles). Only the quadrant containing the ideal point (0,1) is shown for each graph.

Tables (2)

Tables Icon

Table 1 True Positive Rate (TP), False Positive Rate (FP), and Identification Threshold (Thresh.) for the Three Preprocessing Methods

Tables Icon

Table 2 Classification of the CWA Simulant and Fuel LIBS Dataset Using the Lines-and-Ratios Method

Metrics