Abstract

In the present work, rare earth (Nd, Eu, Er, Ho) doped oxyfluoroborate glasses were studied using laser induced breakdown spectroscopy (LIBS) technique. It has been observed that rare earth elements other than the doped one also reveal their presence in the spectrum. In addition the spectral lines of elements constituting the glass matrix have also been observed. Different plasma parameters such as plasma temperature and electron density have been estimated. It is concluded that the LIBS is a potential technique to identify simultaneously the light elements (B, O, F) as well as the heavy elements (Fe, Ba, Ca, Eu, Nd, Ho, Er) present in optical glasses.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Barnett, E. Cahoon, and J. R. Almirall, “Wavelength dependence on the elemental analysis of glass by laser induced breakdown spectroscopy,” Spectrochim. Acta, Part B 63, 1016-1023 (2008).
    [CrossRef]
  2. C. M. Bridge, J. Powell, K. L. Steele, M. Williams, J. M. MacInnis, and M. E. Sigman, “Characterization of automobile float glass with laser induced breakdown spectroscopy and laser ablation inductively coupled plasma mass spectrometry,” Appl. Spectrosc. 60, 1181-1187 (2006).
    [CrossRef] [PubMed]
  3. N. Carmona, M. Oujja, S. Gaspard, M. García-Heras, M. A. Villegas, and M. Castillejo, “Lead determination in glasses by laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 62, 94-100 (2007).
    [CrossRef]
  4. B. Lal, F. Y. Yueh, and J. P. Singh, “Glass batch composition monitoring by laser induced breakdown spectroscopy,” Appl. Opt. 44, 3668 (2005).
    [CrossRef] [PubMed]
  5. S. Klein, J. Hildenhagen, K. Dickmann, T. Stratoudaki, and V. Zafiropulos, “LIBS-spectroscopy for monitoring and control of the laser cleaning process of stone and medieval glass,” J. Cult. Herit. 1, S287-S292 (2000).
    [CrossRef]
  6. N. Carmona, M. Oujja, E. Rebollar, H. Römich, and M. Castillejo, “Analysis of corroded glasses by laser induced breakdown spectroscopy,” Spectrochim. Acta, Part B 60, 1155-1162(2005).
    [CrossRef]
  7. Y. Dwivedi, A. Rai, and S. B. Rai, “Intense white upconversion emission in Pr/Er/Yb codoped tellurite glass,” J. Appl. Phys. 104, 043509-435012 (2008).
    [CrossRef]
  8. Y. Dwivedi, S. N. Thakur, and S. B. Rai, “Study of frequency upconversion in Yb3+/Eu3+ by cooperative energy transfer in oxyfluoroborate glass matrix,” Appl. Phys. B 89, 45-51(2007).
    [CrossRef]
  9. H. R. Griem, Plasma Spectroscopy (McGraw-Hill, 1964).
  10. C. F. Su, S. Feng, J. P. Singh, F. Yueh, J. T. Rigsby III, D. L. Monts, and R. L. Cook, Glass Technol. 41, 16-21 (2000).
  11. www.nist.gov.
  12. J. P. Singh and S. N. Thakur, Laser Induced Breakdown Spectroscopy (Elsevier, 2007).
  13. M. Sabsabi and P. Cielo, “Quantitative analysis of aluminum alloys by laser induced breakdown spectroscopy and plasma characterization,” Appl. Spectrosc. 49, 499-507 (1995).
    [CrossRef]
  14. M. Milan and J. J. Laserna, “Diagnostics of silicon plasmas produced by visible nanosecond laser ablation,” Spectrochim. Acta, Part B 56, 275-288 (2001).
    [CrossRef]
  15. R. W. P. McWhirter, Plasma Diagnostic Techniques (Academic, 1965).
  16. O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liska, H. H. Telle, and J. Young, “Application of laser induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 39, 2248-2262 (2000).
    [CrossRef]
  17. J. E. Sansonetti and W. C. Martin, “Handbook of basic atomic spectroscopic data,” J. Phys. Chem. Ref. Data 34, 1559-2259(2005).
    [CrossRef]

2008 (2)

C. Barnett, E. Cahoon, and J. R. Almirall, “Wavelength dependence on the elemental analysis of glass by laser induced breakdown spectroscopy,” Spectrochim. Acta, Part B 63, 1016-1023 (2008).
[CrossRef]

Y. Dwivedi, A. Rai, and S. B. Rai, “Intense white upconversion emission in Pr/Er/Yb codoped tellurite glass,” J. Appl. Phys. 104, 043509-435012 (2008).
[CrossRef]

2007 (2)

Y. Dwivedi, S. N. Thakur, and S. B. Rai, “Study of frequency upconversion in Yb3+/Eu3+ by cooperative energy transfer in oxyfluoroborate glass matrix,” Appl. Phys. B 89, 45-51(2007).
[CrossRef]

N. Carmona, M. Oujja, S. Gaspard, M. García-Heras, M. A. Villegas, and M. Castillejo, “Lead determination in glasses by laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 62, 94-100 (2007).
[CrossRef]

2006 (1)

2005 (3)

B. Lal, F. Y. Yueh, and J. P. Singh, “Glass batch composition monitoring by laser induced breakdown spectroscopy,” Appl. Opt. 44, 3668 (2005).
[CrossRef] [PubMed]

N. Carmona, M. Oujja, E. Rebollar, H. Römich, and M. Castillejo, “Analysis of corroded glasses by laser induced breakdown spectroscopy,” Spectrochim. Acta, Part B 60, 1155-1162(2005).
[CrossRef]

J. E. Sansonetti and W. C. Martin, “Handbook of basic atomic spectroscopic data,” J. Phys. Chem. Ref. Data 34, 1559-2259(2005).
[CrossRef]

2001 (1)

M. Milan and J. J. Laserna, “Diagnostics of silicon plasmas produced by visible nanosecond laser ablation,” Spectrochim. Acta, Part B 56, 275-288 (2001).
[CrossRef]

2000 (3)

O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liska, H. H. Telle, and J. Young, “Application of laser induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 39, 2248-2262 (2000).
[CrossRef]

S. Klein, J. Hildenhagen, K. Dickmann, T. Stratoudaki, and V. Zafiropulos, “LIBS-spectroscopy for monitoring and control of the laser cleaning process of stone and medieval glass,” J. Cult. Herit. 1, S287-S292 (2000).
[CrossRef]

C. F. Su, S. Feng, J. P. Singh, F. Yueh, J. T. Rigsby III, D. L. Monts, and R. L. Cook, Glass Technol. 41, 16-21 (2000).

1995 (1)

Almirall, J. R.

C. Barnett, E. Cahoon, and J. R. Almirall, “Wavelength dependence on the elemental analysis of glass by laser induced breakdown spectroscopy,” Spectrochim. Acta, Part B 63, 1016-1023 (2008).
[CrossRef]

Barnett, C.

C. Barnett, E. Cahoon, and J. R. Almirall, “Wavelength dependence on the elemental analysis of glass by laser induced breakdown spectroscopy,” Spectrochim. Acta, Part B 63, 1016-1023 (2008).
[CrossRef]

Beddows, D. C. S.

O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liska, H. H. Telle, and J. Young, “Application of laser induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 39, 2248-2262 (2000).
[CrossRef]

Bridge, C. M.

Cahoon, E.

C. Barnett, E. Cahoon, and J. R. Almirall, “Wavelength dependence on the elemental analysis of glass by laser induced breakdown spectroscopy,” Spectrochim. Acta, Part B 63, 1016-1023 (2008).
[CrossRef]

Carmona, N.

N. Carmona, M. Oujja, S. Gaspard, M. García-Heras, M. A. Villegas, and M. Castillejo, “Lead determination in glasses by laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 62, 94-100 (2007).
[CrossRef]

N. Carmona, M. Oujja, E. Rebollar, H. Römich, and M. Castillejo, “Analysis of corroded glasses by laser induced breakdown spectroscopy,” Spectrochim. Acta, Part B 60, 1155-1162(2005).
[CrossRef]

Castillejo, M.

N. Carmona, M. Oujja, S. Gaspard, M. García-Heras, M. A. Villegas, and M. Castillejo, “Lead determination in glasses by laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 62, 94-100 (2007).
[CrossRef]

N. Carmona, M. Oujja, E. Rebollar, H. Römich, and M. Castillejo, “Analysis of corroded glasses by laser induced breakdown spectroscopy,” Spectrochim. Acta, Part B 60, 1155-1162(2005).
[CrossRef]

Cielo, P.

Cook, R. L.

C. F. Su, S. Feng, J. P. Singh, F. Yueh, J. T. Rigsby III, D. L. Monts, and R. L. Cook, Glass Technol. 41, 16-21 (2000).

Dickmann, K.

S. Klein, J. Hildenhagen, K. Dickmann, T. Stratoudaki, and V. Zafiropulos, “LIBS-spectroscopy for monitoring and control of the laser cleaning process of stone and medieval glass,” J. Cult. Herit. 1, S287-S292 (2000).
[CrossRef]

Dwivedi, Y.

Y. Dwivedi, A. Rai, and S. B. Rai, “Intense white upconversion emission in Pr/Er/Yb codoped tellurite glass,” J. Appl. Phys. 104, 043509-435012 (2008).
[CrossRef]

Y. Dwivedi, S. N. Thakur, and S. B. Rai, “Study of frequency upconversion in Yb3+/Eu3+ by cooperative energy transfer in oxyfluoroborate glass matrix,” Appl. Phys. B 89, 45-51(2007).
[CrossRef]

Feng, S.

C. F. Su, S. Feng, J. P. Singh, F. Yueh, J. T. Rigsby III, D. L. Monts, and R. L. Cook, Glass Technol. 41, 16-21 (2000).

García-Heras, M.

N. Carmona, M. Oujja, S. Gaspard, M. García-Heras, M. A. Villegas, and M. Castillejo, “Lead determination in glasses by laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 62, 94-100 (2007).
[CrossRef]

Gaspard, S.

N. Carmona, M. Oujja, S. Gaspard, M. García-Heras, M. A. Villegas, and M. Castillejo, “Lead determination in glasses by laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 62, 94-100 (2007).
[CrossRef]

Griem, H. R.

H. R. Griem, Plasma Spectroscopy (McGraw-Hill, 1964).

Hildenhagen, J.

S. Klein, J. Hildenhagen, K. Dickmann, T. Stratoudaki, and V. Zafiropulos, “LIBS-spectroscopy for monitoring and control of the laser cleaning process of stone and medieval glass,” J. Cult. Herit. 1, S287-S292 (2000).
[CrossRef]

Kaiser, J.

O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liska, H. H. Telle, and J. Young, “Application of laser induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 39, 2248-2262 (2000).
[CrossRef]

Klein, S.

S. Klein, J. Hildenhagen, K. Dickmann, T. Stratoudaki, and V. Zafiropulos, “LIBS-spectroscopy for monitoring and control of the laser cleaning process of stone and medieval glass,” J. Cult. Herit. 1, S287-S292 (2000).
[CrossRef]

Kukhlevsky, S. V.

O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liska, H. H. Telle, and J. Young, “Application of laser induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 39, 2248-2262 (2000).
[CrossRef]

Lal, B.

Laserna, J. J.

M. Milan and J. J. Laserna, “Diagnostics of silicon plasmas produced by visible nanosecond laser ablation,” Spectrochim. Acta, Part B 56, 275-288 (2001).
[CrossRef]

Liska, M.

O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liska, H. H. Telle, and J. Young, “Application of laser induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 39, 2248-2262 (2000).
[CrossRef]

MacInnis, J. M.

Martin, W. C.

J. E. Sansonetti and W. C. Martin, “Handbook of basic atomic spectroscopic data,” J. Phys. Chem. Ref. Data 34, 1559-2259(2005).
[CrossRef]

McWhirter, R. W. P.

R. W. P. McWhirter, Plasma Diagnostic Techniques (Academic, 1965).

Milan, M.

M. Milan and J. J. Laserna, “Diagnostics of silicon plasmas produced by visible nanosecond laser ablation,” Spectrochim. Acta, Part B 56, 275-288 (2001).
[CrossRef]

Monts, D. L.

C. F. Su, S. Feng, J. P. Singh, F. Yueh, J. T. Rigsby III, D. L. Monts, and R. L. Cook, Glass Technol. 41, 16-21 (2000).

Oujja, M.

N. Carmona, M. Oujja, S. Gaspard, M. García-Heras, M. A. Villegas, and M. Castillejo, “Lead determination in glasses by laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 62, 94-100 (2007).
[CrossRef]

N. Carmona, M. Oujja, E. Rebollar, H. Römich, and M. Castillejo, “Analysis of corroded glasses by laser induced breakdown spectroscopy,” Spectrochim. Acta, Part B 60, 1155-1162(2005).
[CrossRef]

Powell, J.

Rai, A.

Y. Dwivedi, A. Rai, and S. B. Rai, “Intense white upconversion emission in Pr/Er/Yb codoped tellurite glass,” J. Appl. Phys. 104, 043509-435012 (2008).
[CrossRef]

Rai, S. B.

Y. Dwivedi, A. Rai, and S. B. Rai, “Intense white upconversion emission in Pr/Er/Yb codoped tellurite glass,” J. Appl. Phys. 104, 043509-435012 (2008).
[CrossRef]

Y. Dwivedi, S. N. Thakur, and S. B. Rai, “Study of frequency upconversion in Yb3+/Eu3+ by cooperative energy transfer in oxyfluoroborate glass matrix,” Appl. Phys. B 89, 45-51(2007).
[CrossRef]

Rebollar, E.

N. Carmona, M. Oujja, E. Rebollar, H. Römich, and M. Castillejo, “Analysis of corroded glasses by laser induced breakdown spectroscopy,” Spectrochim. Acta, Part B 60, 1155-1162(2005).
[CrossRef]

Rigsby, J. T.

C. F. Su, S. Feng, J. P. Singh, F. Yueh, J. T. Rigsby III, D. L. Monts, and R. L. Cook, Glass Technol. 41, 16-21 (2000).

Römich, H.

N. Carmona, M. Oujja, E. Rebollar, H. Römich, and M. Castillejo, “Analysis of corroded glasses by laser induced breakdown spectroscopy,” Spectrochim. Acta, Part B 60, 1155-1162(2005).
[CrossRef]

Sabsabi, M.

Samek, O.

O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liska, H. H. Telle, and J. Young, “Application of laser induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 39, 2248-2262 (2000).
[CrossRef]

Sansonetti, J. E.

J. E. Sansonetti and W. C. Martin, “Handbook of basic atomic spectroscopic data,” J. Phys. Chem. Ref. Data 34, 1559-2259(2005).
[CrossRef]

Sigman, M. E.

Singh, J. P.

B. Lal, F. Y. Yueh, and J. P. Singh, “Glass batch composition monitoring by laser induced breakdown spectroscopy,” Appl. Opt. 44, 3668 (2005).
[CrossRef] [PubMed]

C. F. Su, S. Feng, J. P. Singh, F. Yueh, J. T. Rigsby III, D. L. Monts, and R. L. Cook, Glass Technol. 41, 16-21 (2000).

J. P. Singh and S. N. Thakur, Laser Induced Breakdown Spectroscopy (Elsevier, 2007).

Steele, K. L.

Stratoudaki, T.

S. Klein, J. Hildenhagen, K. Dickmann, T. Stratoudaki, and V. Zafiropulos, “LIBS-spectroscopy for monitoring and control of the laser cleaning process of stone and medieval glass,” J. Cult. Herit. 1, S287-S292 (2000).
[CrossRef]

Su, C. F.

C. F. Su, S. Feng, J. P. Singh, F. Yueh, J. T. Rigsby III, D. L. Monts, and R. L. Cook, Glass Technol. 41, 16-21 (2000).

Telle, H. H.

O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liska, H. H. Telle, and J. Young, “Application of laser induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 39, 2248-2262 (2000).
[CrossRef]

Thakur, S. N.

Y. Dwivedi, S. N. Thakur, and S. B. Rai, “Study of frequency upconversion in Yb3+/Eu3+ by cooperative energy transfer in oxyfluoroborate glass matrix,” Appl. Phys. B 89, 45-51(2007).
[CrossRef]

J. P. Singh and S. N. Thakur, Laser Induced Breakdown Spectroscopy (Elsevier, 2007).

Villegas, M. A.

N. Carmona, M. Oujja, S. Gaspard, M. García-Heras, M. A. Villegas, and M. Castillejo, “Lead determination in glasses by laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 62, 94-100 (2007).
[CrossRef]

Williams, M.

Young, J.

O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liska, H. H. Telle, and J. Young, “Application of laser induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 39, 2248-2262 (2000).
[CrossRef]

Yueh, F.

C. F. Su, S. Feng, J. P. Singh, F. Yueh, J. T. Rigsby III, D. L. Monts, and R. L. Cook, Glass Technol. 41, 16-21 (2000).

Yueh, F. Y.

Zafiropulos, V.

S. Klein, J. Hildenhagen, K. Dickmann, T. Stratoudaki, and V. Zafiropulos, “LIBS-spectroscopy for monitoring and control of the laser cleaning process of stone and medieval glass,” J. Cult. Herit. 1, S287-S292 (2000).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (1)

Y. Dwivedi, S. N. Thakur, and S. B. Rai, “Study of frequency upconversion in Yb3+/Eu3+ by cooperative energy transfer in oxyfluoroborate glass matrix,” Appl. Phys. B 89, 45-51(2007).
[CrossRef]

Appl. Spectrosc. (2)

Glass Technol. (1)

C. F. Su, S. Feng, J. P. Singh, F. Yueh, J. T. Rigsby III, D. L. Monts, and R. L. Cook, Glass Technol. 41, 16-21 (2000).

J. Appl. Phys. (1)

Y. Dwivedi, A. Rai, and S. B. Rai, “Intense white upconversion emission in Pr/Er/Yb codoped tellurite glass,” J. Appl. Phys. 104, 043509-435012 (2008).
[CrossRef]

J. Cult. Herit. (1)

S. Klein, J. Hildenhagen, K. Dickmann, T. Stratoudaki, and V. Zafiropulos, “LIBS-spectroscopy for monitoring and control of the laser cleaning process of stone and medieval glass,” J. Cult. Herit. 1, S287-S292 (2000).
[CrossRef]

J. Phys. Chem. Ref. Data (1)

J. E. Sansonetti and W. C. Martin, “Handbook of basic atomic spectroscopic data,” J. Phys. Chem. Ref. Data 34, 1559-2259(2005).
[CrossRef]

Opt. Eng. (1)

O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liska, H. H. Telle, and J. Young, “Application of laser induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 39, 2248-2262 (2000).
[CrossRef]

Spectrochim. Acta, Part B (4)

M. Milan and J. J. Laserna, “Diagnostics of silicon plasmas produced by visible nanosecond laser ablation,” Spectrochim. Acta, Part B 56, 275-288 (2001).
[CrossRef]

N. Carmona, M. Oujja, E. Rebollar, H. Römich, and M. Castillejo, “Analysis of corroded glasses by laser induced breakdown spectroscopy,” Spectrochim. Acta, Part B 60, 1155-1162(2005).
[CrossRef]

N. Carmona, M. Oujja, S. Gaspard, M. García-Heras, M. A. Villegas, and M. Castillejo, “Lead determination in glasses by laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 62, 94-100 (2007).
[CrossRef]

C. Barnett, E. Cahoon, and J. R. Almirall, “Wavelength dependence on the elemental analysis of glass by laser induced breakdown spectroscopy,” Spectrochim. Acta, Part B 63, 1016-1023 (2008).
[CrossRef]

Other (4)

H. R. Griem, Plasma Spectroscopy (McGraw-Hill, 1964).

R. W. P. McWhirter, Plasma Diagnostic Techniques (Academic, 1965).

www.nist.gov.

J. P. Singh and S. N. Thakur, Laser Induced Breakdown Spectroscopy (Elsevier, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Unpolished as-made glass sample (a) Photomicrography of the erosion craters on the sample surface after its irradiation by 10 laser pulses in air (b).

Fig. 2
Fig. 2

Boltzmann plot of the O ( I ) ion lines observed in the LIBS spectrum of undoped borate glass sample. The line intensities have been determined as the integral area of the lines using best fitting analytical function. The resulting excitation temperature is 1.02 × 10 4 K .

Fig. 3
Fig. 3

Lorentzian peak fitting of O ( I ) line of the undoped glass sample.

Fig. 4
Fig. 4

LIBS spectrum of the undoped sample.

Fig. 5
Fig. 5

LIBS spectrum of the Eu doped sample.

Fig. 6
Fig. 6

LIBS spectrum of the Er doped sample.

Fig. 7
Fig. 7

LIBS spectrum of the Nd doped sample.

Fig. 8
Fig. 8

LIBS spectrum of the Ho doped sample.

Fig. 9
Fig. 9

Comparison between the most intense atomic lines of rare earth in rare earth doped samples.

Tables (1)

Tables Icon

Table 1 Major Spectral Lines of Elements Employed for LIBS Analysis and Their Transition Characteristics (λ is the Transition Wavelength, A k i is the Transition Probability, E u and E l are the Energies of Upper and Lower States, Respectively, g u and g l are the Statistical Weights of Upper and Lower States, Respectively)

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

79 H 3 BO 3 + 20 BaF 2 + X ( RE 2 O 3 ) X = 0 , 1 ; RE = Eu , Nd , Ho ,     and     Er .
ln ( I g A ) = ln [ h c N ( T ) ] 4 π U ( T ) E K T b ,
N e = Δ λ stark × 10 16 / 2 w [ cm 1 ] ,
N e ( cm 3 ) 1.6 × 10 12 [ T ( K ) ] 1 / 2 [ Δ E ( eV ) ] 3 ,

Metrics