Abstract

Laser induced breakdown spectroscopy can be used for the chemical characterization of glass to provide evidence of an association between a fragment found at a crime scene to a source of glass of known origin. Two different laser irradiances, 266nm and 1064nm, were used to conduct qualitative and quantitative analysis of glass standards. Single-pulse and double-pulse configurations and lens-to-sample-distance settings were optimized to yield the best laser–glass coupling. Laser energy and acquisition timing delays were also optimized to result in the highest signal-to-noise ratio corresponding to the highest precision and accuracy. The crater morphology was examined and the mass removed was calculated for both the 266nm and 1064nm irradiations. The analytical figures of merit suggest that the 266nm and 1064nm wavelengths are capable of good performance for the forensic chemical characterization of glass. The results presented here suggest that the 266nm laser produces a better laser–glass matrix coupling, resulting in a better stoichiometric representation of the glass sample. The 266nm irradiance is therefore recommended for the forensic analysis and comparison of glass samples.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. German, D. Morgans, A. Butterworth, and A. Scaplehorn, “A survey of British container glass using spark source mass spectrometry with electrical detection,” J. Forensic Sci. Soc. 18, 113-121 (1978).
    [CrossRef] [PubMed]
  2. E. C. Blacklock, A. Rogers, C. Wall, and B. B. Wheels, “The quantitative analysis of glass by emission spectrography: a six element survey,” Forensic Sci. 7, 121-130 (1976).
    [CrossRef] [PubMed]
  3. R. D. Koons, C. A. Peters, and P. S. Rebbert, “Comparison of refractive index, energy dispersive X-ray fluorescence and inductively coupled plasma atomic emission spectrometry for forensic characterization of sheet glass fragments,” J. Anal. At. Spectrom. 6, 451-456 (1991).
    [CrossRef]
  4. J. Buscaglia, “Elemental analysis of small glass fragments in forensic science,” Anal. Chim. Acta 288, 17-24 (1994).
    [CrossRef]
  5. R. F. Coleman and G. C. Goode, “Comparison of glass fragments by neutron activation analysis,” J. Radioanal. Chem. 15, 367-388 (1973).
    [CrossRef]
  6. P. Kuisma-Kursula, “Accuracy, precision and detection limits of SEM-WDS, energy-dispersive spectroscopy and PIXE in the multi-elemental analysis of medieval glass,” X-Ray Spectrom. 29, 111-118 (2000).
    [CrossRef]
  7. K. L. Wolnik, C. M. Gaston, and F. L. Fricke, “Analysis of glass in product tampering investigations by inductively coupled plasma atomic emission spectrometry with a hydrofluoric acid resistant torch,” J. Anal. At. Spectrom. 4, 27-31 (1989).
    [CrossRef]
  8. A. Zurhaar and M. Mullings, “Characterization of forensic glass samples using inductively coupled plasma mass spectrometry,” J. Anal. At. Spec. 5, 611-617 (1990).
    [CrossRef]
  9. C. Latkoczy, S. Becker, M. Dücking, D. Günther, J. A. Hoogewerff, J. R. Almirall, J. Buscaglia, A. Dobney, R. D. Koons, S. Montero, G. J. van der Peijl, W. R. Stoecklein, T. Trejos, J. R. Watling, and V. S. Zdanowicz, “Development and evaluation of a standard method for the quantitative determination of elements in float glass samples by LA-ICP-MS,” J. Forensic Sci. 50, 1327-1341 (2005).
    [CrossRef] [PubMed]
  10. B. E. Naes, A. Umpierrez, S. Ryland, C. Barnett, and J. R. Almirall, “A comparison of laser ablation inductively coupled plasma mass spectrometry, micro X-ray fluorescence spectroscopy, and laser induced breakdown spectroscopy for the discrimination of automotive glass,” Spectrochim. Acta Part B 63, 1145-1150 (2008).
    [CrossRef]
  11. E. M. Rodriguez-Celis, I. B. Gornushkin, U. M. Heitmann, J. R. Almirall, B. W. Smith, J. D. Winefordner, and N. Omenetto, “Laser induces breakdown spectroscopy as a tool for discrimination of glass for forensic applications,” Anal. Bioanal. Chem. 391, 1961-1968 (2008).
    [CrossRef] [PubMed]
  12. R. E. Russo, X. L. Mao, O. V. Borisov, and H. Liu, “Influence of wavelength on fractionation in laser ablation ICP-MS,” J. Anal. At. Spectrom. 15, 1115-1120 (2000).
    [CrossRef]
  13. C. Geertsen, A. Briand, F. Chartier, J. Lacour, P. Mauchien, S. Sjöström, and J. Mermet, “Comparision between infrared and ultraviolet laser ablation at atmospheric pressure-implications for solid sampling inductively coupled plasma spectrometry,” J. Anal. At. Spectrom. 9, 17-22 (1994).
    [CrossRef]
  14. C. Barnett, E. Cahoon, and J. R. Almirall, “Wavelength dependence on the elemental analysis of glass by laser induced breakdown spectroscopy,” Spectrochim. Acta Part B 63, 1016-1023 (2008).
    [CrossRef]
  15. L. M. Cabalin and J. J. Laserna, “Experimental determination of laser induced breakdown thresholds of metals under nanosecond Q-switched laser operation,” Spectrochim. Acta Part B 53, 723-730 (1998).
    [CrossRef]
  16. X. L. Mao, A. C. Ciocan, O. V. Borisov, and R. E. Russo, “Laser ablation processes investigated using inductively coupled plasma-atomic emission spectroscopy (ICP-AES),” Appl. Surf. Sci. 127-129, 262-268 (1998).
    [CrossRef]
  17. L. M. Berman and P. J. Wolf, “Laser-induced spectroscopy of liquids: aqueous solutions of nickel and chlorinated hydrocarbons,” Appl. Spectrosc. 52, 438-443 (1998).
    [CrossRef]
  18. J. R. Almirall and T. Trejos, “Advances in the forensic analysis of glass fragments with a focus on refractive index and elemental analysis,” Forensic Sci. Rev. 18, 73-96 (2006).
  19. T. Ishizuka, “Laser emission spectrography of rare earth elements,” Anal. Chem 45, 538-541 (1973).
    [CrossRef]
  20. C. Girault, Ph.D. thesis (Université de Limoges, 1990).
  21. A. Santagata, A. De Bonis, P. Villani, R. Teghil, and G. P. Parisi, “Fs/ns-dual-pulse orthogonal geometry plasma plume reheating for copper-based-alloys analysis,” Appl. Surf. Sci. 252, 4685-4690 (2006).
    [CrossRef]
  22. J. Scaffidi, W. Pearman, J. C. Carter, B. W. Colston, Jr., and S. M. Angel, “Temporal dependence of the enhancement of material removal in femtosecond-nanosecond dual-pulse laser-induced breakdown spectroscopy,” Appl. Opt. 43, 6492-6499 (2004).
    [CrossRef] [PubMed]
  23. L. Fornarini, V. Spizzichino, F. Colao, R. Fantoni, and V. Lazicm, “Influence of laser wavelength on LIBS diagnostics applied to the analysis of ancient bronzes,” Anal. Bioanal. Chem. 385, 272-280 (2006).
    [CrossRef] [PubMed]
  24. C. Gautier, P. Fichet, D. Menut, J. Lacour, D. L'Hermite, and J. Dubessy, “Study of the double pulse setup with an orthogonal beam geometry for laser induced breakdown spectroscopy,” Spectrochim. Acta Part B 59, 975-986 (2004).
    [CrossRef]
  25. L. St-Onge, M. Sabsabi, and P. Cielo, “Analysis of solids using laser-induced plasma spectroscopy in double-pulse mode,” Spectrochim. Acta Part B 53, 407-415 (1998).
    [CrossRef]
  26. F. C. De Lucia, Jr., J. L. Gottfried, D. A. Munson, and A. W. Miziolek, “Double-pulse laser-induced breakdown spectroscopy of explosives: initial study towards improved discrimination,” Spectrochim. Acta Part B 62, 1399-1404 (2007).
    [CrossRef]
  27. D. N. Stratis, K. L. Eland, and S. M. Angel, “Enhancement of aluminum, titanium, and iron in glass using pre-ablation spark dual-pulse LIBS,” Appl. Spectrosc. 54, 1719-1726 (2000).
    [CrossRef]
  28. J. Scaffidi, J. Pender, W. Pearman, S. R. Goode, B. W. Colston Jr., J. C. Carter, and S. M. Ange, “Dual-pulse laser-induced breakdown spectroscopy with combinations of femtosecond and nanosecond laser pulses,” Appl. Opt. 42, 6099-6106(2003).
    [CrossRef] [PubMed]
  29. G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “Influence of ambient gas pressure on laser-induced breakdown spectroscopy technique in the parallel double-pulse configuration,” Spectrochim. Acta Part B 59, 1907-1917 (2004).
    [CrossRef]
  30. V. Burakov, N. Tarasenko, M. Nedelko, and S. Isakov, “Time resolved spectroscopy and imaging diagnostics of single pulse and collinear double pulse laser induced break plasma from a glass sample,” Spectrochim. Acta Part B 63, 19-26 (2008).
    [CrossRef]
  31. H. Kurniawan, S. Nakajima, J. E. Batubara, M. Marpaung, M. Okamoto, and K. Kagawa, “Laser-Induced shock wave plasma in glass and its application to elemental analysis,” Appl. Spectrosc. 49, 1067-1072 (1995).
    [CrossRef]
  32. M. A. Ismail, G. Cristoforetti, S. Legnaioli, L. Pardini, V. Palleschi, A. Salvetti, E. Tognoni, and M. Harith, “Comparison of detection limits, for two metallic matrices, of laser-induced breakdown spectroscopy in the single and double-pulse configurations,” Anal. Bioanal. Chem. 385, 316-325 (2006)
    [CrossRef] [PubMed]
  33. K. Y. Yamamoto, D. A. Cremers, M. J. Ferris, and L. E. Foster, “Detection of metals in the environment using a portable laser induced breakdown spectroscopy instrument,” Appl. Spectrosc. 50, 222-233 (1996).
    [CrossRef]
  34. D. A. Cremers, J. E. Barefield II., and A. C. Koskelo, “Remote elemental analysis by laser-induced breakdown spectroscopy using a fiber-optic cable,” Appl. Spectrosc. 49, 857-860 (1995).
    [CrossRef]

2008 (4)

B. E. Naes, A. Umpierrez, S. Ryland, C. Barnett, and J. R. Almirall, “A comparison of laser ablation inductively coupled plasma mass spectrometry, micro X-ray fluorescence spectroscopy, and laser induced breakdown spectroscopy for the discrimination of automotive glass,” Spectrochim. Acta Part B 63, 1145-1150 (2008).
[CrossRef]

E. M. Rodriguez-Celis, I. B. Gornushkin, U. M. Heitmann, J. R. Almirall, B. W. Smith, J. D. Winefordner, and N. Omenetto, “Laser induces breakdown spectroscopy as a tool for discrimination of glass for forensic applications,” Anal. Bioanal. Chem. 391, 1961-1968 (2008).
[CrossRef] [PubMed]

C. Barnett, E. Cahoon, and J. R. Almirall, “Wavelength dependence on the elemental analysis of glass by laser induced breakdown spectroscopy,” Spectrochim. Acta Part B 63, 1016-1023 (2008).
[CrossRef]

V. Burakov, N. Tarasenko, M. Nedelko, and S. Isakov, “Time resolved spectroscopy and imaging diagnostics of single pulse and collinear double pulse laser induced break plasma from a glass sample,” Spectrochim. Acta Part B 63, 19-26 (2008).
[CrossRef]

2007 (1)

F. C. De Lucia, Jr., J. L. Gottfried, D. A. Munson, and A. W. Miziolek, “Double-pulse laser-induced breakdown spectroscopy of explosives: initial study towards improved discrimination,” Spectrochim. Acta Part B 62, 1399-1404 (2007).
[CrossRef]

2006 (4)

L. Fornarini, V. Spizzichino, F. Colao, R. Fantoni, and V. Lazicm, “Influence of laser wavelength on LIBS diagnostics applied to the analysis of ancient bronzes,” Anal. Bioanal. Chem. 385, 272-280 (2006).
[CrossRef] [PubMed]

J. R. Almirall and T. Trejos, “Advances in the forensic analysis of glass fragments with a focus on refractive index and elemental analysis,” Forensic Sci. Rev. 18, 73-96 (2006).

A. Santagata, A. De Bonis, P. Villani, R. Teghil, and G. P. Parisi, “Fs/ns-dual-pulse orthogonal geometry plasma plume reheating for copper-based-alloys analysis,” Appl. Surf. Sci. 252, 4685-4690 (2006).
[CrossRef]

M. A. Ismail, G. Cristoforetti, S. Legnaioli, L. Pardini, V. Palleschi, A. Salvetti, E. Tognoni, and M. Harith, “Comparison of detection limits, for two metallic matrices, of laser-induced breakdown spectroscopy in the single and double-pulse configurations,” Anal. Bioanal. Chem. 385, 316-325 (2006)
[CrossRef] [PubMed]

2005 (1)

C. Latkoczy, S. Becker, M. Dücking, D. Günther, J. A. Hoogewerff, J. R. Almirall, J. Buscaglia, A. Dobney, R. D. Koons, S. Montero, G. J. van der Peijl, W. R. Stoecklein, T. Trejos, J. R. Watling, and V. S. Zdanowicz, “Development and evaluation of a standard method for the quantitative determination of elements in float glass samples by LA-ICP-MS,” J. Forensic Sci. 50, 1327-1341 (2005).
[CrossRef] [PubMed]

2004 (3)

G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “Influence of ambient gas pressure on laser-induced breakdown spectroscopy technique in the parallel double-pulse configuration,” Spectrochim. Acta Part B 59, 1907-1917 (2004).
[CrossRef]

J. Scaffidi, W. Pearman, J. C. Carter, B. W. Colston, Jr., and S. M. Angel, “Temporal dependence of the enhancement of material removal in femtosecond-nanosecond dual-pulse laser-induced breakdown spectroscopy,” Appl. Opt. 43, 6492-6499 (2004).
[CrossRef] [PubMed]

C. Gautier, P. Fichet, D. Menut, J. Lacour, D. L'Hermite, and J. Dubessy, “Study of the double pulse setup with an orthogonal beam geometry for laser induced breakdown spectroscopy,” Spectrochim. Acta Part B 59, 975-986 (2004).
[CrossRef]

2003 (1)

2000 (3)

D. N. Stratis, K. L. Eland, and S. M. Angel, “Enhancement of aluminum, titanium, and iron in glass using pre-ablation spark dual-pulse LIBS,” Appl. Spectrosc. 54, 1719-1726 (2000).
[CrossRef]

R. E. Russo, X. L. Mao, O. V. Borisov, and H. Liu, “Influence of wavelength on fractionation in laser ablation ICP-MS,” J. Anal. At. Spectrom. 15, 1115-1120 (2000).
[CrossRef]

P. Kuisma-Kursula, “Accuracy, precision and detection limits of SEM-WDS, energy-dispersive spectroscopy and PIXE in the multi-elemental analysis of medieval glass,” X-Ray Spectrom. 29, 111-118 (2000).
[CrossRef]

1998 (4)

L. M. Cabalin and J. J. Laserna, “Experimental determination of laser induced breakdown thresholds of metals under nanosecond Q-switched laser operation,” Spectrochim. Acta Part B 53, 723-730 (1998).
[CrossRef]

X. L. Mao, A. C. Ciocan, O. V. Borisov, and R. E. Russo, “Laser ablation processes investigated using inductively coupled plasma-atomic emission spectroscopy (ICP-AES),” Appl. Surf. Sci. 127-129, 262-268 (1998).
[CrossRef]

L. M. Berman and P. J. Wolf, “Laser-induced spectroscopy of liquids: aqueous solutions of nickel and chlorinated hydrocarbons,” Appl. Spectrosc. 52, 438-443 (1998).
[CrossRef]

L. St-Onge, M. Sabsabi, and P. Cielo, “Analysis of solids using laser-induced plasma spectroscopy in double-pulse mode,” Spectrochim. Acta Part B 53, 407-415 (1998).
[CrossRef]

1996 (1)

1995 (2)

1994 (2)

C. Geertsen, A. Briand, F. Chartier, J. Lacour, P. Mauchien, S. Sjöström, and J. Mermet, “Comparision between infrared and ultraviolet laser ablation at atmospheric pressure-implications for solid sampling inductively coupled plasma spectrometry,” J. Anal. At. Spectrom. 9, 17-22 (1994).
[CrossRef]

J. Buscaglia, “Elemental analysis of small glass fragments in forensic science,” Anal. Chim. Acta 288, 17-24 (1994).
[CrossRef]

1991 (1)

R. D. Koons, C. A. Peters, and P. S. Rebbert, “Comparison of refractive index, energy dispersive X-ray fluorescence and inductively coupled plasma atomic emission spectrometry for forensic characterization of sheet glass fragments,” J. Anal. At. Spectrom. 6, 451-456 (1991).
[CrossRef]

1990 (1)

A. Zurhaar and M. Mullings, “Characterization of forensic glass samples using inductively coupled plasma mass spectrometry,” J. Anal. At. Spec. 5, 611-617 (1990).
[CrossRef]

1989 (1)

K. L. Wolnik, C. M. Gaston, and F. L. Fricke, “Analysis of glass in product tampering investigations by inductively coupled plasma atomic emission spectrometry with a hydrofluoric acid resistant torch,” J. Anal. At. Spectrom. 4, 27-31 (1989).
[CrossRef]

1978 (1)

B. German, D. Morgans, A. Butterworth, and A. Scaplehorn, “A survey of British container glass using spark source mass spectrometry with electrical detection,” J. Forensic Sci. Soc. 18, 113-121 (1978).
[CrossRef] [PubMed]

1976 (1)

E. C. Blacklock, A. Rogers, C. Wall, and B. B. Wheels, “The quantitative analysis of glass by emission spectrography: a six element survey,” Forensic Sci. 7, 121-130 (1976).
[CrossRef] [PubMed]

1973 (2)

R. F. Coleman and G. C. Goode, “Comparison of glass fragments by neutron activation analysis,” J. Radioanal. Chem. 15, 367-388 (1973).
[CrossRef]

T. Ishizuka, “Laser emission spectrography of rare earth elements,” Anal. Chem 45, 538-541 (1973).
[CrossRef]

Almirall, J. R.

B. E. Naes, A. Umpierrez, S. Ryland, C. Barnett, and J. R. Almirall, “A comparison of laser ablation inductively coupled plasma mass spectrometry, micro X-ray fluorescence spectroscopy, and laser induced breakdown spectroscopy for the discrimination of automotive glass,” Spectrochim. Acta Part B 63, 1145-1150 (2008).
[CrossRef]

E. M. Rodriguez-Celis, I. B. Gornushkin, U. M. Heitmann, J. R. Almirall, B. W. Smith, J. D. Winefordner, and N. Omenetto, “Laser induces breakdown spectroscopy as a tool for discrimination of glass for forensic applications,” Anal. Bioanal. Chem. 391, 1961-1968 (2008).
[CrossRef] [PubMed]

C. Barnett, E. Cahoon, and J. R. Almirall, “Wavelength dependence on the elemental analysis of glass by laser induced breakdown spectroscopy,” Spectrochim. Acta Part B 63, 1016-1023 (2008).
[CrossRef]

J. R. Almirall and T. Trejos, “Advances in the forensic analysis of glass fragments with a focus on refractive index and elemental analysis,” Forensic Sci. Rev. 18, 73-96 (2006).

C. Latkoczy, S. Becker, M. Dücking, D. Günther, J. A. Hoogewerff, J. R. Almirall, J. Buscaglia, A. Dobney, R. D. Koons, S. Montero, G. J. van der Peijl, W. R. Stoecklein, T. Trejos, J. R. Watling, and V. S. Zdanowicz, “Development and evaluation of a standard method for the quantitative determination of elements in float glass samples by LA-ICP-MS,” J. Forensic Sci. 50, 1327-1341 (2005).
[CrossRef] [PubMed]

Ange, S. M.

Angel, S. M.

Barefield, J. E.

Barnett, C.

C. Barnett, E. Cahoon, and J. R. Almirall, “Wavelength dependence on the elemental analysis of glass by laser induced breakdown spectroscopy,” Spectrochim. Acta Part B 63, 1016-1023 (2008).
[CrossRef]

B. E. Naes, A. Umpierrez, S. Ryland, C. Barnett, and J. R. Almirall, “A comparison of laser ablation inductively coupled plasma mass spectrometry, micro X-ray fluorescence spectroscopy, and laser induced breakdown spectroscopy for the discrimination of automotive glass,” Spectrochim. Acta Part B 63, 1145-1150 (2008).
[CrossRef]

Batubara, J. E.

Becker, S.

C. Latkoczy, S. Becker, M. Dücking, D. Günther, J. A. Hoogewerff, J. R. Almirall, J. Buscaglia, A. Dobney, R. D. Koons, S. Montero, G. J. van der Peijl, W. R. Stoecklein, T. Trejos, J. R. Watling, and V. S. Zdanowicz, “Development and evaluation of a standard method for the quantitative determination of elements in float glass samples by LA-ICP-MS,” J. Forensic Sci. 50, 1327-1341 (2005).
[CrossRef] [PubMed]

Berman, L. M.

Blacklock, E. C.

E. C. Blacklock, A. Rogers, C. Wall, and B. B. Wheels, “The quantitative analysis of glass by emission spectrography: a six element survey,” Forensic Sci. 7, 121-130 (1976).
[CrossRef] [PubMed]

Borisov, O. V.

R. E. Russo, X. L. Mao, O. V. Borisov, and H. Liu, “Influence of wavelength on fractionation in laser ablation ICP-MS,” J. Anal. At. Spectrom. 15, 1115-1120 (2000).
[CrossRef]

X. L. Mao, A. C. Ciocan, O. V. Borisov, and R. E. Russo, “Laser ablation processes investigated using inductively coupled plasma-atomic emission spectroscopy (ICP-AES),” Appl. Surf. Sci. 127-129, 262-268 (1998).
[CrossRef]

Briand, A.

C. Geertsen, A. Briand, F. Chartier, J. Lacour, P. Mauchien, S. Sjöström, and J. Mermet, “Comparision between infrared and ultraviolet laser ablation at atmospheric pressure-implications for solid sampling inductively coupled plasma spectrometry,” J. Anal. At. Spectrom. 9, 17-22 (1994).
[CrossRef]

Burakov, V.

V. Burakov, N. Tarasenko, M. Nedelko, and S. Isakov, “Time resolved spectroscopy and imaging diagnostics of single pulse and collinear double pulse laser induced break plasma from a glass sample,” Spectrochim. Acta Part B 63, 19-26 (2008).
[CrossRef]

Buscaglia, J.

C. Latkoczy, S. Becker, M. Dücking, D. Günther, J. A. Hoogewerff, J. R. Almirall, J. Buscaglia, A. Dobney, R. D. Koons, S. Montero, G. J. van der Peijl, W. R. Stoecklein, T. Trejos, J. R. Watling, and V. S. Zdanowicz, “Development and evaluation of a standard method for the quantitative determination of elements in float glass samples by LA-ICP-MS,” J. Forensic Sci. 50, 1327-1341 (2005).
[CrossRef] [PubMed]

J. Buscaglia, “Elemental analysis of small glass fragments in forensic science,” Anal. Chim. Acta 288, 17-24 (1994).
[CrossRef]

Butterworth, A.

B. German, D. Morgans, A. Butterworth, and A. Scaplehorn, “A survey of British container glass using spark source mass spectrometry with electrical detection,” J. Forensic Sci. Soc. 18, 113-121 (1978).
[CrossRef] [PubMed]

Cabalin, L. M.

L. M. Cabalin and J. J. Laserna, “Experimental determination of laser induced breakdown thresholds of metals under nanosecond Q-switched laser operation,” Spectrochim. Acta Part B 53, 723-730 (1998).
[CrossRef]

Cahoon, E.

C. Barnett, E. Cahoon, and J. R. Almirall, “Wavelength dependence on the elemental analysis of glass by laser induced breakdown spectroscopy,” Spectrochim. Acta Part B 63, 1016-1023 (2008).
[CrossRef]

Carter, J. C.

Chartier, F.

C. Geertsen, A. Briand, F. Chartier, J. Lacour, P. Mauchien, S. Sjöström, and J. Mermet, “Comparision between infrared and ultraviolet laser ablation at atmospheric pressure-implications for solid sampling inductively coupled plasma spectrometry,” J. Anal. At. Spectrom. 9, 17-22 (1994).
[CrossRef]

Cielo, P.

L. St-Onge, M. Sabsabi, and P. Cielo, “Analysis of solids using laser-induced plasma spectroscopy in double-pulse mode,” Spectrochim. Acta Part B 53, 407-415 (1998).
[CrossRef]

Ciocan, A. C.

X. L. Mao, A. C. Ciocan, O. V. Borisov, and R. E. Russo, “Laser ablation processes investigated using inductively coupled plasma-atomic emission spectroscopy (ICP-AES),” Appl. Surf. Sci. 127-129, 262-268 (1998).
[CrossRef]

Colao, F.

L. Fornarini, V. Spizzichino, F. Colao, R. Fantoni, and V. Lazicm, “Influence of laser wavelength on LIBS diagnostics applied to the analysis of ancient bronzes,” Anal. Bioanal. Chem. 385, 272-280 (2006).
[CrossRef] [PubMed]

Coleman, R. F.

R. F. Coleman and G. C. Goode, “Comparison of glass fragments by neutron activation analysis,” J. Radioanal. Chem. 15, 367-388 (1973).
[CrossRef]

Colston, B. W.

Cremers, D. A.

Cristoforetti, G.

M. A. Ismail, G. Cristoforetti, S. Legnaioli, L. Pardini, V. Palleschi, A. Salvetti, E. Tognoni, and M. Harith, “Comparison of detection limits, for two metallic matrices, of laser-induced breakdown spectroscopy in the single and double-pulse configurations,” Anal. Bioanal. Chem. 385, 316-325 (2006)
[CrossRef] [PubMed]

G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “Influence of ambient gas pressure on laser-induced breakdown spectroscopy technique in the parallel double-pulse configuration,” Spectrochim. Acta Part B 59, 1907-1917 (2004).
[CrossRef]

De Bonis, A.

A. Santagata, A. De Bonis, P. Villani, R. Teghil, and G. P. Parisi, “Fs/ns-dual-pulse orthogonal geometry plasma plume reheating for copper-based-alloys analysis,” Appl. Surf. Sci. 252, 4685-4690 (2006).
[CrossRef]

De Lucia, F. C.

F. C. De Lucia, Jr., J. L. Gottfried, D. A. Munson, and A. W. Miziolek, “Double-pulse laser-induced breakdown spectroscopy of explosives: initial study towards improved discrimination,” Spectrochim. Acta Part B 62, 1399-1404 (2007).
[CrossRef]

Dobney, A.

C. Latkoczy, S. Becker, M. Dücking, D. Günther, J. A. Hoogewerff, J. R. Almirall, J. Buscaglia, A. Dobney, R. D. Koons, S. Montero, G. J. van der Peijl, W. R. Stoecklein, T. Trejos, J. R. Watling, and V. S. Zdanowicz, “Development and evaluation of a standard method for the quantitative determination of elements in float glass samples by LA-ICP-MS,” J. Forensic Sci. 50, 1327-1341 (2005).
[CrossRef] [PubMed]

Dubessy, J.

C. Gautier, P. Fichet, D. Menut, J. Lacour, D. L'Hermite, and J. Dubessy, “Study of the double pulse setup with an orthogonal beam geometry for laser induced breakdown spectroscopy,” Spectrochim. Acta Part B 59, 975-986 (2004).
[CrossRef]

Dücking, M.

C. Latkoczy, S. Becker, M. Dücking, D. Günther, J. A. Hoogewerff, J. R. Almirall, J. Buscaglia, A. Dobney, R. D. Koons, S. Montero, G. J. van der Peijl, W. R. Stoecklein, T. Trejos, J. R. Watling, and V. S. Zdanowicz, “Development and evaluation of a standard method for the quantitative determination of elements in float glass samples by LA-ICP-MS,” J. Forensic Sci. 50, 1327-1341 (2005).
[CrossRef] [PubMed]

Eland, K. L.

Fantoni, R.

L. Fornarini, V. Spizzichino, F. Colao, R. Fantoni, and V. Lazicm, “Influence of laser wavelength on LIBS diagnostics applied to the analysis of ancient bronzes,” Anal. Bioanal. Chem. 385, 272-280 (2006).
[CrossRef] [PubMed]

Ferris, M. J.

Fichet, P.

C. Gautier, P. Fichet, D. Menut, J. Lacour, D. L'Hermite, and J. Dubessy, “Study of the double pulse setup with an orthogonal beam geometry for laser induced breakdown spectroscopy,” Spectrochim. Acta Part B 59, 975-986 (2004).
[CrossRef]

Fornarini, L.

L. Fornarini, V. Spizzichino, F. Colao, R. Fantoni, and V. Lazicm, “Influence of laser wavelength on LIBS diagnostics applied to the analysis of ancient bronzes,” Anal. Bioanal. Chem. 385, 272-280 (2006).
[CrossRef] [PubMed]

Foster, L. E.

Fricke, F. L.

K. L. Wolnik, C. M. Gaston, and F. L. Fricke, “Analysis of glass in product tampering investigations by inductively coupled plasma atomic emission spectrometry with a hydrofluoric acid resistant torch,” J. Anal. At. Spectrom. 4, 27-31 (1989).
[CrossRef]

Gaston, C. M.

K. L. Wolnik, C. M. Gaston, and F. L. Fricke, “Analysis of glass in product tampering investigations by inductively coupled plasma atomic emission spectrometry with a hydrofluoric acid resistant torch,” J. Anal. At. Spectrom. 4, 27-31 (1989).
[CrossRef]

Gautier, C.

C. Gautier, P. Fichet, D. Menut, J. Lacour, D. L'Hermite, and J. Dubessy, “Study of the double pulse setup with an orthogonal beam geometry for laser induced breakdown spectroscopy,” Spectrochim. Acta Part B 59, 975-986 (2004).
[CrossRef]

Geertsen, C.

C. Geertsen, A. Briand, F. Chartier, J. Lacour, P. Mauchien, S. Sjöström, and J. Mermet, “Comparision between infrared and ultraviolet laser ablation at atmospheric pressure-implications for solid sampling inductively coupled plasma spectrometry,” J. Anal. At. Spectrom. 9, 17-22 (1994).
[CrossRef]

German, B.

B. German, D. Morgans, A. Butterworth, and A. Scaplehorn, “A survey of British container glass using spark source mass spectrometry with electrical detection,” J. Forensic Sci. Soc. 18, 113-121 (1978).
[CrossRef] [PubMed]

Girault, C.

C. Girault, Ph.D. thesis (Université de Limoges, 1990).

Goode, G. C.

R. F. Coleman and G. C. Goode, “Comparison of glass fragments by neutron activation analysis,” J. Radioanal. Chem. 15, 367-388 (1973).
[CrossRef]

Goode, S. R.

Gornushkin, I. B.

E. M. Rodriguez-Celis, I. B. Gornushkin, U. M. Heitmann, J. R. Almirall, B. W. Smith, J. D. Winefordner, and N. Omenetto, “Laser induces breakdown spectroscopy as a tool for discrimination of glass for forensic applications,” Anal. Bioanal. Chem. 391, 1961-1968 (2008).
[CrossRef] [PubMed]

Gottfried, J. L.

F. C. De Lucia, Jr., J. L. Gottfried, D. A. Munson, and A. W. Miziolek, “Double-pulse laser-induced breakdown spectroscopy of explosives: initial study towards improved discrimination,” Spectrochim. Acta Part B 62, 1399-1404 (2007).
[CrossRef]

Günther, D.

C. Latkoczy, S. Becker, M. Dücking, D. Günther, J. A. Hoogewerff, J. R. Almirall, J. Buscaglia, A. Dobney, R. D. Koons, S. Montero, G. J. van der Peijl, W. R. Stoecklein, T. Trejos, J. R. Watling, and V. S. Zdanowicz, “Development and evaluation of a standard method for the quantitative determination of elements in float glass samples by LA-ICP-MS,” J. Forensic Sci. 50, 1327-1341 (2005).
[CrossRef] [PubMed]

Harith, M.

M. A. Ismail, G. Cristoforetti, S. Legnaioli, L. Pardini, V. Palleschi, A. Salvetti, E. Tognoni, and M. Harith, “Comparison of detection limits, for two metallic matrices, of laser-induced breakdown spectroscopy in the single and double-pulse configurations,” Anal. Bioanal. Chem. 385, 316-325 (2006)
[CrossRef] [PubMed]

Heitmann, U. M.

E. M. Rodriguez-Celis, I. B. Gornushkin, U. M. Heitmann, J. R. Almirall, B. W. Smith, J. D. Winefordner, and N. Omenetto, “Laser induces breakdown spectroscopy as a tool for discrimination of glass for forensic applications,” Anal. Bioanal. Chem. 391, 1961-1968 (2008).
[CrossRef] [PubMed]

Hoogewerff, J. A.

C. Latkoczy, S. Becker, M. Dücking, D. Günther, J. A. Hoogewerff, J. R. Almirall, J. Buscaglia, A. Dobney, R. D. Koons, S. Montero, G. J. van der Peijl, W. R. Stoecklein, T. Trejos, J. R. Watling, and V. S. Zdanowicz, “Development and evaluation of a standard method for the quantitative determination of elements in float glass samples by LA-ICP-MS,” J. Forensic Sci. 50, 1327-1341 (2005).
[CrossRef] [PubMed]

Isakov, S.

V. Burakov, N. Tarasenko, M. Nedelko, and S. Isakov, “Time resolved spectroscopy and imaging diagnostics of single pulse and collinear double pulse laser induced break plasma from a glass sample,” Spectrochim. Acta Part B 63, 19-26 (2008).
[CrossRef]

Ishizuka, T.

T. Ishizuka, “Laser emission spectrography of rare earth elements,” Anal. Chem 45, 538-541 (1973).
[CrossRef]

Ismail, M. A.

M. A. Ismail, G. Cristoforetti, S. Legnaioli, L. Pardini, V. Palleschi, A. Salvetti, E. Tognoni, and M. Harith, “Comparison of detection limits, for two metallic matrices, of laser-induced breakdown spectroscopy in the single and double-pulse configurations,” Anal. Bioanal. Chem. 385, 316-325 (2006)
[CrossRef] [PubMed]

Kagawa, K.

Koons, R. D.

C. Latkoczy, S. Becker, M. Dücking, D. Günther, J. A. Hoogewerff, J. R. Almirall, J. Buscaglia, A. Dobney, R. D. Koons, S. Montero, G. J. van der Peijl, W. R. Stoecklein, T. Trejos, J. R. Watling, and V. S. Zdanowicz, “Development and evaluation of a standard method for the quantitative determination of elements in float glass samples by LA-ICP-MS,” J. Forensic Sci. 50, 1327-1341 (2005).
[CrossRef] [PubMed]

R. D. Koons, C. A. Peters, and P. S. Rebbert, “Comparison of refractive index, energy dispersive X-ray fluorescence and inductively coupled plasma atomic emission spectrometry for forensic characterization of sheet glass fragments,” J. Anal. At. Spectrom. 6, 451-456 (1991).
[CrossRef]

Koskelo, A. C.

Kuisma-Kursula, P.

P. Kuisma-Kursula, “Accuracy, precision and detection limits of SEM-WDS, energy-dispersive spectroscopy and PIXE in the multi-elemental analysis of medieval glass,” X-Ray Spectrom. 29, 111-118 (2000).
[CrossRef]

Kurniawan, H.

Lacour, J.

C. Gautier, P. Fichet, D. Menut, J. Lacour, D. L'Hermite, and J. Dubessy, “Study of the double pulse setup with an orthogonal beam geometry for laser induced breakdown spectroscopy,” Spectrochim. Acta Part B 59, 975-986 (2004).
[CrossRef]

C. Geertsen, A. Briand, F. Chartier, J. Lacour, P. Mauchien, S. Sjöström, and J. Mermet, “Comparision between infrared and ultraviolet laser ablation at atmospheric pressure-implications for solid sampling inductively coupled plasma spectrometry,” J. Anal. At. Spectrom. 9, 17-22 (1994).
[CrossRef]

Laserna, J. J.

L. M. Cabalin and J. J. Laserna, “Experimental determination of laser induced breakdown thresholds of metals under nanosecond Q-switched laser operation,” Spectrochim. Acta Part B 53, 723-730 (1998).
[CrossRef]

Latkoczy, C.

C. Latkoczy, S. Becker, M. Dücking, D. Günther, J. A. Hoogewerff, J. R. Almirall, J. Buscaglia, A. Dobney, R. D. Koons, S. Montero, G. J. van der Peijl, W. R. Stoecklein, T. Trejos, J. R. Watling, and V. S. Zdanowicz, “Development and evaluation of a standard method for the quantitative determination of elements in float glass samples by LA-ICP-MS,” J. Forensic Sci. 50, 1327-1341 (2005).
[CrossRef] [PubMed]

Lazicm, V.

L. Fornarini, V. Spizzichino, F. Colao, R. Fantoni, and V. Lazicm, “Influence of laser wavelength on LIBS diagnostics applied to the analysis of ancient bronzes,” Anal. Bioanal. Chem. 385, 272-280 (2006).
[CrossRef] [PubMed]

Legnaioli, S.

M. A. Ismail, G. Cristoforetti, S. Legnaioli, L. Pardini, V. Palleschi, A. Salvetti, E. Tognoni, and M. Harith, “Comparison of detection limits, for two metallic matrices, of laser-induced breakdown spectroscopy in the single and double-pulse configurations,” Anal. Bioanal. Chem. 385, 316-325 (2006)
[CrossRef] [PubMed]

G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “Influence of ambient gas pressure on laser-induced breakdown spectroscopy technique in the parallel double-pulse configuration,” Spectrochim. Acta Part B 59, 1907-1917 (2004).
[CrossRef]

L'Hermite, D.

C. Gautier, P. Fichet, D. Menut, J. Lacour, D. L'Hermite, and J. Dubessy, “Study of the double pulse setup with an orthogonal beam geometry for laser induced breakdown spectroscopy,” Spectrochim. Acta Part B 59, 975-986 (2004).
[CrossRef]

Liu, H.

R. E. Russo, X. L. Mao, O. V. Borisov, and H. Liu, “Influence of wavelength on fractionation in laser ablation ICP-MS,” J. Anal. At. Spectrom. 15, 1115-1120 (2000).
[CrossRef]

Mao, X. L.

R. E. Russo, X. L. Mao, O. V. Borisov, and H. Liu, “Influence of wavelength on fractionation in laser ablation ICP-MS,” J. Anal. At. Spectrom. 15, 1115-1120 (2000).
[CrossRef]

X. L. Mao, A. C. Ciocan, O. V. Borisov, and R. E. Russo, “Laser ablation processes investigated using inductively coupled plasma-atomic emission spectroscopy (ICP-AES),” Appl. Surf. Sci. 127-129, 262-268 (1998).
[CrossRef]

Marpaung, M.

Mauchien, P.

C. Geertsen, A. Briand, F. Chartier, J. Lacour, P. Mauchien, S. Sjöström, and J. Mermet, “Comparision between infrared and ultraviolet laser ablation at atmospheric pressure-implications for solid sampling inductively coupled plasma spectrometry,” J. Anal. At. Spectrom. 9, 17-22 (1994).
[CrossRef]

Menut, D.

C. Gautier, P. Fichet, D. Menut, J. Lacour, D. L'Hermite, and J. Dubessy, “Study of the double pulse setup with an orthogonal beam geometry for laser induced breakdown spectroscopy,” Spectrochim. Acta Part B 59, 975-986 (2004).
[CrossRef]

Mermet, J.

C. Geertsen, A. Briand, F. Chartier, J. Lacour, P. Mauchien, S. Sjöström, and J. Mermet, “Comparision between infrared and ultraviolet laser ablation at atmospheric pressure-implications for solid sampling inductively coupled plasma spectrometry,” J. Anal. At. Spectrom. 9, 17-22 (1994).
[CrossRef]

Miziolek, A. W.

F. C. De Lucia, Jr., J. L. Gottfried, D. A. Munson, and A. W. Miziolek, “Double-pulse laser-induced breakdown spectroscopy of explosives: initial study towards improved discrimination,” Spectrochim. Acta Part B 62, 1399-1404 (2007).
[CrossRef]

Montero, S.

C. Latkoczy, S. Becker, M. Dücking, D. Günther, J. A. Hoogewerff, J. R. Almirall, J. Buscaglia, A. Dobney, R. D. Koons, S. Montero, G. J. van der Peijl, W. R. Stoecklein, T. Trejos, J. R. Watling, and V. S. Zdanowicz, “Development and evaluation of a standard method for the quantitative determination of elements in float glass samples by LA-ICP-MS,” J. Forensic Sci. 50, 1327-1341 (2005).
[CrossRef] [PubMed]

Morgans, D.

B. German, D. Morgans, A. Butterworth, and A. Scaplehorn, “A survey of British container glass using spark source mass spectrometry with electrical detection,” J. Forensic Sci. Soc. 18, 113-121 (1978).
[CrossRef] [PubMed]

Mullings, M.

A. Zurhaar and M. Mullings, “Characterization of forensic glass samples using inductively coupled plasma mass spectrometry,” J. Anal. At. Spec. 5, 611-617 (1990).
[CrossRef]

Munson, D. A.

F. C. De Lucia, Jr., J. L. Gottfried, D. A. Munson, and A. W. Miziolek, “Double-pulse laser-induced breakdown spectroscopy of explosives: initial study towards improved discrimination,” Spectrochim. Acta Part B 62, 1399-1404 (2007).
[CrossRef]

Naes, B. E.

B. E. Naes, A. Umpierrez, S. Ryland, C. Barnett, and J. R. Almirall, “A comparison of laser ablation inductively coupled plasma mass spectrometry, micro X-ray fluorescence spectroscopy, and laser induced breakdown spectroscopy for the discrimination of automotive glass,” Spectrochim. Acta Part B 63, 1145-1150 (2008).
[CrossRef]

Nakajima, S.

Nedelko, M.

V. Burakov, N. Tarasenko, M. Nedelko, and S. Isakov, “Time resolved spectroscopy and imaging diagnostics of single pulse and collinear double pulse laser induced break plasma from a glass sample,” Spectrochim. Acta Part B 63, 19-26 (2008).
[CrossRef]

Okamoto, M.

Omenetto, N.

E. M. Rodriguez-Celis, I. B. Gornushkin, U. M. Heitmann, J. R. Almirall, B. W. Smith, J. D. Winefordner, and N. Omenetto, “Laser induces breakdown spectroscopy as a tool for discrimination of glass for forensic applications,” Anal. Bioanal. Chem. 391, 1961-1968 (2008).
[CrossRef] [PubMed]

Palleschi, V.

M. A. Ismail, G. Cristoforetti, S. Legnaioli, L. Pardini, V. Palleschi, A. Salvetti, E. Tognoni, and M. Harith, “Comparison of detection limits, for two metallic matrices, of laser-induced breakdown spectroscopy in the single and double-pulse configurations,” Anal. Bioanal. Chem. 385, 316-325 (2006)
[CrossRef] [PubMed]

G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “Influence of ambient gas pressure on laser-induced breakdown spectroscopy technique in the parallel double-pulse configuration,” Spectrochim. Acta Part B 59, 1907-1917 (2004).
[CrossRef]

Pardini, L.

M. A. Ismail, G. Cristoforetti, S. Legnaioli, L. Pardini, V. Palleschi, A. Salvetti, E. Tognoni, and M. Harith, “Comparison of detection limits, for two metallic matrices, of laser-induced breakdown spectroscopy in the single and double-pulse configurations,” Anal. Bioanal. Chem. 385, 316-325 (2006)
[CrossRef] [PubMed]

Parisi, G. P.

A. Santagata, A. De Bonis, P. Villani, R. Teghil, and G. P. Parisi, “Fs/ns-dual-pulse orthogonal geometry plasma plume reheating for copper-based-alloys analysis,” Appl. Surf. Sci. 252, 4685-4690 (2006).
[CrossRef]

Pearman, W.

Pender, J.

Peters, C. A.

R. D. Koons, C. A. Peters, and P. S. Rebbert, “Comparison of refractive index, energy dispersive X-ray fluorescence and inductively coupled plasma atomic emission spectrometry for forensic characterization of sheet glass fragments,” J. Anal. At. Spectrom. 6, 451-456 (1991).
[CrossRef]

Rebbert, P. S.

R. D. Koons, C. A. Peters, and P. S. Rebbert, “Comparison of refractive index, energy dispersive X-ray fluorescence and inductively coupled plasma atomic emission spectrometry for forensic characterization of sheet glass fragments,” J. Anal. At. Spectrom. 6, 451-456 (1991).
[CrossRef]

Rodriguez-Celis, E. M.

E. M. Rodriguez-Celis, I. B. Gornushkin, U. M. Heitmann, J. R. Almirall, B. W. Smith, J. D. Winefordner, and N. Omenetto, “Laser induces breakdown spectroscopy as a tool for discrimination of glass for forensic applications,” Anal. Bioanal. Chem. 391, 1961-1968 (2008).
[CrossRef] [PubMed]

Rogers, A.

E. C. Blacklock, A. Rogers, C. Wall, and B. B. Wheels, “The quantitative analysis of glass by emission spectrography: a six element survey,” Forensic Sci. 7, 121-130 (1976).
[CrossRef] [PubMed]

Russo, R. E.

R. E. Russo, X. L. Mao, O. V. Borisov, and H. Liu, “Influence of wavelength on fractionation in laser ablation ICP-MS,” J. Anal. At. Spectrom. 15, 1115-1120 (2000).
[CrossRef]

X. L. Mao, A. C. Ciocan, O. V. Borisov, and R. E. Russo, “Laser ablation processes investigated using inductively coupled plasma-atomic emission spectroscopy (ICP-AES),” Appl. Surf. Sci. 127-129, 262-268 (1998).
[CrossRef]

Ryland, S.

B. E. Naes, A. Umpierrez, S. Ryland, C. Barnett, and J. R. Almirall, “A comparison of laser ablation inductively coupled plasma mass spectrometry, micro X-ray fluorescence spectroscopy, and laser induced breakdown spectroscopy for the discrimination of automotive glass,” Spectrochim. Acta Part B 63, 1145-1150 (2008).
[CrossRef]

Sabsabi, M.

L. St-Onge, M. Sabsabi, and P. Cielo, “Analysis of solids using laser-induced plasma spectroscopy in double-pulse mode,” Spectrochim. Acta Part B 53, 407-415 (1998).
[CrossRef]

Salvetti, A.

M. A. Ismail, G. Cristoforetti, S. Legnaioli, L. Pardini, V. Palleschi, A. Salvetti, E. Tognoni, and M. Harith, “Comparison of detection limits, for two metallic matrices, of laser-induced breakdown spectroscopy in the single and double-pulse configurations,” Anal. Bioanal. Chem. 385, 316-325 (2006)
[CrossRef] [PubMed]

G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “Influence of ambient gas pressure on laser-induced breakdown spectroscopy technique in the parallel double-pulse configuration,” Spectrochim. Acta Part B 59, 1907-1917 (2004).
[CrossRef]

Santagata, A.

A. Santagata, A. De Bonis, P. Villani, R. Teghil, and G. P. Parisi, “Fs/ns-dual-pulse orthogonal geometry plasma plume reheating for copper-based-alloys analysis,” Appl. Surf. Sci. 252, 4685-4690 (2006).
[CrossRef]

Scaffidi, J.

Scaplehorn, A.

B. German, D. Morgans, A. Butterworth, and A. Scaplehorn, “A survey of British container glass using spark source mass spectrometry with electrical detection,” J. Forensic Sci. Soc. 18, 113-121 (1978).
[CrossRef] [PubMed]

Sjöström, S.

C. Geertsen, A. Briand, F. Chartier, J. Lacour, P. Mauchien, S. Sjöström, and J. Mermet, “Comparision between infrared and ultraviolet laser ablation at atmospheric pressure-implications for solid sampling inductively coupled plasma spectrometry,” J. Anal. At. Spectrom. 9, 17-22 (1994).
[CrossRef]

Smith, B. W.

E. M. Rodriguez-Celis, I. B. Gornushkin, U. M. Heitmann, J. R. Almirall, B. W. Smith, J. D. Winefordner, and N. Omenetto, “Laser induces breakdown spectroscopy as a tool for discrimination of glass for forensic applications,” Anal. Bioanal. Chem. 391, 1961-1968 (2008).
[CrossRef] [PubMed]

Spizzichino, V.

L. Fornarini, V. Spizzichino, F. Colao, R. Fantoni, and V. Lazicm, “Influence of laser wavelength on LIBS diagnostics applied to the analysis of ancient bronzes,” Anal. Bioanal. Chem. 385, 272-280 (2006).
[CrossRef] [PubMed]

Stoecklein, W. R.

C. Latkoczy, S. Becker, M. Dücking, D. Günther, J. A. Hoogewerff, J. R. Almirall, J. Buscaglia, A. Dobney, R. D. Koons, S. Montero, G. J. van der Peijl, W. R. Stoecklein, T. Trejos, J. R. Watling, and V. S. Zdanowicz, “Development and evaluation of a standard method for the quantitative determination of elements in float glass samples by LA-ICP-MS,” J. Forensic Sci. 50, 1327-1341 (2005).
[CrossRef] [PubMed]

St-Onge, L.

L. St-Onge, M. Sabsabi, and P. Cielo, “Analysis of solids using laser-induced plasma spectroscopy in double-pulse mode,” Spectrochim. Acta Part B 53, 407-415 (1998).
[CrossRef]

Stratis, D. N.

Tarasenko, N.

V. Burakov, N. Tarasenko, M. Nedelko, and S. Isakov, “Time resolved spectroscopy and imaging diagnostics of single pulse and collinear double pulse laser induced break plasma from a glass sample,” Spectrochim. Acta Part B 63, 19-26 (2008).
[CrossRef]

Teghil, R.

A. Santagata, A. De Bonis, P. Villani, R. Teghil, and G. P. Parisi, “Fs/ns-dual-pulse orthogonal geometry plasma plume reheating for copper-based-alloys analysis,” Appl. Surf. Sci. 252, 4685-4690 (2006).
[CrossRef]

Tognoni, E.

M. A. Ismail, G. Cristoforetti, S. Legnaioli, L. Pardini, V. Palleschi, A. Salvetti, E. Tognoni, and M. Harith, “Comparison of detection limits, for two metallic matrices, of laser-induced breakdown spectroscopy in the single and double-pulse configurations,” Anal. Bioanal. Chem. 385, 316-325 (2006)
[CrossRef] [PubMed]

G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “Influence of ambient gas pressure on laser-induced breakdown spectroscopy technique in the parallel double-pulse configuration,” Spectrochim. Acta Part B 59, 1907-1917 (2004).
[CrossRef]

Trejos, T.

J. R. Almirall and T. Trejos, “Advances in the forensic analysis of glass fragments with a focus on refractive index and elemental analysis,” Forensic Sci. Rev. 18, 73-96 (2006).

C. Latkoczy, S. Becker, M. Dücking, D. Günther, J. A. Hoogewerff, J. R. Almirall, J. Buscaglia, A. Dobney, R. D. Koons, S. Montero, G. J. van der Peijl, W. R. Stoecklein, T. Trejos, J. R. Watling, and V. S. Zdanowicz, “Development and evaluation of a standard method for the quantitative determination of elements in float glass samples by LA-ICP-MS,” J. Forensic Sci. 50, 1327-1341 (2005).
[CrossRef] [PubMed]

Umpierrez, A.

B. E. Naes, A. Umpierrez, S. Ryland, C. Barnett, and J. R. Almirall, “A comparison of laser ablation inductively coupled plasma mass spectrometry, micro X-ray fluorescence spectroscopy, and laser induced breakdown spectroscopy for the discrimination of automotive glass,” Spectrochim. Acta Part B 63, 1145-1150 (2008).
[CrossRef]

van der Peijl, G. J.

C. Latkoczy, S. Becker, M. Dücking, D. Günther, J. A. Hoogewerff, J. R. Almirall, J. Buscaglia, A. Dobney, R. D. Koons, S. Montero, G. J. van der Peijl, W. R. Stoecklein, T. Trejos, J. R. Watling, and V. S. Zdanowicz, “Development and evaluation of a standard method for the quantitative determination of elements in float glass samples by LA-ICP-MS,” J. Forensic Sci. 50, 1327-1341 (2005).
[CrossRef] [PubMed]

Villani, P.

A. Santagata, A. De Bonis, P. Villani, R. Teghil, and G. P. Parisi, “Fs/ns-dual-pulse orthogonal geometry plasma plume reheating for copper-based-alloys analysis,” Appl. Surf. Sci. 252, 4685-4690 (2006).
[CrossRef]

Wall, C.

E. C. Blacklock, A. Rogers, C. Wall, and B. B. Wheels, “The quantitative analysis of glass by emission spectrography: a six element survey,” Forensic Sci. 7, 121-130 (1976).
[CrossRef] [PubMed]

Watling, J. R.

C. Latkoczy, S. Becker, M. Dücking, D. Günther, J. A. Hoogewerff, J. R. Almirall, J. Buscaglia, A. Dobney, R. D. Koons, S. Montero, G. J. van der Peijl, W. R. Stoecklein, T. Trejos, J. R. Watling, and V. S. Zdanowicz, “Development and evaluation of a standard method for the quantitative determination of elements in float glass samples by LA-ICP-MS,” J. Forensic Sci. 50, 1327-1341 (2005).
[CrossRef] [PubMed]

Wheels, B. B.

E. C. Blacklock, A. Rogers, C. Wall, and B. B. Wheels, “The quantitative analysis of glass by emission spectrography: a six element survey,” Forensic Sci. 7, 121-130 (1976).
[CrossRef] [PubMed]

Winefordner, J. D.

E. M. Rodriguez-Celis, I. B. Gornushkin, U. M. Heitmann, J. R. Almirall, B. W. Smith, J. D. Winefordner, and N. Omenetto, “Laser induces breakdown spectroscopy as a tool for discrimination of glass for forensic applications,” Anal. Bioanal. Chem. 391, 1961-1968 (2008).
[CrossRef] [PubMed]

Wolf, P. J.

Wolnik, K. L.

K. L. Wolnik, C. M. Gaston, and F. L. Fricke, “Analysis of glass in product tampering investigations by inductively coupled plasma atomic emission spectrometry with a hydrofluoric acid resistant torch,” J. Anal. At. Spectrom. 4, 27-31 (1989).
[CrossRef]

Yamamoto, K. Y.

Zdanowicz, V. S.

C. Latkoczy, S. Becker, M. Dücking, D. Günther, J. A. Hoogewerff, J. R. Almirall, J. Buscaglia, A. Dobney, R. D. Koons, S. Montero, G. J. van der Peijl, W. R. Stoecklein, T. Trejos, J. R. Watling, and V. S. Zdanowicz, “Development and evaluation of a standard method for the quantitative determination of elements in float glass samples by LA-ICP-MS,” J. Forensic Sci. 50, 1327-1341 (2005).
[CrossRef] [PubMed]

Zurhaar, A.

A. Zurhaar and M. Mullings, “Characterization of forensic glass samples using inductively coupled plasma mass spectrometry,” J. Anal. At. Spec. 5, 611-617 (1990).
[CrossRef]

Anal. Bioanal. Chem. (3)

E. M. Rodriguez-Celis, I. B. Gornushkin, U. M. Heitmann, J. R. Almirall, B. W. Smith, J. D. Winefordner, and N. Omenetto, “Laser induces breakdown spectroscopy as a tool for discrimination of glass for forensic applications,” Anal. Bioanal. Chem. 391, 1961-1968 (2008).
[CrossRef] [PubMed]

L. Fornarini, V. Spizzichino, F. Colao, R. Fantoni, and V. Lazicm, “Influence of laser wavelength on LIBS diagnostics applied to the analysis of ancient bronzes,” Anal. Bioanal. Chem. 385, 272-280 (2006).
[CrossRef] [PubMed]

M. A. Ismail, G. Cristoforetti, S. Legnaioli, L. Pardini, V. Palleschi, A. Salvetti, E. Tognoni, and M. Harith, “Comparison of detection limits, for two metallic matrices, of laser-induced breakdown spectroscopy in the single and double-pulse configurations,” Anal. Bioanal. Chem. 385, 316-325 (2006)
[CrossRef] [PubMed]

Anal. Chem (1)

T. Ishizuka, “Laser emission spectrography of rare earth elements,” Anal. Chem 45, 538-541 (1973).
[CrossRef]

Anal. Chim. Acta (1)

J. Buscaglia, “Elemental analysis of small glass fragments in forensic science,” Anal. Chim. Acta 288, 17-24 (1994).
[CrossRef]

Appl. Opt. (2)

Appl. Spectrosc. (5)

Appl. Surf. Sci. (2)

X. L. Mao, A. C. Ciocan, O. V. Borisov, and R. E. Russo, “Laser ablation processes investigated using inductively coupled plasma-atomic emission spectroscopy (ICP-AES),” Appl. Surf. Sci. 127-129, 262-268 (1998).
[CrossRef]

A. Santagata, A. De Bonis, P. Villani, R. Teghil, and G. P. Parisi, “Fs/ns-dual-pulse orthogonal geometry plasma plume reheating for copper-based-alloys analysis,” Appl. Surf. Sci. 252, 4685-4690 (2006).
[CrossRef]

Forensic Sci. (1)

E. C. Blacklock, A. Rogers, C. Wall, and B. B. Wheels, “The quantitative analysis of glass by emission spectrography: a six element survey,” Forensic Sci. 7, 121-130 (1976).
[CrossRef] [PubMed]

Forensic Sci. Rev. (1)

J. R. Almirall and T. Trejos, “Advances in the forensic analysis of glass fragments with a focus on refractive index and elemental analysis,” Forensic Sci. Rev. 18, 73-96 (2006).

J. Anal. At. Spec. (1)

A. Zurhaar and M. Mullings, “Characterization of forensic glass samples using inductively coupled plasma mass spectrometry,” J. Anal. At. Spec. 5, 611-617 (1990).
[CrossRef]

J. Anal. At. Spectrom. (4)

K. L. Wolnik, C. M. Gaston, and F. L. Fricke, “Analysis of glass in product tampering investigations by inductively coupled plasma atomic emission spectrometry with a hydrofluoric acid resistant torch,” J. Anal. At. Spectrom. 4, 27-31 (1989).
[CrossRef]

R. D. Koons, C. A. Peters, and P. S. Rebbert, “Comparison of refractive index, energy dispersive X-ray fluorescence and inductively coupled plasma atomic emission spectrometry for forensic characterization of sheet glass fragments,” J. Anal. At. Spectrom. 6, 451-456 (1991).
[CrossRef]

R. E. Russo, X. L. Mao, O. V. Borisov, and H. Liu, “Influence of wavelength on fractionation in laser ablation ICP-MS,” J. Anal. At. Spectrom. 15, 1115-1120 (2000).
[CrossRef]

C. Geertsen, A. Briand, F. Chartier, J. Lacour, P. Mauchien, S. Sjöström, and J. Mermet, “Comparision between infrared and ultraviolet laser ablation at atmospheric pressure-implications for solid sampling inductively coupled plasma spectrometry,” J. Anal. At. Spectrom. 9, 17-22 (1994).
[CrossRef]

J. Forensic Sci. (1)

C. Latkoczy, S. Becker, M. Dücking, D. Günther, J. A. Hoogewerff, J. R. Almirall, J. Buscaglia, A. Dobney, R. D. Koons, S. Montero, G. J. van der Peijl, W. R. Stoecklein, T. Trejos, J. R. Watling, and V. S. Zdanowicz, “Development and evaluation of a standard method for the quantitative determination of elements in float glass samples by LA-ICP-MS,” J. Forensic Sci. 50, 1327-1341 (2005).
[CrossRef] [PubMed]

J. Forensic Sci. Soc. (1)

B. German, D. Morgans, A. Butterworth, and A. Scaplehorn, “A survey of British container glass using spark source mass spectrometry with electrical detection,” J. Forensic Sci. Soc. 18, 113-121 (1978).
[CrossRef] [PubMed]

J. Radioanal. Chem. (1)

R. F. Coleman and G. C. Goode, “Comparison of glass fragments by neutron activation analysis,” J. Radioanal. Chem. 15, 367-388 (1973).
[CrossRef]

Spectrochim. Acta Part B (8)

B. E. Naes, A. Umpierrez, S. Ryland, C. Barnett, and J. R. Almirall, “A comparison of laser ablation inductively coupled plasma mass spectrometry, micro X-ray fluorescence spectroscopy, and laser induced breakdown spectroscopy for the discrimination of automotive glass,” Spectrochim. Acta Part B 63, 1145-1150 (2008).
[CrossRef]

C. Barnett, E. Cahoon, and J. R. Almirall, “Wavelength dependence on the elemental analysis of glass by laser induced breakdown spectroscopy,” Spectrochim. Acta Part B 63, 1016-1023 (2008).
[CrossRef]

L. M. Cabalin and J. J. Laserna, “Experimental determination of laser induced breakdown thresholds of metals under nanosecond Q-switched laser operation,” Spectrochim. Acta Part B 53, 723-730 (1998).
[CrossRef]

C. Gautier, P. Fichet, D. Menut, J. Lacour, D. L'Hermite, and J. Dubessy, “Study of the double pulse setup with an orthogonal beam geometry for laser induced breakdown spectroscopy,” Spectrochim. Acta Part B 59, 975-986 (2004).
[CrossRef]

L. St-Onge, M. Sabsabi, and P. Cielo, “Analysis of solids using laser-induced plasma spectroscopy in double-pulse mode,” Spectrochim. Acta Part B 53, 407-415 (1998).
[CrossRef]

F. C. De Lucia, Jr., J. L. Gottfried, D. A. Munson, and A. W. Miziolek, “Double-pulse laser-induced breakdown spectroscopy of explosives: initial study towards improved discrimination,” Spectrochim. Acta Part B 62, 1399-1404 (2007).
[CrossRef]

G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “Influence of ambient gas pressure on laser-induced breakdown spectroscopy technique in the parallel double-pulse configuration,” Spectrochim. Acta Part B 59, 1907-1917 (2004).
[CrossRef]

V. Burakov, N. Tarasenko, M. Nedelko, and S. Isakov, “Time resolved spectroscopy and imaging diagnostics of single pulse and collinear double pulse laser induced break plasma from a glass sample,” Spectrochim. Acta Part B 63, 19-26 (2008).
[CrossRef]

X-Ray Spectrom. (1)

P. Kuisma-Kursula, “Accuracy, precision and detection limits of SEM-WDS, energy-dispersive spectroscopy and PIXE in the multi-elemental analysis of medieval glass,” X-Ray Spectrom. 29, 111-118 (2000).
[CrossRef]

Other (1)

C. Girault, Ph.D. thesis (Université de Limoges, 1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Simple single-pulse and double-pulse LIBS schematic.

Fig. 2
Fig. 2

NIST 1831 glass. Damage on the glass by cracking and irregular crater shapes occurs as a result of too-high IR laser power.

Fig. 3
Fig. 3

(a) Crater formed using a 266 nm laser on NIST glass standard 1831; (b) crater formed using a 1064 nm laser on NIST glass standard 1831.

Fig. 4
Fig. 4

(a) Single-pulse 1064 nm calibration curves for K I 766.5 nm ; (b) single-pulse 266 nm calibration curve for K I 766.5 nm ; (c) single-pulse 1064 nm calibration curves for Sr II 407.7 nm ; (d) single-pulse 266 nm calibration curve for Sr II 407.7 nm ; (e) single-pulse 1064 nm calibration curves for Ba II 493.4 nm ; (f) single-pulse 266 nm calibration curve for Ba II 493.4 nm .

Fig. 5
Fig. 5

Calibration curves for double-pulse plasma reheat with 266 nm ablation and 1064 nm plasma reheat for (a) K I 766.5 nm ; (b) Sr II 460.7 nm ; and (c) Ba II 493.4 nm .

Fig. 6
Fig. 6

Calibration curves for double-pulse IR prespark with 266 nm ablation for (a) K I 766.5 nm ; (b) Sr II 407.7 nm ; (c) Ba II 614.2 nm ; and (d) Ti II 336.12 nm .

Tables (2)

Tables Icon

Table 1 Certified Concentration of Glass Standards Reported in μg / g ( ppm )

Tables Icon

Table 2 Figures of Merit for the Single-Pulse 266 nm (SP UV), Double-Pulse Plasma Reheat (DP Reheat), Double-Pulse 1064 nm Prespark (DP PS), and Single-Pulse 1064 nm (SP IR)

Metrics