Abstract

We investigate the feasibility of laser-induced breakdown spectroscopy for determination of heavy metal Pb in a Pb(NO3)2 aqueous solution by using a simple homemade vertical jet device and nanosecond laser pulses. Key experimental parameters that affect the analytical performance, such as delay of the time of observation, laser pulse energy, and liquid flow rate are optimized for the best limit of detection (LOD). The LOD was determined using Pb I emission at 405.781nm, and after optimization, the 3σ LOD was found to be at the level of 60ppm.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. J. Radziemski and D. A. Cremers, Laser-Induced Plasma and Application (Marcel Dekker, 1989).
  2. F. Y. Yueh, J. P. Singh, and H. Zhang, “Laser induced breakdown spectroscopy: elemental analysis,” in Encyclopedia of Analytical Chemistry, R. A. Meyers, ed. (Wiley, 2000).
  3. K. Song, Y.-I. Lee, and J. Sneddon, “Recent developments in instrumentation for laser-induced breakdown spectroscopy,” Appl. Spectrosc. Rev. 37, 89-117 (2002).
    [CrossRef]
  4. O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liška, H. H. Telle, and J. Young, “Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 39, 2248-2262 (2000).
    [CrossRef]
  5. E. Tognoni, V. Palleschi, M. Corsi, and G. Cristoforetti, “Quantitative microanalysis by laser-induced breakdown spectroscopy: a review of the experimental approaches,” Spectrochim. Acta Part B 57, 1115-1130 (2002).
    [CrossRef]
  6. B. Charfi and M. A. Harith, “Panoramic laser-induced breakdown spectrometry of water,” Spectrochim. Acta Part B 57, 1141-1153 (2002).
    [CrossRef]
  7. M. Adamson, A. Padmanabhan, G. J. Godfrey, and S. J. Rehse, “Laser-induced breakdown spectroscopy at a water/gas interface: a study of bath gas-dependent molecular species,” Spectrochim. Acta Part B 62, 1348-1360 (2007).
    [CrossRef]
  8. K. Y. Yamamoto, D. A. Cremers, M. J. Ferris, and L. E. Foster, “Detection of metals in the environment using a portable laser-induced breakdown spectroscopy instrument,” Appl. Spectrosc. 50, 222-233 (1996).
    [CrossRef]
  9. A. V. Pakhomov, W. Nichols, and J. Borysow, “Laser-induced breakdown spectroscopy for detection of lead in concrete,” Appl. Spectrosc. 50, 880-884 (1996).
    [CrossRef]
  10. D. N. Stratis, K. L. Eland, and S. M. Angel, “Dual-pulse LIBS using a pre-ablation spark for enhanced ablation and emission,” Appl. Spectrosc. 54, 1270-1274 (2000).
    [CrossRef]
  11. M. Sabsabi and P. Cielo, “Quantitative analysis of aluminum alloys by laser-induced breakdown spectroscopy and plasma characterization,” Appl. Spectrosc. 49, 499-507 (1995).
    [CrossRef]
  12. B. C. Windom, P. K. Diwakar, and D. W. Hahn, “Dual-pulse laser induced breakdown spectroscopy for analysis of gaseous and aerosol systems: plasma-analyte interactions,” Spectrochim. Acta Part B 61, 788-796 (2006).
    [CrossRef]
  13. C. Lazzari, M. D. Rosa, S. Rastelli, A. Ciucci, V. Palleschi, and A. Salvetti, “Detection of mercury in air by time-resolved laser-induced breakdown spectroscopy technique,” Laser Part. Beams 12, 525-530 (1994).
    [CrossRef]
  14. A. Kumar, F. Y. Yueh, and J. P. Singh, “Double-pulse laser-induced breakdown spectroscopy with liquid jets of different thicknesses,” Appl. Opt. 42, 6047-6051(2003).
    [CrossRef] [PubMed]
  15. S. Nakamura, Y. Ito, K. Sone, H. Hiraga, and K. Kaneko, “Determination of an iron suspension in water by laser-induced breakdown spectroscopy with two sequential laser pulses,” Anal. Chem. 68, 2981-2986 (1996).
    [CrossRef] [PubMed]
  16. J. O. Cáceres, J. T. López, H. H. Telle, and A. G. Urena, “Quantitative analysis of trace metal ions in ice using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 831-838 (2001).
    [CrossRef]
  17. S. Koch, R. Court, W. Garen, W. Neu, and R. Reuter, “Detection of manganese in solution in cavitation bubbles using laser induced breakdown spectroscopy,” Spectrochim. Acta Part B 60, 1230-1235 (2005).
    [CrossRef]
  18. D. M. Díaz Pace, C. A. D'Angelo, D. Bertuccelli, and G. Bertuccelli, “Analysis of heavy metals in liquids using laser induced breakdown spectroscopy by liquid-to-solid matrix conversion,” Spectrochim. Acta Part B 61, 929-933 (2006).
    [CrossRef]
  19. V. N. Rai, H. Zhang, F. Y. Yueh, and J. P. Singh, “Effect of steady magnetic field on laser-induced breakdown spectroscopy,” Appl. Opt. 42, 3662-3669 (2003).
    [CrossRef] [PubMed]
  20. Y. Ralchenko, A. E. Kramida, and J. Reader, NIST Atomic Spectra Database, version 3.1.5 (National Institute of Standards and Technology, 2008).
  21. N. Carmona, M. Oujja, S. Gaspard, M. García-Heras, M. A. Villegas, and M. Castillejo, “Lead determination in glasses by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 62, 94-100 (2007).
    [CrossRef]
  22. S. L. Lui, Y. Godwal, M. T. Taschuk, Y. Y. Tsui, and R. Fedosejevs, “Detection of lead in water using laser-induced breakdown spectroscopy and laser-induced fluorescence,” Anal. Chem. 80, 1995-2000 (2008).
    [CrossRef] [PubMed]
  23. D. A. Cremers, L. J. Radziemski, and T. R. Loree, “Spectrochemical analysis of liquids using the laser spark,” Appl. Spectrosc. 38, 721-729 (1984).
    [CrossRef]
  24. D. A. Rusak, B. C. Castle, B. W. Smith, and J. D. Winefordner, “Fundamentals and applications of laser-induced breakdown spectroscopy,” Crit. Rev. Anal. Chem. 27, 257-290 (1997).
    [CrossRef]
  25. R. Knopp, F. J. Scherbaum, and J. I. Kim, “Laser induced breakdown spectroscopy as an analytical tool for the detection of metal ions in aqueous solutions,” Fresenius J. Anal. Chem. 355, 16-20 (1996).
    [CrossRef]

2008 (1)

S. L. Lui, Y. Godwal, M. T. Taschuk, Y. Y. Tsui, and R. Fedosejevs, “Detection of lead in water using laser-induced breakdown spectroscopy and laser-induced fluorescence,” Anal. Chem. 80, 1995-2000 (2008).
[CrossRef] [PubMed]

2007 (2)

M. Adamson, A. Padmanabhan, G. J. Godfrey, and S. J. Rehse, “Laser-induced breakdown spectroscopy at a water/gas interface: a study of bath gas-dependent molecular species,” Spectrochim. Acta Part B 62, 1348-1360 (2007).
[CrossRef]

N. Carmona, M. Oujja, S. Gaspard, M. García-Heras, M. A. Villegas, and M. Castillejo, “Lead determination in glasses by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 62, 94-100 (2007).
[CrossRef]

2006 (2)

B. C. Windom, P. K. Diwakar, and D. W. Hahn, “Dual-pulse laser induced breakdown spectroscopy for analysis of gaseous and aerosol systems: plasma-analyte interactions,” Spectrochim. Acta Part B 61, 788-796 (2006).
[CrossRef]

D. M. Díaz Pace, C. A. D'Angelo, D. Bertuccelli, and G. Bertuccelli, “Analysis of heavy metals in liquids using laser induced breakdown spectroscopy by liquid-to-solid matrix conversion,” Spectrochim. Acta Part B 61, 929-933 (2006).
[CrossRef]

2005 (1)

S. Koch, R. Court, W. Garen, W. Neu, and R. Reuter, “Detection of manganese in solution in cavitation bubbles using laser induced breakdown spectroscopy,” Spectrochim. Acta Part B 60, 1230-1235 (2005).
[CrossRef]

2003 (2)

2002 (3)

K. Song, Y.-I. Lee, and J. Sneddon, “Recent developments in instrumentation for laser-induced breakdown spectroscopy,” Appl. Spectrosc. Rev. 37, 89-117 (2002).
[CrossRef]

E. Tognoni, V. Palleschi, M. Corsi, and G. Cristoforetti, “Quantitative microanalysis by laser-induced breakdown spectroscopy: a review of the experimental approaches,” Spectrochim. Acta Part B 57, 1115-1130 (2002).
[CrossRef]

B. Charfi and M. A. Harith, “Panoramic laser-induced breakdown spectrometry of water,” Spectrochim. Acta Part B 57, 1141-1153 (2002).
[CrossRef]

2001 (1)

J. O. Cáceres, J. T. López, H. H. Telle, and A. G. Urena, “Quantitative analysis of trace metal ions in ice using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 831-838 (2001).
[CrossRef]

2000 (2)

O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liška, H. H. Telle, and J. Young, “Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 39, 2248-2262 (2000).
[CrossRef]

D. N. Stratis, K. L. Eland, and S. M. Angel, “Dual-pulse LIBS using a pre-ablation spark for enhanced ablation and emission,” Appl. Spectrosc. 54, 1270-1274 (2000).
[CrossRef]

1997 (1)

D. A. Rusak, B. C. Castle, B. W. Smith, and J. D. Winefordner, “Fundamentals and applications of laser-induced breakdown spectroscopy,” Crit. Rev. Anal. Chem. 27, 257-290 (1997).
[CrossRef]

1996 (4)

R. Knopp, F. J. Scherbaum, and J. I. Kim, “Laser induced breakdown spectroscopy as an analytical tool for the detection of metal ions in aqueous solutions,” Fresenius J. Anal. Chem. 355, 16-20 (1996).
[CrossRef]

A. V. Pakhomov, W. Nichols, and J. Borysow, “Laser-induced breakdown spectroscopy for detection of lead in concrete,” Appl. Spectrosc. 50, 880-884 (1996).
[CrossRef]

K. Y. Yamamoto, D. A. Cremers, M. J. Ferris, and L. E. Foster, “Detection of metals in the environment using a portable laser-induced breakdown spectroscopy instrument,” Appl. Spectrosc. 50, 222-233 (1996).
[CrossRef]

S. Nakamura, Y. Ito, K. Sone, H. Hiraga, and K. Kaneko, “Determination of an iron suspension in water by laser-induced breakdown spectroscopy with two sequential laser pulses,” Anal. Chem. 68, 2981-2986 (1996).
[CrossRef] [PubMed]

1995 (1)

1994 (1)

C. Lazzari, M. D. Rosa, S. Rastelli, A. Ciucci, V. Palleschi, and A. Salvetti, “Detection of mercury in air by time-resolved laser-induced breakdown spectroscopy technique,” Laser Part. Beams 12, 525-530 (1994).
[CrossRef]

1984 (1)

Adamson, M.

M. Adamson, A. Padmanabhan, G. J. Godfrey, and S. J. Rehse, “Laser-induced breakdown spectroscopy at a water/gas interface: a study of bath gas-dependent molecular species,” Spectrochim. Acta Part B 62, 1348-1360 (2007).
[CrossRef]

Angel, S. M.

Beddows, D. C. S.

O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liška, H. H. Telle, and J. Young, “Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 39, 2248-2262 (2000).
[CrossRef]

Bertuccelli, D.

D. M. Díaz Pace, C. A. D'Angelo, D. Bertuccelli, and G. Bertuccelli, “Analysis of heavy metals in liquids using laser induced breakdown spectroscopy by liquid-to-solid matrix conversion,” Spectrochim. Acta Part B 61, 929-933 (2006).
[CrossRef]

Bertuccelli, G.

D. M. Díaz Pace, C. A. D'Angelo, D. Bertuccelli, and G. Bertuccelli, “Analysis of heavy metals in liquids using laser induced breakdown spectroscopy by liquid-to-solid matrix conversion,” Spectrochim. Acta Part B 61, 929-933 (2006).
[CrossRef]

Borysow, J.

Cáceres, J. O.

J. O. Cáceres, J. T. López, H. H. Telle, and A. G. Urena, “Quantitative analysis of trace metal ions in ice using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 831-838 (2001).
[CrossRef]

Carmona, N.

N. Carmona, M. Oujja, S. Gaspard, M. García-Heras, M. A. Villegas, and M. Castillejo, “Lead determination in glasses by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 62, 94-100 (2007).
[CrossRef]

Castillejo, M.

N. Carmona, M. Oujja, S. Gaspard, M. García-Heras, M. A. Villegas, and M. Castillejo, “Lead determination in glasses by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 62, 94-100 (2007).
[CrossRef]

Castle, B. C.

D. A. Rusak, B. C. Castle, B. W. Smith, and J. D. Winefordner, “Fundamentals and applications of laser-induced breakdown spectroscopy,” Crit. Rev. Anal. Chem. 27, 257-290 (1997).
[CrossRef]

Charfi, B.

B. Charfi and M. A. Harith, “Panoramic laser-induced breakdown spectrometry of water,” Spectrochim. Acta Part B 57, 1141-1153 (2002).
[CrossRef]

Cielo, P.

Ciucci, A.

C. Lazzari, M. D. Rosa, S. Rastelli, A. Ciucci, V. Palleschi, and A. Salvetti, “Detection of mercury in air by time-resolved laser-induced breakdown spectroscopy technique,” Laser Part. Beams 12, 525-530 (1994).
[CrossRef]

Corsi, M.

E. Tognoni, V. Palleschi, M. Corsi, and G. Cristoforetti, “Quantitative microanalysis by laser-induced breakdown spectroscopy: a review of the experimental approaches,” Spectrochim. Acta Part B 57, 1115-1130 (2002).
[CrossRef]

Court, R.

S. Koch, R. Court, W. Garen, W. Neu, and R. Reuter, “Detection of manganese in solution in cavitation bubbles using laser induced breakdown spectroscopy,” Spectrochim. Acta Part B 60, 1230-1235 (2005).
[CrossRef]

Cremers, D. A.

Cristoforetti, G.

E. Tognoni, V. Palleschi, M. Corsi, and G. Cristoforetti, “Quantitative microanalysis by laser-induced breakdown spectroscopy: a review of the experimental approaches,” Spectrochim. Acta Part B 57, 1115-1130 (2002).
[CrossRef]

D'Angelo, C. A.

D. M. Díaz Pace, C. A. D'Angelo, D. Bertuccelli, and G. Bertuccelli, “Analysis of heavy metals in liquids using laser induced breakdown spectroscopy by liquid-to-solid matrix conversion,” Spectrochim. Acta Part B 61, 929-933 (2006).
[CrossRef]

Díaz Pace, D. M.

D. M. Díaz Pace, C. A. D'Angelo, D. Bertuccelli, and G. Bertuccelli, “Analysis of heavy metals in liquids using laser induced breakdown spectroscopy by liquid-to-solid matrix conversion,” Spectrochim. Acta Part B 61, 929-933 (2006).
[CrossRef]

Diwakar, P. K.

B. C. Windom, P. K. Diwakar, and D. W. Hahn, “Dual-pulse laser induced breakdown spectroscopy for analysis of gaseous and aerosol systems: plasma-analyte interactions,” Spectrochim. Acta Part B 61, 788-796 (2006).
[CrossRef]

Eland, K. L.

Fedosejevs, R.

S. L. Lui, Y. Godwal, M. T. Taschuk, Y. Y. Tsui, and R. Fedosejevs, “Detection of lead in water using laser-induced breakdown spectroscopy and laser-induced fluorescence,” Anal. Chem. 80, 1995-2000 (2008).
[CrossRef] [PubMed]

Ferris, M. J.

Foster, L. E.

García-Heras, M.

N. Carmona, M. Oujja, S. Gaspard, M. García-Heras, M. A. Villegas, and M. Castillejo, “Lead determination in glasses by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 62, 94-100 (2007).
[CrossRef]

Garen, W.

S. Koch, R. Court, W. Garen, W. Neu, and R. Reuter, “Detection of manganese in solution in cavitation bubbles using laser induced breakdown spectroscopy,” Spectrochim. Acta Part B 60, 1230-1235 (2005).
[CrossRef]

Gaspard, S.

N. Carmona, M. Oujja, S. Gaspard, M. García-Heras, M. A. Villegas, and M. Castillejo, “Lead determination in glasses by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 62, 94-100 (2007).
[CrossRef]

Godfrey, G. J.

M. Adamson, A. Padmanabhan, G. J. Godfrey, and S. J. Rehse, “Laser-induced breakdown spectroscopy at a water/gas interface: a study of bath gas-dependent molecular species,” Spectrochim. Acta Part B 62, 1348-1360 (2007).
[CrossRef]

Godwal, Y.

S. L. Lui, Y. Godwal, M. T. Taschuk, Y. Y. Tsui, and R. Fedosejevs, “Detection of lead in water using laser-induced breakdown spectroscopy and laser-induced fluorescence,” Anal. Chem. 80, 1995-2000 (2008).
[CrossRef] [PubMed]

Hahn, D. W.

B. C. Windom, P. K. Diwakar, and D. W. Hahn, “Dual-pulse laser induced breakdown spectroscopy for analysis of gaseous and aerosol systems: plasma-analyte interactions,” Spectrochim. Acta Part B 61, 788-796 (2006).
[CrossRef]

Harith, M. A.

B. Charfi and M. A. Harith, “Panoramic laser-induced breakdown spectrometry of water,” Spectrochim. Acta Part B 57, 1141-1153 (2002).
[CrossRef]

Hiraga, H.

S. Nakamura, Y. Ito, K. Sone, H. Hiraga, and K. Kaneko, “Determination of an iron suspension in water by laser-induced breakdown spectroscopy with two sequential laser pulses,” Anal. Chem. 68, 2981-2986 (1996).
[CrossRef] [PubMed]

Ito, Y.

S. Nakamura, Y. Ito, K. Sone, H. Hiraga, and K. Kaneko, “Determination of an iron suspension in water by laser-induced breakdown spectroscopy with two sequential laser pulses,” Anal. Chem. 68, 2981-2986 (1996).
[CrossRef] [PubMed]

Kaiser, J.

O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liška, H. H. Telle, and J. Young, “Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 39, 2248-2262 (2000).
[CrossRef]

Kaneko, K.

S. Nakamura, Y. Ito, K. Sone, H. Hiraga, and K. Kaneko, “Determination of an iron suspension in water by laser-induced breakdown spectroscopy with two sequential laser pulses,” Anal. Chem. 68, 2981-2986 (1996).
[CrossRef] [PubMed]

Kim, J. I.

R. Knopp, F. J. Scherbaum, and J. I. Kim, “Laser induced breakdown spectroscopy as an analytical tool for the detection of metal ions in aqueous solutions,” Fresenius J. Anal. Chem. 355, 16-20 (1996).
[CrossRef]

Knopp, R.

R. Knopp, F. J. Scherbaum, and J. I. Kim, “Laser induced breakdown spectroscopy as an analytical tool for the detection of metal ions in aqueous solutions,” Fresenius J. Anal. Chem. 355, 16-20 (1996).
[CrossRef]

Koch, S.

S. Koch, R. Court, W. Garen, W. Neu, and R. Reuter, “Detection of manganese in solution in cavitation bubbles using laser induced breakdown spectroscopy,” Spectrochim. Acta Part B 60, 1230-1235 (2005).
[CrossRef]

Kramida, A. E.

Y. Ralchenko, A. E. Kramida, and J. Reader, NIST Atomic Spectra Database, version 3.1.5 (National Institute of Standards and Technology, 2008).

Kukhlevsky, S. V.

O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liška, H. H. Telle, and J. Young, “Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 39, 2248-2262 (2000).
[CrossRef]

Kumar, A.

Lazzari, C.

C. Lazzari, M. D. Rosa, S. Rastelli, A. Ciucci, V. Palleschi, and A. Salvetti, “Detection of mercury in air by time-resolved laser-induced breakdown spectroscopy technique,” Laser Part. Beams 12, 525-530 (1994).
[CrossRef]

Lee, Y.-I.

K. Song, Y.-I. Lee, and J. Sneddon, “Recent developments in instrumentation for laser-induced breakdown spectroscopy,” Appl. Spectrosc. Rev. 37, 89-117 (2002).
[CrossRef]

Liška, M.

O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liška, H. H. Telle, and J. Young, “Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 39, 2248-2262 (2000).
[CrossRef]

López, J. T.

J. O. Cáceres, J. T. López, H. H. Telle, and A. G. Urena, “Quantitative analysis of trace metal ions in ice using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 831-838 (2001).
[CrossRef]

Loree, T. R.

Lui, S. L.

S. L. Lui, Y. Godwal, M. T. Taschuk, Y. Y. Tsui, and R. Fedosejevs, “Detection of lead in water using laser-induced breakdown spectroscopy and laser-induced fluorescence,” Anal. Chem. 80, 1995-2000 (2008).
[CrossRef] [PubMed]

Nakamura, S.

S. Nakamura, Y. Ito, K. Sone, H. Hiraga, and K. Kaneko, “Determination of an iron suspension in water by laser-induced breakdown spectroscopy with two sequential laser pulses,” Anal. Chem. 68, 2981-2986 (1996).
[CrossRef] [PubMed]

Neu, W.

S. Koch, R. Court, W. Garen, W. Neu, and R. Reuter, “Detection of manganese in solution in cavitation bubbles using laser induced breakdown spectroscopy,” Spectrochim. Acta Part B 60, 1230-1235 (2005).
[CrossRef]

Nichols, W.

Oujja, M.

N. Carmona, M. Oujja, S. Gaspard, M. García-Heras, M. A. Villegas, and M. Castillejo, “Lead determination in glasses by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 62, 94-100 (2007).
[CrossRef]

Padmanabhan, A.

M. Adamson, A. Padmanabhan, G. J. Godfrey, and S. J. Rehse, “Laser-induced breakdown spectroscopy at a water/gas interface: a study of bath gas-dependent molecular species,” Spectrochim. Acta Part B 62, 1348-1360 (2007).
[CrossRef]

Pakhomov, A. V.

Palleschi, V.

E. Tognoni, V. Palleschi, M. Corsi, and G. Cristoforetti, “Quantitative microanalysis by laser-induced breakdown spectroscopy: a review of the experimental approaches,” Spectrochim. Acta Part B 57, 1115-1130 (2002).
[CrossRef]

C. Lazzari, M. D. Rosa, S. Rastelli, A. Ciucci, V. Palleschi, and A. Salvetti, “Detection of mercury in air by time-resolved laser-induced breakdown spectroscopy technique,” Laser Part. Beams 12, 525-530 (1994).
[CrossRef]

Radziemski, L. J.

Rai, V. N.

Ralchenko, Y.

Y. Ralchenko, A. E. Kramida, and J. Reader, NIST Atomic Spectra Database, version 3.1.5 (National Institute of Standards and Technology, 2008).

Rastelli, S.

C. Lazzari, M. D. Rosa, S. Rastelli, A. Ciucci, V. Palleschi, and A. Salvetti, “Detection of mercury in air by time-resolved laser-induced breakdown spectroscopy technique,” Laser Part. Beams 12, 525-530 (1994).
[CrossRef]

Reader, J.

Y. Ralchenko, A. E. Kramida, and J. Reader, NIST Atomic Spectra Database, version 3.1.5 (National Institute of Standards and Technology, 2008).

Rehse, S. J.

M. Adamson, A. Padmanabhan, G. J. Godfrey, and S. J. Rehse, “Laser-induced breakdown spectroscopy at a water/gas interface: a study of bath gas-dependent molecular species,” Spectrochim. Acta Part B 62, 1348-1360 (2007).
[CrossRef]

Reuter, R.

S. Koch, R. Court, W. Garen, W. Neu, and R. Reuter, “Detection of manganese in solution in cavitation bubbles using laser induced breakdown spectroscopy,” Spectrochim. Acta Part B 60, 1230-1235 (2005).
[CrossRef]

Rosa, M. D.

C. Lazzari, M. D. Rosa, S. Rastelli, A. Ciucci, V. Palleschi, and A. Salvetti, “Detection of mercury in air by time-resolved laser-induced breakdown spectroscopy technique,” Laser Part. Beams 12, 525-530 (1994).
[CrossRef]

Rusak, D. A.

D. A. Rusak, B. C. Castle, B. W. Smith, and J. D. Winefordner, “Fundamentals and applications of laser-induced breakdown spectroscopy,” Crit. Rev. Anal. Chem. 27, 257-290 (1997).
[CrossRef]

Sabsabi, M.

Salvetti, A.

C. Lazzari, M. D. Rosa, S. Rastelli, A. Ciucci, V. Palleschi, and A. Salvetti, “Detection of mercury in air by time-resolved laser-induced breakdown spectroscopy technique,” Laser Part. Beams 12, 525-530 (1994).
[CrossRef]

Samek, O.

O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liška, H. H. Telle, and J. Young, “Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 39, 2248-2262 (2000).
[CrossRef]

Scherbaum, F. J.

R. Knopp, F. J. Scherbaum, and J. I. Kim, “Laser induced breakdown spectroscopy as an analytical tool for the detection of metal ions in aqueous solutions,” Fresenius J. Anal. Chem. 355, 16-20 (1996).
[CrossRef]

Singh, J. P.

Smith, B. W.

D. A. Rusak, B. C. Castle, B. W. Smith, and J. D. Winefordner, “Fundamentals and applications of laser-induced breakdown spectroscopy,” Crit. Rev. Anal. Chem. 27, 257-290 (1997).
[CrossRef]

Sneddon, J.

K. Song, Y.-I. Lee, and J. Sneddon, “Recent developments in instrumentation for laser-induced breakdown spectroscopy,” Appl. Spectrosc. Rev. 37, 89-117 (2002).
[CrossRef]

Sone, K.

S. Nakamura, Y. Ito, K. Sone, H. Hiraga, and K. Kaneko, “Determination of an iron suspension in water by laser-induced breakdown spectroscopy with two sequential laser pulses,” Anal. Chem. 68, 2981-2986 (1996).
[CrossRef] [PubMed]

Song, K.

K. Song, Y.-I. Lee, and J. Sneddon, “Recent developments in instrumentation for laser-induced breakdown spectroscopy,” Appl. Spectrosc. Rev. 37, 89-117 (2002).
[CrossRef]

Stratis, D. N.

Taschuk, M. T.

S. L. Lui, Y. Godwal, M. T. Taschuk, Y. Y. Tsui, and R. Fedosejevs, “Detection of lead in water using laser-induced breakdown spectroscopy and laser-induced fluorescence,” Anal. Chem. 80, 1995-2000 (2008).
[CrossRef] [PubMed]

Telle, H. H.

J. O. Cáceres, J. T. López, H. H. Telle, and A. G. Urena, “Quantitative analysis of trace metal ions in ice using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 831-838 (2001).
[CrossRef]

O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liška, H. H. Telle, and J. Young, “Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 39, 2248-2262 (2000).
[CrossRef]

Tognoni, E.

E. Tognoni, V. Palleschi, M. Corsi, and G. Cristoforetti, “Quantitative microanalysis by laser-induced breakdown spectroscopy: a review of the experimental approaches,” Spectrochim. Acta Part B 57, 1115-1130 (2002).
[CrossRef]

Tsui, Y. Y.

S. L. Lui, Y. Godwal, M. T. Taschuk, Y. Y. Tsui, and R. Fedosejevs, “Detection of lead in water using laser-induced breakdown spectroscopy and laser-induced fluorescence,” Anal. Chem. 80, 1995-2000 (2008).
[CrossRef] [PubMed]

Urena, A. G.

J. O. Cáceres, J. T. López, H. H. Telle, and A. G. Urena, “Quantitative analysis of trace metal ions in ice using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 831-838 (2001).
[CrossRef]

Villegas, M. A.

N. Carmona, M. Oujja, S. Gaspard, M. García-Heras, M. A. Villegas, and M. Castillejo, “Lead determination in glasses by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 62, 94-100 (2007).
[CrossRef]

Windom, B. C.

B. C. Windom, P. K. Diwakar, and D. W. Hahn, “Dual-pulse laser induced breakdown spectroscopy for analysis of gaseous and aerosol systems: plasma-analyte interactions,” Spectrochim. Acta Part B 61, 788-796 (2006).
[CrossRef]

Winefordner, J. D.

D. A. Rusak, B. C. Castle, B. W. Smith, and J. D. Winefordner, “Fundamentals and applications of laser-induced breakdown spectroscopy,” Crit. Rev. Anal. Chem. 27, 257-290 (1997).
[CrossRef]

Yamamoto, K. Y.

Young, J.

O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liška, H. H. Telle, and J. Young, “Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 39, 2248-2262 (2000).
[CrossRef]

Yueh, F. Y.

Zhang, H.

V. N. Rai, H. Zhang, F. Y. Yueh, and J. P. Singh, “Effect of steady magnetic field on laser-induced breakdown spectroscopy,” Appl. Opt. 42, 3662-3669 (2003).
[CrossRef] [PubMed]

F. Y. Yueh, J. P. Singh, and H. Zhang, “Laser induced breakdown spectroscopy: elemental analysis,” in Encyclopedia of Analytical Chemistry, R. A. Meyers, ed. (Wiley, 2000).

Anal. Chem. (2)

S. Nakamura, Y. Ito, K. Sone, H. Hiraga, and K. Kaneko, “Determination of an iron suspension in water by laser-induced breakdown spectroscopy with two sequential laser pulses,” Anal. Chem. 68, 2981-2986 (1996).
[CrossRef] [PubMed]

S. L. Lui, Y. Godwal, M. T. Taschuk, Y. Y. Tsui, and R. Fedosejevs, “Detection of lead in water using laser-induced breakdown spectroscopy and laser-induced fluorescence,” Anal. Chem. 80, 1995-2000 (2008).
[CrossRef] [PubMed]

Appl. Opt. (2)

Appl. Spectrosc. (5)

Appl. Spectrosc. Rev. (1)

K. Song, Y.-I. Lee, and J. Sneddon, “Recent developments in instrumentation for laser-induced breakdown spectroscopy,” Appl. Spectrosc. Rev. 37, 89-117 (2002).
[CrossRef]

Crit. Rev. Anal. Chem. (1)

D. A. Rusak, B. C. Castle, B. W. Smith, and J. D. Winefordner, “Fundamentals and applications of laser-induced breakdown spectroscopy,” Crit. Rev. Anal. Chem. 27, 257-290 (1997).
[CrossRef]

Fresenius J. Anal. Chem. (1)

R. Knopp, F. J. Scherbaum, and J. I. Kim, “Laser induced breakdown spectroscopy as an analytical tool for the detection of metal ions in aqueous solutions,” Fresenius J. Anal. Chem. 355, 16-20 (1996).
[CrossRef]

Laser Part. Beams (1)

C. Lazzari, M. D. Rosa, S. Rastelli, A. Ciucci, V. Palleschi, and A. Salvetti, “Detection of mercury in air by time-resolved laser-induced breakdown spectroscopy technique,” Laser Part. Beams 12, 525-530 (1994).
[CrossRef]

Opt. Eng. (1)

O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liška, H. H. Telle, and J. Young, “Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 39, 2248-2262 (2000).
[CrossRef]

Spectrochim. Acta Part B (8)

E. Tognoni, V. Palleschi, M. Corsi, and G. Cristoforetti, “Quantitative microanalysis by laser-induced breakdown spectroscopy: a review of the experimental approaches,” Spectrochim. Acta Part B 57, 1115-1130 (2002).
[CrossRef]

B. Charfi and M. A. Harith, “Panoramic laser-induced breakdown spectrometry of water,” Spectrochim. Acta Part B 57, 1141-1153 (2002).
[CrossRef]

M. Adamson, A. Padmanabhan, G. J. Godfrey, and S. J. Rehse, “Laser-induced breakdown spectroscopy at a water/gas interface: a study of bath gas-dependent molecular species,” Spectrochim. Acta Part B 62, 1348-1360 (2007).
[CrossRef]

B. C. Windom, P. K. Diwakar, and D. W. Hahn, “Dual-pulse laser induced breakdown spectroscopy for analysis of gaseous and aerosol systems: plasma-analyte interactions,” Spectrochim. Acta Part B 61, 788-796 (2006).
[CrossRef]

J. O. Cáceres, J. T. López, H. H. Telle, and A. G. Urena, “Quantitative analysis of trace metal ions in ice using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 831-838 (2001).
[CrossRef]

S. Koch, R. Court, W. Garen, W. Neu, and R. Reuter, “Detection of manganese in solution in cavitation bubbles using laser induced breakdown spectroscopy,” Spectrochim. Acta Part B 60, 1230-1235 (2005).
[CrossRef]

D. M. Díaz Pace, C. A. D'Angelo, D. Bertuccelli, and G. Bertuccelli, “Analysis of heavy metals in liquids using laser induced breakdown spectroscopy by liquid-to-solid matrix conversion,” Spectrochim. Acta Part B 61, 929-933 (2006).
[CrossRef]

N. Carmona, M. Oujja, S. Gaspard, M. García-Heras, M. A. Villegas, and M. Castillejo, “Lead determination in glasses by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 62, 94-100 (2007).
[CrossRef]

Other (3)

L. J. Radziemski and D. A. Cremers, Laser-Induced Plasma and Application (Marcel Dekker, 1989).

F. Y. Yueh, J. P. Singh, and H. Zhang, “Laser induced breakdown spectroscopy: elemental analysis,” in Encyclopedia of Analytical Chemistry, R. A. Meyers, ed. (Wiley, 2000).

Y. Ralchenko, A. E. Kramida, and J. Reader, NIST Atomic Spectra Database, version 3.1.5 (National Institute of Standards and Technology, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Diagram of the LIBS apparatus used to analyze liquids.

Fig. 2
Fig. 2

Pb I emission line at 405.781 nm for a 1000 ppm Pb ( NO 3 ) 2 solution. Experimental parameters: a laser energy of 57 mJ/ pulse , a liquid flow rate of 20 ml/ min , a gate width of 15 ns , and a time delay of 127 ns .

Fig. 3
Fig. 3

Dependence of Pb I emission at 405.781 nm on the time delay. Experimental parameters: a laser energy of 57 mJ/ pulse , a liquid flow rate of 20 ml/ min , and a gate width of 15 ns .

Fig. 4
Fig. 4

Correlation between Pb I emission at 405.781 nm and laser energy. Data were obtained for a 1000 ppm Pb ( NO 3 ) 2 solution at the optimum time delay of 135 ns .

Fig. 5
Fig. 5

Correlation between Pb I emission at 405.781 nm and liquid flow rate.

Fig. 6
Fig. 6

Calibration curve for Pb I at 405.781 nm . The solid curve represents a least-squares linear fit of the experimental data.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

LOD = 3 σ B / S ,

Metrics