Abstract

A kinetic model to predict the relative intensities of the atomic C/H/N/O emission lines in laser-induced breakdown spectroscopy (LIBS) has been developed for organic compounds. The model includes a comprehensive set of chemical processes involving both neutral and ionic chemistry and physical excitation and de-excitation of atomic levels affecting the neutral, ionic, and excited-state species concentrations. The relative excited-state atom concentrations predicted by this modeling are compared with those derived from the observed LIBS intensities for 355nm ns laser irradiation of residues of two organic compounds on aluminum substrate. The model reasonably predicts the relative excited-state concentrations, as well as their time profiles. Comparison of measured and computed concentrations has also allowed an estimation of the degree of air entrainment.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. J. Radziemski and D. A. Cremers, eds., Laser-Induced Plasmas and Applications (Dekker, 1989).
  2. A. W. Miziolek, V. Palleschi, and I. Schechter, eds., Laser-Induced Breakdown Spectroscopy (LIBS): Fundamentals and Applications (Cambridge U. Press, 2006).
  3. D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, 2006).
  4. J. P. Singh and S. N. Thakur, eds., Laser-Induced Breakdown Spectroscopy (Elsevier, 2007).
  5. J. Gonzalez, C. Liu, J. Yoo, X. Mao, and R. E. Russo, “Double-pulse laser ablation inductively coupled plasma mass spectrometry,” Spectrochim. Acta Part B 60, 27-31 (2005).
  6. V. I. Babushok, F. C. DeLucia, Jr., P. J. Dagdigian, M. J. Nusca, and A. W. Miziolek, “Kinetic modeling of the laser-induced breakdown spectroscopy plume from metallic lead,” Appl. Opt. 42, 5947-5962 (2003).
    [CrossRef]
  7. V. I. Babushok, F. C. DeLucia, Jr., P. J. Dagdigian, and A. W. Miziolek, “Experimental and kinetic modeling study of the laser-induced breakdown spectroscopy plume from metallic lead in argon,” Spectrochim. Acta Part B 60, 926-934 (2005).
  8. V. I. Babushok, F. C. DeLucia, Jr., P. J. Dagdigian, J. L. Gottfried, C. A. Munson, M. J. Nusca, and A. W. Miziolek, “Kinetic modeling study of the laser-induced plasma plume of the explosive cyclotrimethylenetrinitramine" (RDX),” Spectrochim. Acta Part B 62, 1321-1328 (2007).
  9. A. Bogaerts, Z. Chen, and D. Bleiner, “Laser ablation of copper in different background gases: comparative study by numerical modeling and experiments,” J. Anal. At. Spectrom. 21, 384-395 (2006).
  10. A. Bogaerts, Z. Chen, and D. Autrique, “Double pulse laser ablation and laser induced breakdown spectroscopy: a modeling investigation,” Spectrochim. Acta Part B 63, 746-754(2008).
  11. A. Casavola, G. Colonna, A. De Giacomo, and M. Capitelli, “Laser ablation of titanium metallic targets: comparison between theory and experiment,” J. Thermophys. Heat Transf. 17, 225-231 (2003).
    [CrossRef]
  12. M. Capitelli, A. Casavola, G. Colonna, and A. De Giacomo, “Laser-induced plasma expansion: theoretical and experimental aspects,” Spectrochim. Acta Part B 59, 271-289 (2004).
  13. F. Vidal, S. Laville, T. W. Johnston, O. Barthélemy, M. Chaker, B. Le Drogoff, J. Margot, and M. Sabsabi, “Numerical simulations of ultrashort laser pulse ablation and plasma expansion in ambient air,” Spectrochim. Acta B 56, 973-986 (2001).
  14. C. J. Rennick, R. Engeln, J. A. Smith, A. J. Orr-Ewing, and M. N. R. Ashfold, “Measurement and modeling of a diamond deposition reactor: hydrogen atom and electron number densities in an Ar/H2 arc jet discharge,” J. Appl. Phys. 97, 113306 (2005).
    [CrossRef]
  15. NIST Chemical Kinetics Database<http://kinetics.nist.gov/kinetics/index.jsp>.
  16. D. L. Baulch, D. D. Drysdale, J. Duxbury, and S. J. Grant, Evaluated Kinetic Data for High Temperature Reactions. Volume 3. Homogeneous Gas Phase Reactions of the O2─O3 System, the CO─O2─H2 System, and of Sulphur-Containing Species (Butterworths, 1976).
  17. D. L. Baulch, C. J. Cobos, R. A. Cox, P. Frank, G. Hayman, Th. Just, J. A. Kerr, T. Murrells, M. J. Pilling, J. Troe, R. W. Walker, and J. Warnatz, “Evaluated kinetic data for combustion modelling. Supplement I,” J. Phys. Chem. Ref. Data 23, 847-1033 (1994).
  18. C. Park, J. T. Howe, R. J. Jaffe, and G. V. Candler, “Review of chemical-kinetic problems of future NASA missions, II: Mars entries,” J. Thermophys. Heat Transf. 8, 9-23 (1994).
  19. W. L. Morgan, “Electron collision data for plasma modeling,” Adv. At. Mol. Opt. Phys. 43, 79-110 (2000).
  20. GRI-Mech combustion model<http://www.me.berkeley.edu/gri-mech/>.
  21. Atomic & Molecular Numerical Databases National Institute for Fusion Science-Japan <https://dbshino.nifs.ac.jp/>.
  22. S. S. Tayal, “Effective collision strengths for electron impact excitation of N I,” At. Data Nucl. Tables 76, 191-212(2000).
  23. O. Zatsarinny and S. S. Tayal, “Electron collision excitation rates for O I using the B-spline R-matrix approach,” Astrophys. J. Suppl. Ser. 148, 575-582 (2003).
    [CrossRef]
  24. D. Detleffsen, M. Anton, A. Werner, and K.-H. Schartner, “Excitation of atomic hydrogen by protons and multiply charges ions at intermediate velocities,” J. Phys. B: At. Mol. Opt. Phys. 27, 4195-4213 (1994).
  25. NIST Atomic Spectra Database, version 3 <http://physics.nist.gov/PhysRefData/ASD>.
  26. A. Portnov, S. Rosenwaks, and I. Bar, “Emission following laser-induced breakdown spectroscopy of organic compounds in ambient air,” Appl. Opt. 42, 2835-2842 (2003).
    [CrossRef]
  27. D. M. Wong and P. J. Dagdigian, “Comparison of laser-induced breakdown spectra of organic compounds with irradiation at 1.5 and 1.064 μm,” Appl. Opt. 47, G149-G157 (2008).
    [CrossRef]
  28. Yu. M. Smirnov, “Cross sections for aluminum atom excitation by electron impact,” Opt. Spectrosc. 82, 200-204 (1997).
  29. Chemkin-PRO, (Reaction Design, San Diego, California, USA, 2008) <http://www.reactiondesign.com>.
  30. A. Khachatrian and P. J. Dagdigian, “Laser-induced breakdown spectroscopy with laser irradiation on mid-infrared hydride stretch transitions: polystyrene,” Appl. Phys. B 97, 243-248 (2009).
    [CrossRef]
  31. C. Fleurier, S. Sahal-Bréchot, and J. Chapelle, “Stark profiles of Al I and Al II lines,” J. Phys. B: At. Mol. Phys. 10, 3435-3441(1977).
  32. N. Konjevic and M. S. Dimitrijevic, “Experimental Stark widths and shifts for spectral lines of neutral atoms: a critical veview of selected data for the period 1976 to 1982,” J. Phys. Chem. Ref. Data 13, 619-647 (1984).

2009 (1)

A. Khachatrian and P. J. Dagdigian, “Laser-induced breakdown spectroscopy with laser irradiation on mid-infrared hydride stretch transitions: polystyrene,” Appl. Phys. B 97, 243-248 (2009).
[CrossRef]

2008 (2)

A. Bogaerts, Z. Chen, and D. Autrique, “Double pulse laser ablation and laser induced breakdown spectroscopy: a modeling investigation,” Spectrochim. Acta Part B 63, 746-754(2008).

D. M. Wong and P. J. Dagdigian, “Comparison of laser-induced breakdown spectra of organic compounds with irradiation at 1.5 and 1.064 μm,” Appl. Opt. 47, G149-G157 (2008).
[CrossRef]

2007 (1)

V. I. Babushok, F. C. DeLucia, Jr., P. J. Dagdigian, J. L. Gottfried, C. A. Munson, M. J. Nusca, and A. W. Miziolek, “Kinetic modeling study of the laser-induced plasma plume of the explosive cyclotrimethylenetrinitramine" (RDX),” Spectrochim. Acta Part B 62, 1321-1328 (2007).

2006 (1)

A. Bogaerts, Z. Chen, and D. Bleiner, “Laser ablation of copper in different background gases: comparative study by numerical modeling and experiments,” J. Anal. At. Spectrom. 21, 384-395 (2006).

2005 (3)

C. J. Rennick, R. Engeln, J. A. Smith, A. J. Orr-Ewing, and M. N. R. Ashfold, “Measurement and modeling of a diamond deposition reactor: hydrogen atom and electron number densities in an Ar/H2 arc jet discharge,” J. Appl. Phys. 97, 113306 (2005).
[CrossRef]

V. I. Babushok, F. C. DeLucia, Jr., P. J. Dagdigian, and A. W. Miziolek, “Experimental and kinetic modeling study of the laser-induced breakdown spectroscopy plume from metallic lead in argon,” Spectrochim. Acta Part B 60, 926-934 (2005).

J. Gonzalez, C. Liu, J. Yoo, X. Mao, and R. E. Russo, “Double-pulse laser ablation inductively coupled plasma mass spectrometry,” Spectrochim. Acta Part B 60, 27-31 (2005).

2004 (1)

M. Capitelli, A. Casavola, G. Colonna, and A. De Giacomo, “Laser-induced plasma expansion: theoretical and experimental aspects,” Spectrochim. Acta Part B 59, 271-289 (2004).

2003 (4)

A. Casavola, G. Colonna, A. De Giacomo, and M. Capitelli, “Laser ablation of titanium metallic targets: comparison between theory and experiment,” J. Thermophys. Heat Transf. 17, 225-231 (2003).
[CrossRef]

O. Zatsarinny and S. S. Tayal, “Electron collision excitation rates for O I using the B-spline R-matrix approach,” Astrophys. J. Suppl. Ser. 148, 575-582 (2003).
[CrossRef]

A. Portnov, S. Rosenwaks, and I. Bar, “Emission following laser-induced breakdown spectroscopy of organic compounds in ambient air,” Appl. Opt. 42, 2835-2842 (2003).
[CrossRef]

V. I. Babushok, F. C. DeLucia, Jr., P. J. Dagdigian, M. J. Nusca, and A. W. Miziolek, “Kinetic modeling of the laser-induced breakdown spectroscopy plume from metallic lead,” Appl. Opt. 42, 5947-5962 (2003).
[CrossRef]

2001 (1)

F. Vidal, S. Laville, T. W. Johnston, O. Barthélemy, M. Chaker, B. Le Drogoff, J. Margot, and M. Sabsabi, “Numerical simulations of ultrashort laser pulse ablation and plasma expansion in ambient air,” Spectrochim. Acta B 56, 973-986 (2001).

2000 (2)

W. L. Morgan, “Electron collision data for plasma modeling,” Adv. At. Mol. Opt. Phys. 43, 79-110 (2000).

S. S. Tayal, “Effective collision strengths for electron impact excitation of N I,” At. Data Nucl. Tables 76, 191-212(2000).

1997 (1)

Yu. M. Smirnov, “Cross sections for aluminum atom excitation by electron impact,” Opt. Spectrosc. 82, 200-204 (1997).

1994 (3)

D. Detleffsen, M. Anton, A. Werner, and K.-H. Schartner, “Excitation of atomic hydrogen by protons and multiply charges ions at intermediate velocities,” J. Phys. B: At. Mol. Opt. Phys. 27, 4195-4213 (1994).

D. L. Baulch, C. J. Cobos, R. A. Cox, P. Frank, G. Hayman, Th. Just, J. A. Kerr, T. Murrells, M. J. Pilling, J. Troe, R. W. Walker, and J. Warnatz, “Evaluated kinetic data for combustion modelling. Supplement I,” J. Phys. Chem. Ref. Data 23, 847-1033 (1994).

C. Park, J. T. Howe, R. J. Jaffe, and G. V. Candler, “Review of chemical-kinetic problems of future NASA missions, II: Mars entries,” J. Thermophys. Heat Transf. 8, 9-23 (1994).

1984 (1)

N. Konjevic and M. S. Dimitrijevic, “Experimental Stark widths and shifts for spectral lines of neutral atoms: a critical veview of selected data for the period 1976 to 1982,” J. Phys. Chem. Ref. Data 13, 619-647 (1984).

1977 (1)

C. Fleurier, S. Sahal-Bréchot, and J. Chapelle, “Stark profiles of Al I and Al II lines,” J. Phys. B: At. Mol. Phys. 10, 3435-3441(1977).

Anton, M.

D. Detleffsen, M. Anton, A. Werner, and K.-H. Schartner, “Excitation of atomic hydrogen by protons and multiply charges ions at intermediate velocities,” J. Phys. B: At. Mol. Opt. Phys. 27, 4195-4213 (1994).

Ashfold, M. N. R.

C. J. Rennick, R. Engeln, J. A. Smith, A. J. Orr-Ewing, and M. N. R. Ashfold, “Measurement and modeling of a diamond deposition reactor: hydrogen atom and electron number densities in an Ar/H2 arc jet discharge,” J. Appl. Phys. 97, 113306 (2005).
[CrossRef]

Autrique, D.

A. Bogaerts, Z. Chen, and D. Autrique, “Double pulse laser ablation and laser induced breakdown spectroscopy: a modeling investigation,” Spectrochim. Acta Part B 63, 746-754(2008).

Babushok, V. I.

V. I. Babushok, F. C. DeLucia, Jr., P. J. Dagdigian, J. L. Gottfried, C. A. Munson, M. J. Nusca, and A. W. Miziolek, “Kinetic modeling study of the laser-induced plasma plume of the explosive cyclotrimethylenetrinitramine" (RDX),” Spectrochim. Acta Part B 62, 1321-1328 (2007).

V. I. Babushok, F. C. DeLucia, Jr., P. J. Dagdigian, and A. W. Miziolek, “Experimental and kinetic modeling study of the laser-induced breakdown spectroscopy plume from metallic lead in argon,” Spectrochim. Acta Part B 60, 926-934 (2005).

V. I. Babushok, F. C. DeLucia, Jr., P. J. Dagdigian, M. J. Nusca, and A. W. Miziolek, “Kinetic modeling of the laser-induced breakdown spectroscopy plume from metallic lead,” Appl. Opt. 42, 5947-5962 (2003).
[CrossRef]

Bar, I.

Barthélemy, O.

F. Vidal, S. Laville, T. W. Johnston, O. Barthélemy, M. Chaker, B. Le Drogoff, J. Margot, and M. Sabsabi, “Numerical simulations of ultrashort laser pulse ablation and plasma expansion in ambient air,” Spectrochim. Acta B 56, 973-986 (2001).

Baulch, D. L.

D. L. Baulch, C. J. Cobos, R. A. Cox, P. Frank, G. Hayman, Th. Just, J. A. Kerr, T. Murrells, M. J. Pilling, J. Troe, R. W. Walker, and J. Warnatz, “Evaluated kinetic data for combustion modelling. Supplement I,” J. Phys. Chem. Ref. Data 23, 847-1033 (1994).

D. L. Baulch, D. D. Drysdale, J. Duxbury, and S. J. Grant, Evaluated Kinetic Data for High Temperature Reactions. Volume 3. Homogeneous Gas Phase Reactions of the O2─O3 System, the CO─O2─H2 System, and of Sulphur-Containing Species (Butterworths, 1976).

Bleiner, D.

A. Bogaerts, Z. Chen, and D. Bleiner, “Laser ablation of copper in different background gases: comparative study by numerical modeling and experiments,” J. Anal. At. Spectrom. 21, 384-395 (2006).

Bogaerts, A.

A. Bogaerts, Z. Chen, and D. Autrique, “Double pulse laser ablation and laser induced breakdown spectroscopy: a modeling investigation,” Spectrochim. Acta Part B 63, 746-754(2008).

A. Bogaerts, Z. Chen, and D. Bleiner, “Laser ablation of copper in different background gases: comparative study by numerical modeling and experiments,” J. Anal. At. Spectrom. 21, 384-395 (2006).

Candler, G. V.

C. Park, J. T. Howe, R. J. Jaffe, and G. V. Candler, “Review of chemical-kinetic problems of future NASA missions, II: Mars entries,” J. Thermophys. Heat Transf. 8, 9-23 (1994).

Capitelli, M.

M. Capitelli, A. Casavola, G. Colonna, and A. De Giacomo, “Laser-induced plasma expansion: theoretical and experimental aspects,” Spectrochim. Acta Part B 59, 271-289 (2004).

A. Casavola, G. Colonna, A. De Giacomo, and M. Capitelli, “Laser ablation of titanium metallic targets: comparison between theory and experiment,” J. Thermophys. Heat Transf. 17, 225-231 (2003).
[CrossRef]

Casavola, A.

M. Capitelli, A. Casavola, G. Colonna, and A. De Giacomo, “Laser-induced plasma expansion: theoretical and experimental aspects,” Spectrochim. Acta Part B 59, 271-289 (2004).

A. Casavola, G. Colonna, A. De Giacomo, and M. Capitelli, “Laser ablation of titanium metallic targets: comparison between theory and experiment,” J. Thermophys. Heat Transf. 17, 225-231 (2003).
[CrossRef]

Chaker, M.

F. Vidal, S. Laville, T. W. Johnston, O. Barthélemy, M. Chaker, B. Le Drogoff, J. Margot, and M. Sabsabi, “Numerical simulations of ultrashort laser pulse ablation and plasma expansion in ambient air,” Spectrochim. Acta B 56, 973-986 (2001).

Chapelle, J.

C. Fleurier, S. Sahal-Bréchot, and J. Chapelle, “Stark profiles of Al I and Al II lines,” J. Phys. B: At. Mol. Phys. 10, 3435-3441(1977).

Chen, Z.

A. Bogaerts, Z. Chen, and D. Autrique, “Double pulse laser ablation and laser induced breakdown spectroscopy: a modeling investigation,” Spectrochim. Acta Part B 63, 746-754(2008).

A. Bogaerts, Z. Chen, and D. Bleiner, “Laser ablation of copper in different background gases: comparative study by numerical modeling and experiments,” J. Anal. At. Spectrom. 21, 384-395 (2006).

Cobos, C. J.

D. L. Baulch, C. J. Cobos, R. A. Cox, P. Frank, G. Hayman, Th. Just, J. A. Kerr, T. Murrells, M. J. Pilling, J. Troe, R. W. Walker, and J. Warnatz, “Evaluated kinetic data for combustion modelling. Supplement I,” J. Phys. Chem. Ref. Data 23, 847-1033 (1994).

Colonna, G.

M. Capitelli, A. Casavola, G. Colonna, and A. De Giacomo, “Laser-induced plasma expansion: theoretical and experimental aspects,” Spectrochim. Acta Part B 59, 271-289 (2004).

A. Casavola, G. Colonna, A. De Giacomo, and M. Capitelli, “Laser ablation of titanium metallic targets: comparison between theory and experiment,” J. Thermophys. Heat Transf. 17, 225-231 (2003).
[CrossRef]

Cox, R. A.

D. L. Baulch, C. J. Cobos, R. A. Cox, P. Frank, G. Hayman, Th. Just, J. A. Kerr, T. Murrells, M. J. Pilling, J. Troe, R. W. Walker, and J. Warnatz, “Evaluated kinetic data for combustion modelling. Supplement I,” J. Phys. Chem. Ref. Data 23, 847-1033 (1994).

Cremers, D. A.

D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, 2006).

Dagdigian, P. J.

A. Khachatrian and P. J. Dagdigian, “Laser-induced breakdown spectroscopy with laser irradiation on mid-infrared hydride stretch transitions: polystyrene,” Appl. Phys. B 97, 243-248 (2009).
[CrossRef]

D. M. Wong and P. J. Dagdigian, “Comparison of laser-induced breakdown spectra of organic compounds with irradiation at 1.5 and 1.064 μm,” Appl. Opt. 47, G149-G157 (2008).
[CrossRef]

V. I. Babushok, F. C. DeLucia, Jr., P. J. Dagdigian, J. L. Gottfried, C. A. Munson, M. J. Nusca, and A. W. Miziolek, “Kinetic modeling study of the laser-induced plasma plume of the explosive cyclotrimethylenetrinitramine" (RDX),” Spectrochim. Acta Part B 62, 1321-1328 (2007).

V. I. Babushok, F. C. DeLucia, Jr., P. J. Dagdigian, and A. W. Miziolek, “Experimental and kinetic modeling study of the laser-induced breakdown spectroscopy plume from metallic lead in argon,” Spectrochim. Acta Part B 60, 926-934 (2005).

V. I. Babushok, F. C. DeLucia, Jr., P. J. Dagdigian, M. J. Nusca, and A. W. Miziolek, “Kinetic modeling of the laser-induced breakdown spectroscopy plume from metallic lead,” Appl. Opt. 42, 5947-5962 (2003).
[CrossRef]

De Giacomo, A.

M. Capitelli, A. Casavola, G. Colonna, and A. De Giacomo, “Laser-induced plasma expansion: theoretical and experimental aspects,” Spectrochim. Acta Part B 59, 271-289 (2004).

A. Casavola, G. Colonna, A. De Giacomo, and M. Capitelli, “Laser ablation of titanium metallic targets: comparison between theory and experiment,” J. Thermophys. Heat Transf. 17, 225-231 (2003).
[CrossRef]

DeLucia, F. C.

V. I. Babushok, F. C. DeLucia, Jr., P. J. Dagdigian, J. L. Gottfried, C. A. Munson, M. J. Nusca, and A. W. Miziolek, “Kinetic modeling study of the laser-induced plasma plume of the explosive cyclotrimethylenetrinitramine" (RDX),” Spectrochim. Acta Part B 62, 1321-1328 (2007).

V. I. Babushok, F. C. DeLucia, Jr., P. J. Dagdigian, and A. W. Miziolek, “Experimental and kinetic modeling study of the laser-induced breakdown spectroscopy plume from metallic lead in argon,” Spectrochim. Acta Part B 60, 926-934 (2005).

V. I. Babushok, F. C. DeLucia, Jr., P. J. Dagdigian, M. J. Nusca, and A. W. Miziolek, “Kinetic modeling of the laser-induced breakdown spectroscopy plume from metallic lead,” Appl. Opt. 42, 5947-5962 (2003).
[CrossRef]

Detleffsen, D.

D. Detleffsen, M. Anton, A. Werner, and K.-H. Schartner, “Excitation of atomic hydrogen by protons and multiply charges ions at intermediate velocities,” J. Phys. B: At. Mol. Opt. Phys. 27, 4195-4213 (1994).

Dimitrijevic, M. S.

N. Konjevic and M. S. Dimitrijevic, “Experimental Stark widths and shifts for spectral lines of neutral atoms: a critical veview of selected data for the period 1976 to 1982,” J. Phys. Chem. Ref. Data 13, 619-647 (1984).

Drysdale, D. D.

D. L. Baulch, D. D. Drysdale, J. Duxbury, and S. J. Grant, Evaluated Kinetic Data for High Temperature Reactions. Volume 3. Homogeneous Gas Phase Reactions of the O2─O3 System, the CO─O2─H2 System, and of Sulphur-Containing Species (Butterworths, 1976).

Duxbury, J.

D. L. Baulch, D. D. Drysdale, J. Duxbury, and S. J. Grant, Evaluated Kinetic Data for High Temperature Reactions. Volume 3. Homogeneous Gas Phase Reactions of the O2─O3 System, the CO─O2─H2 System, and of Sulphur-Containing Species (Butterworths, 1976).

Engeln, R.

C. J. Rennick, R. Engeln, J. A. Smith, A. J. Orr-Ewing, and M. N. R. Ashfold, “Measurement and modeling of a diamond deposition reactor: hydrogen atom and electron number densities in an Ar/H2 arc jet discharge,” J. Appl. Phys. 97, 113306 (2005).
[CrossRef]

Fleurier, C.

C. Fleurier, S. Sahal-Bréchot, and J. Chapelle, “Stark profiles of Al I and Al II lines,” J. Phys. B: At. Mol. Phys. 10, 3435-3441(1977).

Frank, P.

D. L. Baulch, C. J. Cobos, R. A. Cox, P. Frank, G. Hayman, Th. Just, J. A. Kerr, T. Murrells, M. J. Pilling, J. Troe, R. W. Walker, and J. Warnatz, “Evaluated kinetic data for combustion modelling. Supplement I,” J. Phys. Chem. Ref. Data 23, 847-1033 (1994).

Gonzalez, J.

J. Gonzalez, C. Liu, J. Yoo, X. Mao, and R. E. Russo, “Double-pulse laser ablation inductively coupled plasma mass spectrometry,” Spectrochim. Acta Part B 60, 27-31 (2005).

Gottfried, J. L.

V. I. Babushok, F. C. DeLucia, Jr., P. J. Dagdigian, J. L. Gottfried, C. A. Munson, M. J. Nusca, and A. W. Miziolek, “Kinetic modeling study of the laser-induced plasma plume of the explosive cyclotrimethylenetrinitramine" (RDX),” Spectrochim. Acta Part B 62, 1321-1328 (2007).

Grant, S. J.

D. L. Baulch, D. D. Drysdale, J. Duxbury, and S. J. Grant, Evaluated Kinetic Data for High Temperature Reactions. Volume 3. Homogeneous Gas Phase Reactions of the O2─O3 System, the CO─O2─H2 System, and of Sulphur-Containing Species (Butterworths, 1976).

Hayman, G.

D. L. Baulch, C. J. Cobos, R. A. Cox, P. Frank, G. Hayman, Th. Just, J. A. Kerr, T. Murrells, M. J. Pilling, J. Troe, R. W. Walker, and J. Warnatz, “Evaluated kinetic data for combustion modelling. Supplement I,” J. Phys. Chem. Ref. Data 23, 847-1033 (1994).

Howe, J. T.

C. Park, J. T. Howe, R. J. Jaffe, and G. V. Candler, “Review of chemical-kinetic problems of future NASA missions, II: Mars entries,” J. Thermophys. Heat Transf. 8, 9-23 (1994).

Jaffe, R. J.

C. Park, J. T. Howe, R. J. Jaffe, and G. V. Candler, “Review of chemical-kinetic problems of future NASA missions, II: Mars entries,” J. Thermophys. Heat Transf. 8, 9-23 (1994).

Johnston, T. W.

F. Vidal, S. Laville, T. W. Johnston, O. Barthélemy, M. Chaker, B. Le Drogoff, J. Margot, and M. Sabsabi, “Numerical simulations of ultrashort laser pulse ablation and plasma expansion in ambient air,” Spectrochim. Acta B 56, 973-986 (2001).

Just, Th.

D. L. Baulch, C. J. Cobos, R. A. Cox, P. Frank, G. Hayman, Th. Just, J. A. Kerr, T. Murrells, M. J. Pilling, J. Troe, R. W. Walker, and J. Warnatz, “Evaluated kinetic data for combustion modelling. Supplement I,” J. Phys. Chem. Ref. Data 23, 847-1033 (1994).

Kerr, J. A.

D. L. Baulch, C. J. Cobos, R. A. Cox, P. Frank, G. Hayman, Th. Just, J. A. Kerr, T. Murrells, M. J. Pilling, J. Troe, R. W. Walker, and J. Warnatz, “Evaluated kinetic data for combustion modelling. Supplement I,” J. Phys. Chem. Ref. Data 23, 847-1033 (1994).

Khachatrian, A.

A. Khachatrian and P. J. Dagdigian, “Laser-induced breakdown spectroscopy with laser irradiation on mid-infrared hydride stretch transitions: polystyrene,” Appl. Phys. B 97, 243-248 (2009).
[CrossRef]

Konjevic, N.

N. Konjevic and M. S. Dimitrijevic, “Experimental Stark widths and shifts for spectral lines of neutral atoms: a critical veview of selected data for the period 1976 to 1982,” J. Phys. Chem. Ref. Data 13, 619-647 (1984).

Laville, S.

F. Vidal, S. Laville, T. W. Johnston, O. Barthélemy, M. Chaker, B. Le Drogoff, J. Margot, and M. Sabsabi, “Numerical simulations of ultrashort laser pulse ablation and plasma expansion in ambient air,” Spectrochim. Acta B 56, 973-986 (2001).

Le Drogoff, B.

F. Vidal, S. Laville, T. W. Johnston, O. Barthélemy, M. Chaker, B. Le Drogoff, J. Margot, and M. Sabsabi, “Numerical simulations of ultrashort laser pulse ablation and plasma expansion in ambient air,” Spectrochim. Acta B 56, 973-986 (2001).

Liu, C.

J. Gonzalez, C. Liu, J. Yoo, X. Mao, and R. E. Russo, “Double-pulse laser ablation inductively coupled plasma mass spectrometry,” Spectrochim. Acta Part B 60, 27-31 (2005).

Mao, X.

J. Gonzalez, C. Liu, J. Yoo, X. Mao, and R. E. Russo, “Double-pulse laser ablation inductively coupled plasma mass spectrometry,” Spectrochim. Acta Part B 60, 27-31 (2005).

Margot, J.

F. Vidal, S. Laville, T. W. Johnston, O. Barthélemy, M. Chaker, B. Le Drogoff, J. Margot, and M. Sabsabi, “Numerical simulations of ultrashort laser pulse ablation and plasma expansion in ambient air,” Spectrochim. Acta B 56, 973-986 (2001).

Miziolek, A. W.

V. I. Babushok, F. C. DeLucia, Jr., P. J. Dagdigian, J. L. Gottfried, C. A. Munson, M. J. Nusca, and A. W. Miziolek, “Kinetic modeling study of the laser-induced plasma plume of the explosive cyclotrimethylenetrinitramine" (RDX),” Spectrochim. Acta Part B 62, 1321-1328 (2007).

V. I. Babushok, F. C. DeLucia, Jr., P. J. Dagdigian, and A. W. Miziolek, “Experimental and kinetic modeling study of the laser-induced breakdown spectroscopy plume from metallic lead in argon,” Spectrochim. Acta Part B 60, 926-934 (2005).

V. I. Babushok, F. C. DeLucia, Jr., P. J. Dagdigian, M. J. Nusca, and A. W. Miziolek, “Kinetic modeling of the laser-induced breakdown spectroscopy plume from metallic lead,” Appl. Opt. 42, 5947-5962 (2003).
[CrossRef]

Morgan, W. L.

W. L. Morgan, “Electron collision data for plasma modeling,” Adv. At. Mol. Opt. Phys. 43, 79-110 (2000).

Munson, C. A.

V. I. Babushok, F. C. DeLucia, Jr., P. J. Dagdigian, J. L. Gottfried, C. A. Munson, M. J. Nusca, and A. W. Miziolek, “Kinetic modeling study of the laser-induced plasma plume of the explosive cyclotrimethylenetrinitramine" (RDX),” Spectrochim. Acta Part B 62, 1321-1328 (2007).

Murrells, T.

D. L. Baulch, C. J. Cobos, R. A. Cox, P. Frank, G. Hayman, Th. Just, J. A. Kerr, T. Murrells, M. J. Pilling, J. Troe, R. W. Walker, and J. Warnatz, “Evaluated kinetic data for combustion modelling. Supplement I,” J. Phys. Chem. Ref. Data 23, 847-1033 (1994).

Nusca, M. J.

V. I. Babushok, F. C. DeLucia, Jr., P. J. Dagdigian, J. L. Gottfried, C. A. Munson, M. J. Nusca, and A. W. Miziolek, “Kinetic modeling study of the laser-induced plasma plume of the explosive cyclotrimethylenetrinitramine" (RDX),” Spectrochim. Acta Part B 62, 1321-1328 (2007).

V. I. Babushok, F. C. DeLucia, Jr., P. J. Dagdigian, M. J. Nusca, and A. W. Miziolek, “Kinetic modeling of the laser-induced breakdown spectroscopy plume from metallic lead,” Appl. Opt. 42, 5947-5962 (2003).
[CrossRef]

Orr-Ewing, A. J.

C. J. Rennick, R. Engeln, J. A. Smith, A. J. Orr-Ewing, and M. N. R. Ashfold, “Measurement and modeling of a diamond deposition reactor: hydrogen atom and electron number densities in an Ar/H2 arc jet discharge,” J. Appl. Phys. 97, 113306 (2005).
[CrossRef]

Park, C.

C. Park, J. T. Howe, R. J. Jaffe, and G. V. Candler, “Review of chemical-kinetic problems of future NASA missions, II: Mars entries,” J. Thermophys. Heat Transf. 8, 9-23 (1994).

Pilling, M. J.

D. L. Baulch, C. J. Cobos, R. A. Cox, P. Frank, G. Hayman, Th. Just, J. A. Kerr, T. Murrells, M. J. Pilling, J. Troe, R. W. Walker, and J. Warnatz, “Evaluated kinetic data for combustion modelling. Supplement I,” J. Phys. Chem. Ref. Data 23, 847-1033 (1994).

Portnov, A.

Radziemski, L. J.

D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, 2006).

Rennick, C. J.

C. J. Rennick, R. Engeln, J. A. Smith, A. J. Orr-Ewing, and M. N. R. Ashfold, “Measurement and modeling of a diamond deposition reactor: hydrogen atom and electron number densities in an Ar/H2 arc jet discharge,” J. Appl. Phys. 97, 113306 (2005).
[CrossRef]

Rosenwaks, S.

Russo, R. E.

J. Gonzalez, C. Liu, J. Yoo, X. Mao, and R. E. Russo, “Double-pulse laser ablation inductively coupled plasma mass spectrometry,” Spectrochim. Acta Part B 60, 27-31 (2005).

Sabsabi, M.

F. Vidal, S. Laville, T. W. Johnston, O. Barthélemy, M. Chaker, B. Le Drogoff, J. Margot, and M. Sabsabi, “Numerical simulations of ultrashort laser pulse ablation and plasma expansion in ambient air,” Spectrochim. Acta B 56, 973-986 (2001).

Sahal-Bréchot, S.

C. Fleurier, S. Sahal-Bréchot, and J. Chapelle, “Stark profiles of Al I and Al II lines,” J. Phys. B: At. Mol. Phys. 10, 3435-3441(1977).

Schartner, K.-H.

D. Detleffsen, M. Anton, A. Werner, and K.-H. Schartner, “Excitation of atomic hydrogen by protons and multiply charges ions at intermediate velocities,” J. Phys. B: At. Mol. Opt. Phys. 27, 4195-4213 (1994).

Smirnov, Yu. M.

Yu. M. Smirnov, “Cross sections for aluminum atom excitation by electron impact,” Opt. Spectrosc. 82, 200-204 (1997).

Smith, J. A.

C. J. Rennick, R. Engeln, J. A. Smith, A. J. Orr-Ewing, and M. N. R. Ashfold, “Measurement and modeling of a diamond deposition reactor: hydrogen atom and electron number densities in an Ar/H2 arc jet discharge,” J. Appl. Phys. 97, 113306 (2005).
[CrossRef]

Tayal, S. S.

O. Zatsarinny and S. S. Tayal, “Electron collision excitation rates for O I using the B-spline R-matrix approach,” Astrophys. J. Suppl. Ser. 148, 575-582 (2003).
[CrossRef]

S. S. Tayal, “Effective collision strengths for electron impact excitation of N I,” At. Data Nucl. Tables 76, 191-212(2000).

Troe, J.

D. L. Baulch, C. J. Cobos, R. A. Cox, P. Frank, G. Hayman, Th. Just, J. A. Kerr, T. Murrells, M. J. Pilling, J. Troe, R. W. Walker, and J. Warnatz, “Evaluated kinetic data for combustion modelling. Supplement I,” J. Phys. Chem. Ref. Data 23, 847-1033 (1994).

Vidal, F.

F. Vidal, S. Laville, T. W. Johnston, O. Barthélemy, M. Chaker, B. Le Drogoff, J. Margot, and M. Sabsabi, “Numerical simulations of ultrashort laser pulse ablation and plasma expansion in ambient air,” Spectrochim. Acta B 56, 973-986 (2001).

Walker, R. W.

D. L. Baulch, C. J. Cobos, R. A. Cox, P. Frank, G. Hayman, Th. Just, J. A. Kerr, T. Murrells, M. J. Pilling, J. Troe, R. W. Walker, and J. Warnatz, “Evaluated kinetic data for combustion modelling. Supplement I,” J. Phys. Chem. Ref. Data 23, 847-1033 (1994).

Warnatz, J.

D. L. Baulch, C. J. Cobos, R. A. Cox, P. Frank, G. Hayman, Th. Just, J. A. Kerr, T. Murrells, M. J. Pilling, J. Troe, R. W. Walker, and J. Warnatz, “Evaluated kinetic data for combustion modelling. Supplement I,” J. Phys. Chem. Ref. Data 23, 847-1033 (1994).

Werner, A.

D. Detleffsen, M. Anton, A. Werner, and K.-H. Schartner, “Excitation of atomic hydrogen by protons and multiply charges ions at intermediate velocities,” J. Phys. B: At. Mol. Opt. Phys. 27, 4195-4213 (1994).

Wong, D. M.

Yoo, J.

J. Gonzalez, C. Liu, J. Yoo, X. Mao, and R. E. Russo, “Double-pulse laser ablation inductively coupled plasma mass spectrometry,” Spectrochim. Acta Part B 60, 27-31 (2005).

Zatsarinny, O.

O. Zatsarinny and S. S. Tayal, “Electron collision excitation rates for O I using the B-spline R-matrix approach,” Astrophys. J. Suppl. Ser. 148, 575-582 (2003).
[CrossRef]

Adv. At. Mol. Opt. Phys. (1)

W. L. Morgan, “Electron collision data for plasma modeling,” Adv. At. Mol. Opt. Phys. 43, 79-110 (2000).

Appl. Opt. (3)

Appl. Phys. B (1)

A. Khachatrian and P. J. Dagdigian, “Laser-induced breakdown spectroscopy with laser irradiation on mid-infrared hydride stretch transitions: polystyrene,” Appl. Phys. B 97, 243-248 (2009).
[CrossRef]

Astrophys. J. Suppl. Ser. (1)

O. Zatsarinny and S. S. Tayal, “Electron collision excitation rates for O I using the B-spline R-matrix approach,” Astrophys. J. Suppl. Ser. 148, 575-582 (2003).
[CrossRef]

At. Data Nucl. Tables (1)

S. S. Tayal, “Effective collision strengths for electron impact excitation of N I,” At. Data Nucl. Tables 76, 191-212(2000).

J. Anal. At. Spectrom. (1)

A. Bogaerts, Z. Chen, and D. Bleiner, “Laser ablation of copper in different background gases: comparative study by numerical modeling and experiments,” J. Anal. At. Spectrom. 21, 384-395 (2006).

J. Appl. Phys. (1)

C. J. Rennick, R. Engeln, J. A. Smith, A. J. Orr-Ewing, and M. N. R. Ashfold, “Measurement and modeling of a diamond deposition reactor: hydrogen atom and electron number densities in an Ar/H2 arc jet discharge,” J. Appl. Phys. 97, 113306 (2005).
[CrossRef]

J. Phys. B: At. Mol. Opt. Phys. (1)

D. Detleffsen, M. Anton, A. Werner, and K.-H. Schartner, “Excitation of atomic hydrogen by protons and multiply charges ions at intermediate velocities,” J. Phys. B: At. Mol. Opt. Phys. 27, 4195-4213 (1994).

J. Phys. B: At. Mol. Phys. (1)

C. Fleurier, S. Sahal-Bréchot, and J. Chapelle, “Stark profiles of Al I and Al II lines,” J. Phys. B: At. Mol. Phys. 10, 3435-3441(1977).

J. Phys. Chem. Ref. Data (2)

N. Konjevic and M. S. Dimitrijevic, “Experimental Stark widths and shifts for spectral lines of neutral atoms: a critical veview of selected data for the period 1976 to 1982,” J. Phys. Chem. Ref. Data 13, 619-647 (1984).

D. L. Baulch, C. J. Cobos, R. A. Cox, P. Frank, G. Hayman, Th. Just, J. A. Kerr, T. Murrells, M. J. Pilling, J. Troe, R. W. Walker, and J. Warnatz, “Evaluated kinetic data for combustion modelling. Supplement I,” J. Phys. Chem. Ref. Data 23, 847-1033 (1994).

J. Thermophys. Heat Transf. (2)

C. Park, J. T. Howe, R. J. Jaffe, and G. V. Candler, “Review of chemical-kinetic problems of future NASA missions, II: Mars entries,” J. Thermophys. Heat Transf. 8, 9-23 (1994).

A. Casavola, G. Colonna, A. De Giacomo, and M. Capitelli, “Laser ablation of titanium metallic targets: comparison between theory and experiment,” J. Thermophys. Heat Transf. 17, 225-231 (2003).
[CrossRef]

Opt. Spectrosc. (1)

Yu. M. Smirnov, “Cross sections for aluminum atom excitation by electron impact,” Opt. Spectrosc. 82, 200-204 (1997).

Spectrochim. Acta B (1)

F. Vidal, S. Laville, T. W. Johnston, O. Barthélemy, M. Chaker, B. Le Drogoff, J. Margot, and M. Sabsabi, “Numerical simulations of ultrashort laser pulse ablation and plasma expansion in ambient air,” Spectrochim. Acta B 56, 973-986 (2001).

Spectrochim. Acta Part B (5)

J. Gonzalez, C. Liu, J. Yoo, X. Mao, and R. E. Russo, “Double-pulse laser ablation inductively coupled plasma mass spectrometry,” Spectrochim. Acta Part B 60, 27-31 (2005).

M. Capitelli, A. Casavola, G. Colonna, and A. De Giacomo, “Laser-induced plasma expansion: theoretical and experimental aspects,” Spectrochim. Acta Part B 59, 271-289 (2004).

A. Bogaerts, Z. Chen, and D. Autrique, “Double pulse laser ablation and laser induced breakdown spectroscopy: a modeling investigation,” Spectrochim. Acta Part B 63, 746-754(2008).

V. I. Babushok, F. C. DeLucia, Jr., P. J. Dagdigian, and A. W. Miziolek, “Experimental and kinetic modeling study of the laser-induced breakdown spectroscopy plume from metallic lead in argon,” Spectrochim. Acta Part B 60, 926-934 (2005).

V. I. Babushok, F. C. DeLucia, Jr., P. J. Dagdigian, J. L. Gottfried, C. A. Munson, M. J. Nusca, and A. W. Miziolek, “Kinetic modeling study of the laser-induced plasma plume of the explosive cyclotrimethylenetrinitramine" (RDX),” Spectrochim. Acta Part B 62, 1321-1328 (2007).

Other (10)

L. J. Radziemski and D. A. Cremers, eds., Laser-Induced Plasmas and Applications (Dekker, 1989).

A. W. Miziolek, V. Palleschi, and I. Schechter, eds., Laser-Induced Breakdown Spectroscopy (LIBS): Fundamentals and Applications (Cambridge U. Press, 2006).

D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, 2006).

J. P. Singh and S. N. Thakur, eds., Laser-Induced Breakdown Spectroscopy (Elsevier, 2007).

NIST Chemical Kinetics Database<http://kinetics.nist.gov/kinetics/index.jsp>.

D. L. Baulch, D. D. Drysdale, J. Duxbury, and S. J. Grant, Evaluated Kinetic Data for High Temperature Reactions. Volume 3. Homogeneous Gas Phase Reactions of the O2─O3 System, the CO─O2─H2 System, and of Sulphur-Containing Species (Butterworths, 1976).

Chemkin-PRO, (Reaction Design, San Diego, California, USA, 2008) <http://www.reactiondesign.com>.

NIST Atomic Spectra Database, version 3 <http://physics.nist.gov/PhysRefData/ASD>.

GRI-Mech combustion model<http://www.me.berkeley.edu/gri-mech/>.

Atomic & Molecular Numerical Databases National Institute for Fusion Science-Japan <https://dbshino.nifs.ac.jp/>.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Spectra of the Al 394 396 nm lines in LIBS of bare Al foil at detector gate delays of (a)  20 ns , (b)  500 ns , (c)  1000 ns , and (d)  2000 ns , with a gate width of 100 ns . The dotted lines represent Voigt profile fits to the wings of the lines. The 355 nm laser energy was 20 mJ per pulse.

Fig. 2
Fig. 2

(a) Plasma temperature and (b) electron density as a function of time after the 355 nm laser pulse ( 20 mJ ) for LIBS of bare Al foil. The former was derived from the relative intensities of the Al 394.40 and 308.22 nm lines, while the latter was obtained from the Stark broadening of the 394.40 nm line (see text).

Fig. 3
Fig. 3

Relative populations of the Al * 4 S , N * 9 , N * 10 , O * 6 , and O * 7 levels (in the notation of Table 1) determined from the measured intensities (corrected for the wavelength- dependent detection sensitivity) of atomic emission lines for the 355 nm laser irradiation (pulse energy 20 mJ ) of bare Al foil in ambient air.

Fig. 4
Fig. 4

Plots of the time-dependent concentrations of the excited, emitting atomic levels (in the notation of Table 1) for an Al–air mixture ( Al air mole ratio 0.1), computed with the kinetic model described in Section 2 and the temperature plotted in Fig. 2(a). The assumed initial conditions and species mole ratios were as follows: (a) simple heating [Al, 1; N 2 , 7; O 2 , 3], (b) complete atomization [Al, 1; N, 14; O, 6], (c) atomization and 10% ionization of Al [Al, 0.9; Al + , 0.1; E, 0.1; N, 14; O, 6], (d) atomization and 10% ionization of N [Al, 1; N, 12.6; N + , 1.4; E, 1.4; O, 6]. The electron and Al * 4 S concentrations are scaled as indicated in the panels.

Fig. 5
Fig. 5

(a) Relative populations of the excited, emitting levels (in the notation of Table 1) determined from the measured intensities (corrected for the wavelength-dependent detection sensitivity) of atomic emission lines for the 355 nm laser irradiation (pulse energy 20 mJ ) of amthracene residue on Al foil in ambient air. (b) Plasma temperature, derived from the relative intensities of the Al 394.40 and 308.22 nm lines, as a function of time after the 355 nm laser pulse ( 20 mJ ) for LIBS of anthracene residue on Al foil.

Fig. 6
Fig. 6

Plots of the time-dependent concentrations of the excited, emitting atomic levels (in the notation of Table 1) for an anthracene–air mixture, computed with the kinetic model described in Section 2 and the temperature plotted in Fig. 5(a) . The assumed initial conditions and species mole ratios were as follows: (a) anthracene–air mixture at a 1 5 mole ratio, with assumed complete atomization and 10% ionization of C [C, 12.6; C + , 1.4; E, 1.4; H, 10; N, 7; O, 3] and (b) anthracene–air mixture at a 1 10 mole ratio, with assumed complete atomization and 10% ionization of C [C, 12.6; C + , 1.4; E, 1.4; H,10; N, 14; O, 6]. The electron concentration is scaled as indicated in the panels.

Fig. 7
Fig. 7

(a) Relative populations of the excited, emitting levels (in the notation of Table 1) determined from the measured intensities (corrected for the wavelength-dependent detection sensitivity) of atomic emission lines for the 355 nm laser irradiation (pulse energy 10 mJ ) of 2,4-dinitrotoluene residue on Al foil in ambient air. (b) Plasma temperature, derived from the relative intensities of the Al 394.40 and 308.22 nm lines, as a function of time after the 355 nm laser pulse ( 10 mJ ) for LIBS of 2,4-dintirotoluene residue on Al foil.

Fig. 8
Fig. 8

Plots of the time-dependent concentrations of the excited, emitting atomic levels (in the notation of Table 1) for a 2,4-dinitrotoluene–air mixture, computed with the kinetic model described in Section 2 and the temperature plotted in Fig. 7(b). The assumed initial conditions and species mole ratios were as follows: (a) pure 2,4-dinitrotoluene, with assumed complete atomization and 10% ionization of C [C, 6.3; C + , 0.7; E, 0.7; H, 6; N, 2; O, 4], and (b) 2,4-dinitrotoluene–air mixture at a 1 2.5 mole ratio, with assumed complete atomization and 10% ionization of N [C, 7; H, 6; N, 4.95; N + , 0.55; E, 0.55; O, 6]. The electron concentration is scaled as indicated in the panels.

Tables (1)

Tables Icon

Table 1 Atomic Energy Levels Included in the Kinetic Model

Metrics