Abstract

A novel approach, named guided conversion enhancement, has been established to improve the laser-induced breakdown spectroscopy (LIBS) sensitivity of cation detection in water. Two processes were involved in this approach: the main part was replacement reaction that converted the cations in water to solid granules on the surface of an immersed metallic sheet; the other was electric assistance that increased local cation concentration and strengthened the reaction. With the aid of replacement reaction and an electric field, a detection limit of 16ppb was achieved for copper cation (Cu2+) detection in a water solution of CuSO4. The obtained results suggest that this approach has significant potential to be developed as an effective method for underwater cation detection.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Pasquini, J. Cortez, L. M. C. Silva, and F. B. Gonzaga, “Laser induced breakdown spectroscopy,” J. Braz. Chem. Soc. 18, 463-512 (2007).
    [CrossRef]
  2. M. Hananfi, M. M. Omar, and Y. E. Gamal, “Study of laser-induced breakdown spectroscopy of gases,” Radiat. Phys. Chem. 57, 11-20 (2000).
    [CrossRef]
  3. R. Bruder, D. L'Hermite, A. Semerok, L. Salmon, and V. Detalle, “Near-crater discoloration of white lead in wall paintings during laser induced breakdown spectroscopy analysis,” Spectrochim. Acta Part B 62, 1590-1596 (2006).
    [CrossRef]
  4. S. Rosenwasser, G. Asimellis, B. Bromley, R. Hazlett, J. Martin, and A. Zigler, “Development of a method for automated quantitative analysis of ores using LIBS,” Spectrochim. Acta Part B 56, 707-714 (2001).
    [CrossRef]
  5. B. Bousquet, J.-B. Sirven, and L. Canioni, “Towards quantitative laser-induced breakdown spectroscopy analysis of soil samples,” Spectrochim. Acta Part B 62, 1582-1589 (2007).
    [CrossRef]
  6. V. Burakov, N. Tarasenko, M. Nedelko, and S. Isakov, “Time-resolved spectroscopy and imaging diagnostics of single pulse and collinear double pulse laser induced plasma from a glass sample,” Spectrochim. Acta Part B 63, 19-26 (2008).
    [CrossRef]
  7. S. Acquqviva, E. D'Anna, M. L. De Giorgi, and F. Moro, “Laser-induced breakdown spectroscopy for compositional analysis of multielemental thin films,” Spectrochim. Acta Part B 61, 810-816 (2006).
    [CrossRef]
  8. C. Lopez-Moreno, S. Palanco, J. J. Laserna, F. Delucia, Jr., A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, “Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces,” J. Anal. At. Spectrom. 21, 55-60 (2006).
    [CrossRef]
  9. R. S. Harmon, F. C. Delucia, C. E. McManus, N. J. McMillan, T. F. Jenkins, M. E. Walsh, and A. Miziolek, “Laser-induced breakdown spectroscopy: an emerging chemical sensor technology for real-time field-portable, geochemical, mineralogical, and environmental applications,” Appl. Geochem. 21, 730-747 (2006).
    [CrossRef]
  10. B. Salle, J.-L. Lacour, E. Vors, P. Fichet, S. Maurice, D. A. Cremers, and R. C. Wiens, “Laser-induced breakdown spectroscopy for Mars surface analysis: capabilities at stand-off distances and detection of chlorine and sulfur elements,” Spectrochim. Acta Part B 59, 1413-1422 (2004).
    [CrossRef]
  11. X. K. Shen, H. Wang, Z. Q. Xie, Y. Gao, H. Ling, and Y. F. Lu, “Detection of trace phosphorus in steel using laser-induced breakdown spectroscopy combined with laser-induced fluorescence,” Appl. Opt. 48, 2551-2558 (2009).
    [CrossRef] [PubMed]
  12. L. Dai, C. Wang, J. Wu, Y. Li, Z. Cui, and R. Zheng, “Laser-induced breakdown spectroscopy characterization of Al in different matrix,” Opto-electron. Lett. 3, 148-151 (2007).
  13. J. Wu, Y. Fu, Y. Li, Y. Lu, Z. Cui, and R. Zheng, “Detection of metal ions in water solution by laser induced breakdown spectroscopy,” Spectrosc. Spectral Anal. (Beijing) 28, 1979-1982(2008).
  14. J. O. Caceres, J. Torneto-Lopez, H. H. Telle, and A. Gonzalez-Urena, “Quantitative analysis of trace metal ions in ice using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 831-838 (2001).
    [CrossRef]
  15. V. N. Rai, A. Kunnar, F. Y. Yueh, and J. P. Singh, “Enhancement in the sensitivity of LIBS using magnetic field and sequential double laser pulse,” in Laser-Induced Breakdown Spectroscopy (Optical Society of America, 2002), paper ThE24-1-3.
  16. P. Yaroshchyk, R. J. S. Morrison, D. Body, and B. L. Chadwick, “Quantitative determination of wear metals in engine oils using LIBS: the use of paper substrates and a comparison between single- and double-pulse LIBS,” Spectrochim. Acta Part B 60, 1482-1485 (2005).
    [CrossRef]
  17. C. R. Dockery, J. E. Pender, and S. R. Goode, “Speciation of chromium via laser-induced nreakdown spectroscopy of ion exchange polymer membranes,” Appl. Spectrosc. 59, 252-257 (2005).
    [CrossRef] [PubMed]
  18. D. M. Diaz Pace, C. A. D'Angelo, D. Bertuccelli, and G. Bertyccelli, “Analysis of heavy metals in liquids using laser induced breakdown spectroscopy by liquid-to-solid matrix conversion,” Spectrochim. Acta Part B 61, 929-933 (2006).
    [CrossRef]
  19. Z. Chen, H. Li, M. Liu, and R. Li, “Fast and sensitive trace metal analysis in aqueous solution by laser-induced breakdown spectroscopy using wood slice substrates,” Spectrochim. Acta Part B 63, 64-68 (2008).
    [CrossRef]
  20. Z. Chen, H. Li, F. Zhao, and R. Li, “Ultra-sensitive trace metal analysis of water by laser-induced breakdown spectroscopy after electrical-depositon of the analytes on an aluminum surface,” J. Anal. At. Spectrom. 23, 871-875 (2008).
    [CrossRef]

2009 (1)

2008 (4)

V. Burakov, N. Tarasenko, M. Nedelko, and S. Isakov, “Time-resolved spectroscopy and imaging diagnostics of single pulse and collinear double pulse laser induced plasma from a glass sample,” Spectrochim. Acta Part B 63, 19-26 (2008).
[CrossRef]

J. Wu, Y. Fu, Y. Li, Y. Lu, Z. Cui, and R. Zheng, “Detection of metal ions in water solution by laser induced breakdown spectroscopy,” Spectrosc. Spectral Anal. (Beijing) 28, 1979-1982(2008).

Z. Chen, H. Li, M. Liu, and R. Li, “Fast and sensitive trace metal analysis in aqueous solution by laser-induced breakdown spectroscopy using wood slice substrates,” Spectrochim. Acta Part B 63, 64-68 (2008).
[CrossRef]

Z. Chen, H. Li, F. Zhao, and R. Li, “Ultra-sensitive trace metal analysis of water by laser-induced breakdown spectroscopy after electrical-depositon of the analytes on an aluminum surface,” J. Anal. At. Spectrom. 23, 871-875 (2008).
[CrossRef]

2007 (3)

B. Bousquet, J.-B. Sirven, and L. Canioni, “Towards quantitative laser-induced breakdown spectroscopy analysis of soil samples,” Spectrochim. Acta Part B 62, 1582-1589 (2007).
[CrossRef]

L. Dai, C. Wang, J. Wu, Y. Li, Z. Cui, and R. Zheng, “Laser-induced breakdown spectroscopy characterization of Al in different matrix,” Opto-electron. Lett. 3, 148-151 (2007).

C. Pasquini, J. Cortez, L. M. C. Silva, and F. B. Gonzaga, “Laser induced breakdown spectroscopy,” J. Braz. Chem. Soc. 18, 463-512 (2007).
[CrossRef]

2006 (5)

R. Bruder, D. L'Hermite, A. Semerok, L. Salmon, and V. Detalle, “Near-crater discoloration of white lead in wall paintings during laser induced breakdown spectroscopy analysis,” Spectrochim. Acta Part B 62, 1590-1596 (2006).
[CrossRef]

S. Acquqviva, E. D'Anna, M. L. De Giorgi, and F. Moro, “Laser-induced breakdown spectroscopy for compositional analysis of multielemental thin films,” Spectrochim. Acta Part B 61, 810-816 (2006).
[CrossRef]

C. Lopez-Moreno, S. Palanco, J. J. Laserna, F. Delucia, Jr., A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, “Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces,” J. Anal. At. Spectrom. 21, 55-60 (2006).
[CrossRef]

R. S. Harmon, F. C. Delucia, C. E. McManus, N. J. McMillan, T. F. Jenkins, M. E. Walsh, and A. Miziolek, “Laser-induced breakdown spectroscopy: an emerging chemical sensor technology for real-time field-portable, geochemical, mineralogical, and environmental applications,” Appl. Geochem. 21, 730-747 (2006).
[CrossRef]

D. M. Diaz Pace, C. A. D'Angelo, D. Bertuccelli, and G. Bertyccelli, “Analysis of heavy metals in liquids using laser induced breakdown spectroscopy by liquid-to-solid matrix conversion,” Spectrochim. Acta Part B 61, 929-933 (2006).
[CrossRef]

2005 (2)

P. Yaroshchyk, R. J. S. Morrison, D. Body, and B. L. Chadwick, “Quantitative determination of wear metals in engine oils using LIBS: the use of paper substrates and a comparison between single- and double-pulse LIBS,” Spectrochim. Acta Part B 60, 1482-1485 (2005).
[CrossRef]

C. R. Dockery, J. E. Pender, and S. R. Goode, “Speciation of chromium via laser-induced nreakdown spectroscopy of ion exchange polymer membranes,” Appl. Spectrosc. 59, 252-257 (2005).
[CrossRef] [PubMed]

2004 (1)

B. Salle, J.-L. Lacour, E. Vors, P. Fichet, S. Maurice, D. A. Cremers, and R. C. Wiens, “Laser-induced breakdown spectroscopy for Mars surface analysis: capabilities at stand-off distances and detection of chlorine and sulfur elements,” Spectrochim. Acta Part B 59, 1413-1422 (2004).
[CrossRef]

2001 (2)

S. Rosenwasser, G. Asimellis, B. Bromley, R. Hazlett, J. Martin, and A. Zigler, “Development of a method for automated quantitative analysis of ores using LIBS,” Spectrochim. Acta Part B 56, 707-714 (2001).
[CrossRef]

J. O. Caceres, J. Torneto-Lopez, H. H. Telle, and A. Gonzalez-Urena, “Quantitative analysis of trace metal ions in ice using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 831-838 (2001).
[CrossRef]

2000 (1)

M. Hananfi, M. M. Omar, and Y. E. Gamal, “Study of laser-induced breakdown spectroscopy of gases,” Radiat. Phys. Chem. 57, 11-20 (2000).
[CrossRef]

Acquqviva, S.

S. Acquqviva, E. D'Anna, M. L. De Giorgi, and F. Moro, “Laser-induced breakdown spectroscopy for compositional analysis of multielemental thin films,” Spectrochim. Acta Part B 61, 810-816 (2006).
[CrossRef]

Asimellis, G.

S. Rosenwasser, G. Asimellis, B. Bromley, R. Hazlett, J. Martin, and A. Zigler, “Development of a method for automated quantitative analysis of ores using LIBS,” Spectrochim. Acta Part B 56, 707-714 (2001).
[CrossRef]

Bertuccelli, D.

D. M. Diaz Pace, C. A. D'Angelo, D. Bertuccelli, and G. Bertyccelli, “Analysis of heavy metals in liquids using laser induced breakdown spectroscopy by liquid-to-solid matrix conversion,” Spectrochim. Acta Part B 61, 929-933 (2006).
[CrossRef]

Bertyccelli, G.

D. M. Diaz Pace, C. A. D'Angelo, D. Bertuccelli, and G. Bertyccelli, “Analysis of heavy metals in liquids using laser induced breakdown spectroscopy by liquid-to-solid matrix conversion,” Spectrochim. Acta Part B 61, 929-933 (2006).
[CrossRef]

Body, D.

P. Yaroshchyk, R. J. S. Morrison, D. Body, and B. L. Chadwick, “Quantitative determination of wear metals in engine oils using LIBS: the use of paper substrates and a comparison between single- and double-pulse LIBS,” Spectrochim. Acta Part B 60, 1482-1485 (2005).
[CrossRef]

Bousquet, B.

B. Bousquet, J.-B. Sirven, and L. Canioni, “Towards quantitative laser-induced breakdown spectroscopy analysis of soil samples,” Spectrochim. Acta Part B 62, 1582-1589 (2007).
[CrossRef]

Bromley, B.

S. Rosenwasser, G. Asimellis, B. Bromley, R. Hazlett, J. Martin, and A. Zigler, “Development of a method for automated quantitative analysis of ores using LIBS,” Spectrochim. Acta Part B 56, 707-714 (2001).
[CrossRef]

Bruder, R.

R. Bruder, D. L'Hermite, A. Semerok, L. Salmon, and V. Detalle, “Near-crater discoloration of white lead in wall paintings during laser induced breakdown spectroscopy analysis,” Spectrochim. Acta Part B 62, 1590-1596 (2006).
[CrossRef]

Burakov, V.

V. Burakov, N. Tarasenko, M. Nedelko, and S. Isakov, “Time-resolved spectroscopy and imaging diagnostics of single pulse and collinear double pulse laser induced plasma from a glass sample,” Spectrochim. Acta Part B 63, 19-26 (2008).
[CrossRef]

Caceres, J. O.

J. O. Caceres, J. Torneto-Lopez, H. H. Telle, and A. Gonzalez-Urena, “Quantitative analysis of trace metal ions in ice using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 831-838 (2001).
[CrossRef]

Canioni, L.

B. Bousquet, J.-B. Sirven, and L. Canioni, “Towards quantitative laser-induced breakdown spectroscopy analysis of soil samples,” Spectrochim. Acta Part B 62, 1582-1589 (2007).
[CrossRef]

Chadwick, B. L.

P. Yaroshchyk, R. J. S. Morrison, D. Body, and B. L. Chadwick, “Quantitative determination of wear metals in engine oils using LIBS: the use of paper substrates and a comparison between single- and double-pulse LIBS,” Spectrochim. Acta Part B 60, 1482-1485 (2005).
[CrossRef]

Chen, Z.

Z. Chen, H. Li, F. Zhao, and R. Li, “Ultra-sensitive trace metal analysis of water by laser-induced breakdown spectroscopy after electrical-depositon of the analytes on an aluminum surface,” J. Anal. At. Spectrom. 23, 871-875 (2008).
[CrossRef]

Z. Chen, H. Li, M. Liu, and R. Li, “Fast and sensitive trace metal analysis in aqueous solution by laser-induced breakdown spectroscopy using wood slice substrates,” Spectrochim. Acta Part B 63, 64-68 (2008).
[CrossRef]

Cortez, J.

C. Pasquini, J. Cortez, L. M. C. Silva, and F. B. Gonzaga, “Laser induced breakdown spectroscopy,” J. Braz. Chem. Soc. 18, 463-512 (2007).
[CrossRef]

Cremers, D. A.

B. Salle, J.-L. Lacour, E. Vors, P. Fichet, S. Maurice, D. A. Cremers, and R. C. Wiens, “Laser-induced breakdown spectroscopy for Mars surface analysis: capabilities at stand-off distances and detection of chlorine and sulfur elements,” Spectrochim. Acta Part B 59, 1413-1422 (2004).
[CrossRef]

Cui, Z.

J. Wu, Y. Fu, Y. Li, Y. Lu, Z. Cui, and R. Zheng, “Detection of metal ions in water solution by laser induced breakdown spectroscopy,” Spectrosc. Spectral Anal. (Beijing) 28, 1979-1982(2008).

L. Dai, C. Wang, J. Wu, Y. Li, Z. Cui, and R. Zheng, “Laser-induced breakdown spectroscopy characterization of Al in different matrix,” Opto-electron. Lett. 3, 148-151 (2007).

Dai, L.

L. Dai, C. Wang, J. Wu, Y. Li, Z. Cui, and R. Zheng, “Laser-induced breakdown spectroscopy characterization of Al in different matrix,” Opto-electron. Lett. 3, 148-151 (2007).

D'Angelo, C. A.

D. M. Diaz Pace, C. A. D'Angelo, D. Bertuccelli, and G. Bertyccelli, “Analysis of heavy metals in liquids using laser induced breakdown spectroscopy by liquid-to-solid matrix conversion,” Spectrochim. Acta Part B 61, 929-933 (2006).
[CrossRef]

D'Anna, E.

S. Acquqviva, E. D'Anna, M. L. De Giorgi, and F. Moro, “Laser-induced breakdown spectroscopy for compositional analysis of multielemental thin films,” Spectrochim. Acta Part B 61, 810-816 (2006).
[CrossRef]

De Giorgi, M. L.

S. Acquqviva, E. D'Anna, M. L. De Giorgi, and F. Moro, “Laser-induced breakdown spectroscopy for compositional analysis of multielemental thin films,” Spectrochim. Acta Part B 61, 810-816 (2006).
[CrossRef]

Delucia, F. C.

R. S. Harmon, F. C. Delucia, C. E. McManus, N. J. McMillan, T. F. Jenkins, M. E. Walsh, and A. Miziolek, “Laser-induced breakdown spectroscopy: an emerging chemical sensor technology for real-time field-portable, geochemical, mineralogical, and environmental applications,” Appl. Geochem. 21, 730-747 (2006).
[CrossRef]

Detalle, V.

R. Bruder, D. L'Hermite, A. Semerok, L. Salmon, and V. Detalle, “Near-crater discoloration of white lead in wall paintings during laser induced breakdown spectroscopy analysis,” Spectrochim. Acta Part B 62, 1590-1596 (2006).
[CrossRef]

Diaz Pace, D. M.

D. M. Diaz Pace, C. A. D'Angelo, D. Bertuccelli, and G. Bertyccelli, “Analysis of heavy metals in liquids using laser induced breakdown spectroscopy by liquid-to-solid matrix conversion,” Spectrochim. Acta Part B 61, 929-933 (2006).
[CrossRef]

Dockery, C. R.

Fichet, P.

B. Salle, J.-L. Lacour, E. Vors, P. Fichet, S. Maurice, D. A. Cremers, and R. C. Wiens, “Laser-induced breakdown spectroscopy for Mars surface analysis: capabilities at stand-off distances and detection of chlorine and sulfur elements,” Spectrochim. Acta Part B 59, 1413-1422 (2004).
[CrossRef]

Fu, Y.

J. Wu, Y. Fu, Y. Li, Y. Lu, Z. Cui, and R. Zheng, “Detection of metal ions in water solution by laser induced breakdown spectroscopy,” Spectrosc. Spectral Anal. (Beijing) 28, 1979-1982(2008).

Gamal, Y. E.

M. Hananfi, M. M. Omar, and Y. E. Gamal, “Study of laser-induced breakdown spectroscopy of gases,” Radiat. Phys. Chem. 57, 11-20 (2000).
[CrossRef]

Gao, Y.

Gonzaga, F. B.

C. Pasquini, J. Cortez, L. M. C. Silva, and F. B. Gonzaga, “Laser induced breakdown spectroscopy,” J. Braz. Chem. Soc. 18, 463-512 (2007).
[CrossRef]

Gonzalez-Urena, A.

J. O. Caceres, J. Torneto-Lopez, H. H. Telle, and A. Gonzalez-Urena, “Quantitative analysis of trace metal ions in ice using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 831-838 (2001).
[CrossRef]

Goode, S. R.

Hananfi, M.

M. Hananfi, M. M. Omar, and Y. E. Gamal, “Study of laser-induced breakdown spectroscopy of gases,” Radiat. Phys. Chem. 57, 11-20 (2000).
[CrossRef]

Harmon, R. S.

R. S. Harmon, F. C. Delucia, C. E. McManus, N. J. McMillan, T. F. Jenkins, M. E. Walsh, and A. Miziolek, “Laser-induced breakdown spectroscopy: an emerging chemical sensor technology for real-time field-portable, geochemical, mineralogical, and environmental applications,” Appl. Geochem. 21, 730-747 (2006).
[CrossRef]

Hazlett, R.

S. Rosenwasser, G. Asimellis, B. Bromley, R. Hazlett, J. Martin, and A. Zigler, “Development of a method for automated quantitative analysis of ores using LIBS,” Spectrochim. Acta Part B 56, 707-714 (2001).
[CrossRef]

Isakov, S.

V. Burakov, N. Tarasenko, M. Nedelko, and S. Isakov, “Time-resolved spectroscopy and imaging diagnostics of single pulse and collinear double pulse laser induced plasma from a glass sample,” Spectrochim. Acta Part B 63, 19-26 (2008).
[CrossRef]

Jenkins, T. F.

R. S. Harmon, F. C. Delucia, C. E. McManus, N. J. McMillan, T. F. Jenkins, M. E. Walsh, and A. Miziolek, “Laser-induced breakdown spectroscopy: an emerging chemical sensor technology for real-time field-portable, geochemical, mineralogical, and environmental applications,” Appl. Geochem. 21, 730-747 (2006).
[CrossRef]

Kunnar, A.

V. N. Rai, A. Kunnar, F. Y. Yueh, and J. P. Singh, “Enhancement in the sensitivity of LIBS using magnetic field and sequential double laser pulse,” in Laser-Induced Breakdown Spectroscopy (Optical Society of America, 2002), paper ThE24-1-3.

Lacour, J.-L.

B. Salle, J.-L. Lacour, E. Vors, P. Fichet, S. Maurice, D. A. Cremers, and R. C. Wiens, “Laser-induced breakdown spectroscopy for Mars surface analysis: capabilities at stand-off distances and detection of chlorine and sulfur elements,” Spectrochim. Acta Part B 59, 1413-1422 (2004).
[CrossRef]

Laserna, J. J.

C. Lopez-Moreno, S. Palanco, J. J. Laserna, F. Delucia, Jr., A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, “Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces,” J. Anal. At. Spectrom. 21, 55-60 (2006).
[CrossRef]

L'Hermite, D.

R. Bruder, D. L'Hermite, A. Semerok, L. Salmon, and V. Detalle, “Near-crater discoloration of white lead in wall paintings during laser induced breakdown spectroscopy analysis,” Spectrochim. Acta Part B 62, 1590-1596 (2006).
[CrossRef]

Li, H.

Z. Chen, H. Li, F. Zhao, and R. Li, “Ultra-sensitive trace metal analysis of water by laser-induced breakdown spectroscopy after electrical-depositon of the analytes on an aluminum surface,” J. Anal. At. Spectrom. 23, 871-875 (2008).
[CrossRef]

Z. Chen, H. Li, M. Liu, and R. Li, “Fast and sensitive trace metal analysis in aqueous solution by laser-induced breakdown spectroscopy using wood slice substrates,” Spectrochim. Acta Part B 63, 64-68 (2008).
[CrossRef]

Li, R.

Z. Chen, H. Li, M. Liu, and R. Li, “Fast and sensitive trace metal analysis in aqueous solution by laser-induced breakdown spectroscopy using wood slice substrates,” Spectrochim. Acta Part B 63, 64-68 (2008).
[CrossRef]

Z. Chen, H. Li, F. Zhao, and R. Li, “Ultra-sensitive trace metal analysis of water by laser-induced breakdown spectroscopy after electrical-depositon of the analytes on an aluminum surface,” J. Anal. At. Spectrom. 23, 871-875 (2008).
[CrossRef]

Li, Y.

J. Wu, Y. Fu, Y. Li, Y. Lu, Z. Cui, and R. Zheng, “Detection of metal ions in water solution by laser induced breakdown spectroscopy,” Spectrosc. Spectral Anal. (Beijing) 28, 1979-1982(2008).

L. Dai, C. Wang, J. Wu, Y. Li, Z. Cui, and R. Zheng, “Laser-induced breakdown spectroscopy characterization of Al in different matrix,” Opto-electron. Lett. 3, 148-151 (2007).

Ling, H.

Liu, M.

Z. Chen, H. Li, M. Liu, and R. Li, “Fast and sensitive trace metal analysis in aqueous solution by laser-induced breakdown spectroscopy using wood slice substrates,” Spectrochim. Acta Part B 63, 64-68 (2008).
[CrossRef]

Lopez-Moreno, C.

C. Lopez-Moreno, S. Palanco, J. J. Laserna, F. Delucia, Jr., A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, “Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces,” J. Anal. At. Spectrom. 21, 55-60 (2006).
[CrossRef]

Lu, Y.

J. Wu, Y. Fu, Y. Li, Y. Lu, Z. Cui, and R. Zheng, “Detection of metal ions in water solution by laser induced breakdown spectroscopy,” Spectrosc. Spectral Anal. (Beijing) 28, 1979-1982(2008).

Lu, Y. F.

Martin, J.

S. Rosenwasser, G. Asimellis, B. Bromley, R. Hazlett, J. Martin, and A. Zigler, “Development of a method for automated quantitative analysis of ores using LIBS,” Spectrochim. Acta Part B 56, 707-714 (2001).
[CrossRef]

Maurice, S.

B. Salle, J.-L. Lacour, E. Vors, P. Fichet, S. Maurice, D. A. Cremers, and R. C. Wiens, “Laser-induced breakdown spectroscopy for Mars surface analysis: capabilities at stand-off distances and detection of chlorine and sulfur elements,” Spectrochim. Acta Part B 59, 1413-1422 (2004).
[CrossRef]

McManus, C. E.

R. S. Harmon, F. C. Delucia, C. E. McManus, N. J. McMillan, T. F. Jenkins, M. E. Walsh, and A. Miziolek, “Laser-induced breakdown spectroscopy: an emerging chemical sensor technology for real-time field-portable, geochemical, mineralogical, and environmental applications,” Appl. Geochem. 21, 730-747 (2006).
[CrossRef]

McMillan, N. J.

R. S. Harmon, F. C. Delucia, C. E. McManus, N. J. McMillan, T. F. Jenkins, M. E. Walsh, and A. Miziolek, “Laser-induced breakdown spectroscopy: an emerging chemical sensor technology for real-time field-portable, geochemical, mineralogical, and environmental applications,” Appl. Geochem. 21, 730-747 (2006).
[CrossRef]

Miziolek, A.

R. S. Harmon, F. C. Delucia, C. E. McManus, N. J. McMillan, T. F. Jenkins, M. E. Walsh, and A. Miziolek, “Laser-induced breakdown spectroscopy: an emerging chemical sensor technology for real-time field-portable, geochemical, mineralogical, and environmental applications,” Appl. Geochem. 21, 730-747 (2006).
[CrossRef]

Miziolek, A. W.

C. Lopez-Moreno, S. Palanco, J. J. Laserna, F. Delucia, Jr., A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, “Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces,” J. Anal. At. Spectrom. 21, 55-60 (2006).
[CrossRef]

Moro, F.

S. Acquqviva, E. D'Anna, M. L. De Giorgi, and F. Moro, “Laser-induced breakdown spectroscopy for compositional analysis of multielemental thin films,” Spectrochim. Acta Part B 61, 810-816 (2006).
[CrossRef]

Morrison, R. J. S.

P. Yaroshchyk, R. J. S. Morrison, D. Body, and B. L. Chadwick, “Quantitative determination of wear metals in engine oils using LIBS: the use of paper substrates and a comparison between single- and double-pulse LIBS,” Spectrochim. Acta Part B 60, 1482-1485 (2005).
[CrossRef]

Nedelko, M.

V. Burakov, N. Tarasenko, M. Nedelko, and S. Isakov, “Time-resolved spectroscopy and imaging diagnostics of single pulse and collinear double pulse laser induced plasma from a glass sample,” Spectrochim. Acta Part B 63, 19-26 (2008).
[CrossRef]

Omar, M. M.

M. Hananfi, M. M. Omar, and Y. E. Gamal, “Study of laser-induced breakdown spectroscopy of gases,” Radiat. Phys. Chem. 57, 11-20 (2000).
[CrossRef]

Palanco, S.

C. Lopez-Moreno, S. Palanco, J. J. Laserna, F. Delucia, Jr., A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, “Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces,” J. Anal. At. Spectrom. 21, 55-60 (2006).
[CrossRef]

Pasquini, C.

C. Pasquini, J. Cortez, L. M. C. Silva, and F. B. Gonzaga, “Laser induced breakdown spectroscopy,” J. Braz. Chem. Soc. 18, 463-512 (2007).
[CrossRef]

Pender, J. E.

Rai, V. N.

V. N. Rai, A. Kunnar, F. Y. Yueh, and J. P. Singh, “Enhancement in the sensitivity of LIBS using magnetic field and sequential double laser pulse,” in Laser-Induced Breakdown Spectroscopy (Optical Society of America, 2002), paper ThE24-1-3.

Rose, J.

C. Lopez-Moreno, S. Palanco, J. J. Laserna, F. Delucia, Jr., A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, “Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces,” J. Anal. At. Spectrom. 21, 55-60 (2006).
[CrossRef]

Rosenwasser, S.

S. Rosenwasser, G. Asimellis, B. Bromley, R. Hazlett, J. Martin, and A. Zigler, “Development of a method for automated quantitative analysis of ores using LIBS,” Spectrochim. Acta Part B 56, 707-714 (2001).
[CrossRef]

Salle, B.

B. Salle, J.-L. Lacour, E. Vors, P. Fichet, S. Maurice, D. A. Cremers, and R. C. Wiens, “Laser-induced breakdown spectroscopy for Mars surface analysis: capabilities at stand-off distances and detection of chlorine and sulfur elements,” Spectrochim. Acta Part B 59, 1413-1422 (2004).
[CrossRef]

Salmon, L.

R. Bruder, D. L'Hermite, A. Semerok, L. Salmon, and V. Detalle, “Near-crater discoloration of white lead in wall paintings during laser induced breakdown spectroscopy analysis,” Spectrochim. Acta Part B 62, 1590-1596 (2006).
[CrossRef]

Semerok, A.

R. Bruder, D. L'Hermite, A. Semerok, L. Salmon, and V. Detalle, “Near-crater discoloration of white lead in wall paintings during laser induced breakdown spectroscopy analysis,” Spectrochim. Acta Part B 62, 1590-1596 (2006).
[CrossRef]

Shen, X. K.

Silva, L. M. C.

C. Pasquini, J. Cortez, L. M. C. Silva, and F. B. Gonzaga, “Laser induced breakdown spectroscopy,” J. Braz. Chem. Soc. 18, 463-512 (2007).
[CrossRef]

Singh, J. P.

V. N. Rai, A. Kunnar, F. Y. Yueh, and J. P. Singh, “Enhancement in the sensitivity of LIBS using magnetic field and sequential double laser pulse,” in Laser-Induced Breakdown Spectroscopy (Optical Society of America, 2002), paper ThE24-1-3.

Sirven, J.-B.

B. Bousquet, J.-B. Sirven, and L. Canioni, “Towards quantitative laser-induced breakdown spectroscopy analysis of soil samples,” Spectrochim. Acta Part B 62, 1582-1589 (2007).
[CrossRef]

Tarasenko, N.

V. Burakov, N. Tarasenko, M. Nedelko, and S. Isakov, “Time-resolved spectroscopy and imaging diagnostics of single pulse and collinear double pulse laser induced plasma from a glass sample,” Spectrochim. Acta Part B 63, 19-26 (2008).
[CrossRef]

Telle, H. H.

J. O. Caceres, J. Torneto-Lopez, H. H. Telle, and A. Gonzalez-Urena, “Quantitative analysis of trace metal ions in ice using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 831-838 (2001).
[CrossRef]

Torneto-Lopez, J.

J. O. Caceres, J. Torneto-Lopez, H. H. Telle, and A. Gonzalez-Urena, “Quantitative analysis of trace metal ions in ice using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 831-838 (2001).
[CrossRef]

Vors, E.

B. Salle, J.-L. Lacour, E. Vors, P. Fichet, S. Maurice, D. A. Cremers, and R. C. Wiens, “Laser-induced breakdown spectroscopy for Mars surface analysis: capabilities at stand-off distances and detection of chlorine and sulfur elements,” Spectrochim. Acta Part B 59, 1413-1422 (2004).
[CrossRef]

Walsh, M. E.

R. S. Harmon, F. C. Delucia, C. E. McManus, N. J. McMillan, T. F. Jenkins, M. E. Walsh, and A. Miziolek, “Laser-induced breakdown spectroscopy: an emerging chemical sensor technology for real-time field-portable, geochemical, mineralogical, and environmental applications,” Appl. Geochem. 21, 730-747 (2006).
[CrossRef]

Walters, R. A.

C. Lopez-Moreno, S. Palanco, J. J. Laserna, F. Delucia, Jr., A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, “Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces,” J. Anal. At. Spectrom. 21, 55-60 (2006).
[CrossRef]

Wang, C.

L. Dai, C. Wang, J. Wu, Y. Li, Z. Cui, and R. Zheng, “Laser-induced breakdown spectroscopy characterization of Al in different matrix,” Opto-electron. Lett. 3, 148-151 (2007).

Wang, H.

Whitehouse, A. I.

C. Lopez-Moreno, S. Palanco, J. J. Laserna, F. Delucia, Jr., A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, “Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces,” J. Anal. At. Spectrom. 21, 55-60 (2006).
[CrossRef]

Wiens, R. C.

B. Salle, J.-L. Lacour, E. Vors, P. Fichet, S. Maurice, D. A. Cremers, and R. C. Wiens, “Laser-induced breakdown spectroscopy for Mars surface analysis: capabilities at stand-off distances and detection of chlorine and sulfur elements,” Spectrochim. Acta Part B 59, 1413-1422 (2004).
[CrossRef]

Wu, J.

J. Wu, Y. Fu, Y. Li, Y. Lu, Z. Cui, and R. Zheng, “Detection of metal ions in water solution by laser induced breakdown spectroscopy,” Spectrosc. Spectral Anal. (Beijing) 28, 1979-1982(2008).

L. Dai, C. Wang, J. Wu, Y. Li, Z. Cui, and R. Zheng, “Laser-induced breakdown spectroscopy characterization of Al in different matrix,” Opto-electron. Lett. 3, 148-151 (2007).

Xie, Z. Q.

Yaroshchyk, P.

P. Yaroshchyk, R. J. S. Morrison, D. Body, and B. L. Chadwick, “Quantitative determination of wear metals in engine oils using LIBS: the use of paper substrates and a comparison between single- and double-pulse LIBS,” Spectrochim. Acta Part B 60, 1482-1485 (2005).
[CrossRef]

Yueh, F. Y.

V. N. Rai, A. Kunnar, F. Y. Yueh, and J. P. Singh, “Enhancement in the sensitivity of LIBS using magnetic field and sequential double laser pulse,” in Laser-Induced Breakdown Spectroscopy (Optical Society of America, 2002), paper ThE24-1-3.

Zhao, F.

Z. Chen, H. Li, F. Zhao, and R. Li, “Ultra-sensitive trace metal analysis of water by laser-induced breakdown spectroscopy after electrical-depositon of the analytes on an aluminum surface,” J. Anal. At. Spectrom. 23, 871-875 (2008).
[CrossRef]

Zheng, R.

J. Wu, Y. Fu, Y. Li, Y. Lu, Z. Cui, and R. Zheng, “Detection of metal ions in water solution by laser induced breakdown spectroscopy,” Spectrosc. Spectral Anal. (Beijing) 28, 1979-1982(2008).

L. Dai, C. Wang, J. Wu, Y. Li, Z. Cui, and R. Zheng, “Laser-induced breakdown spectroscopy characterization of Al in different matrix,” Opto-electron. Lett. 3, 148-151 (2007).

Zigler, A.

S. Rosenwasser, G. Asimellis, B. Bromley, R. Hazlett, J. Martin, and A. Zigler, “Development of a method for automated quantitative analysis of ores using LIBS,” Spectrochim. Acta Part B 56, 707-714 (2001).
[CrossRef]

Appl. Geochem. (1)

R. S. Harmon, F. C. Delucia, C. E. McManus, N. J. McMillan, T. F. Jenkins, M. E. Walsh, and A. Miziolek, “Laser-induced breakdown spectroscopy: an emerging chemical sensor technology for real-time field-portable, geochemical, mineralogical, and environmental applications,” Appl. Geochem. 21, 730-747 (2006).
[CrossRef]

Appl. Opt. (1)

Appl. Spectrosc. (1)

J. Anal. At. Spectrom. (2)

C. Lopez-Moreno, S. Palanco, J. J. Laserna, F. Delucia, Jr., A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, “Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces,” J. Anal. At. Spectrom. 21, 55-60 (2006).
[CrossRef]

Z. Chen, H. Li, F. Zhao, and R. Li, “Ultra-sensitive trace metal analysis of water by laser-induced breakdown spectroscopy after electrical-depositon of the analytes on an aluminum surface,” J. Anal. At. Spectrom. 23, 871-875 (2008).
[CrossRef]

J. Braz. Chem. Soc. (1)

C. Pasquini, J. Cortez, L. M. C. Silva, and F. B. Gonzaga, “Laser induced breakdown spectroscopy,” J. Braz. Chem. Soc. 18, 463-512 (2007).
[CrossRef]

Opto-electron. Lett. (1)

L. Dai, C. Wang, J. Wu, Y. Li, Z. Cui, and R. Zheng, “Laser-induced breakdown spectroscopy characterization of Al in different matrix,” Opto-electron. Lett. 3, 148-151 (2007).

Radiat. Phys. Chem. (1)

M. Hananfi, M. M. Omar, and Y. E. Gamal, “Study of laser-induced breakdown spectroscopy of gases,” Radiat. Phys. Chem. 57, 11-20 (2000).
[CrossRef]

Spectrochim. Acta Part B (10)

R. Bruder, D. L'Hermite, A. Semerok, L. Salmon, and V. Detalle, “Near-crater discoloration of white lead in wall paintings during laser induced breakdown spectroscopy analysis,” Spectrochim. Acta Part B 62, 1590-1596 (2006).
[CrossRef]

S. Rosenwasser, G. Asimellis, B. Bromley, R. Hazlett, J. Martin, and A. Zigler, “Development of a method for automated quantitative analysis of ores using LIBS,” Spectrochim. Acta Part B 56, 707-714 (2001).
[CrossRef]

B. Bousquet, J.-B. Sirven, and L. Canioni, “Towards quantitative laser-induced breakdown spectroscopy analysis of soil samples,” Spectrochim. Acta Part B 62, 1582-1589 (2007).
[CrossRef]

V. Burakov, N. Tarasenko, M. Nedelko, and S. Isakov, “Time-resolved spectroscopy and imaging diagnostics of single pulse and collinear double pulse laser induced plasma from a glass sample,” Spectrochim. Acta Part B 63, 19-26 (2008).
[CrossRef]

S. Acquqviva, E. D'Anna, M. L. De Giorgi, and F. Moro, “Laser-induced breakdown spectroscopy for compositional analysis of multielemental thin films,” Spectrochim. Acta Part B 61, 810-816 (2006).
[CrossRef]

B. Salle, J.-L. Lacour, E. Vors, P. Fichet, S. Maurice, D. A. Cremers, and R. C. Wiens, “Laser-induced breakdown spectroscopy for Mars surface analysis: capabilities at stand-off distances and detection of chlorine and sulfur elements,” Spectrochim. Acta Part B 59, 1413-1422 (2004).
[CrossRef]

J. O. Caceres, J. Torneto-Lopez, H. H. Telle, and A. Gonzalez-Urena, “Quantitative analysis of trace metal ions in ice using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 831-838 (2001).
[CrossRef]

P. Yaroshchyk, R. J. S. Morrison, D. Body, and B. L. Chadwick, “Quantitative determination of wear metals in engine oils using LIBS: the use of paper substrates and a comparison between single- and double-pulse LIBS,” Spectrochim. Acta Part B 60, 1482-1485 (2005).
[CrossRef]

D. M. Diaz Pace, C. A. D'Angelo, D. Bertuccelli, and G. Bertyccelli, “Analysis of heavy metals in liquids using laser induced breakdown spectroscopy by liquid-to-solid matrix conversion,” Spectrochim. Acta Part B 61, 929-933 (2006).
[CrossRef]

Z. Chen, H. Li, M. Liu, and R. Li, “Fast and sensitive trace metal analysis in aqueous solution by laser-induced breakdown spectroscopy using wood slice substrates,” Spectrochim. Acta Part B 63, 64-68 (2008).
[CrossRef]

Spectrosc. Spectral Anal. (Beijing) (1)

J. Wu, Y. Fu, Y. Li, Y. Lu, Z. Cui, and R. Zheng, “Detection of metal ions in water solution by laser induced breakdown spectroscopy,” Spectrosc. Spectral Anal. (Beijing) 28, 1979-1982(2008).

Other (1)

V. N. Rai, A. Kunnar, F. Y. Yueh, and J. P. Singh, “Enhancement in the sensitivity of LIBS using magnetic field and sequential double laser pulse,” in Laser-Induced Breakdown Spectroscopy (Optical Society of America, 2002), paper ThE24-1-3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic diagram of the LIBS experimental setup. Inset: enlarged view of the sample.

Fig. 2
Fig. 2

Al sheet after this approach was used. The white rings represent the ablation craters.

Fig. 3
Fig. 3

LIBS detection of 500 ppm Cu 2 + in the solution.

Fig. 4
Fig. 4

Enhanced LIBS detection of 100 ppm Cu 2 + using 15 V : (a) immediate detection and (b) after 4 h.

Fig. 5
Fig. 5

Cu 2 + detection with a series of concentrations using 15 V : concentrations I, 65 ppb ; II, 1042 ppb ; III, 33 ppm ; IV, 8 ppm ; V, 16 ppb ; VI, 521 ppb ; VII, 67 ppm ; reaction time, 60 s .

Fig. 6
Fig. 6

LIBS spectra between 320 and 325 nm . Left, Al sheet in pure water (without replacement reaction); right, Al sheet in the Cu S O 4 solution with replacement reaction.

Fig. 7
Fig. 7

LIBS signal variation ( 100 ppm Cu 2 + ). Left, fixed focal location with different voltage (0–80 V); right, fixed voltage ( 15 V ) with different focal locations.

Fig. 8
Fig. 8

Mn detection with the same focal location; the M n 2 + concentration is 100 ppm .

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

3 Cu 2 + + 2 Al = 2 Al 3 + + 3 Cu .
Cu 2 + + 2 e = Cu .

Metrics