Abstract

Laser-induced breakdown spectroscopy has been utilized to classify and identify bacterial specimens on the basis of their atomic composition. We have characterized the effect that the presence of a second bacterial species in the ablated specimen had on the identification of the majority species. Specimens with a reduced number of bacterial cells (approximately 2500) were identified with 100% accuracy when compared to undiluted specimens. In addition, a linear dependence of the total spectral power as a function of cell number was determined. Lastly, a high selectivity was obtained for a LIBS-based analysis of nine separate bacterial strains from four genera.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Morel, M. Leone, P. Adam, and J. Amouroux, “Detection of bacteria by time-resolved laser-induced breakdown spectroscopy,” Appl. Opt. 42, 6184-6191 (2003).
    [CrossRef] [PubMed]
  2. A. R. Boyain-Goitia, D. C. S. Beddows, B. C. Griffiths, and H. H. Telle, “Single-pollen analysis by laser-induced breakdown spectroscopy and Raman spectroscopy,” Appl. Opt. 42, 6119-6132 (2003).
    [CrossRef] [PubMed]
  3. J. D. Hybl, G. A. Lithgow, and S. G. Buckley, “Laser-induced breakdown spectroscopy detection and classification of biological aerosols,” Appl. Spectrosc. 57, 1207-1215 (2003).
    [CrossRef] [PubMed]
  4. N. Leone, G. D'Arthur, P. Adam, and J. Amouroux, “Detection of bacterial deposits and bioaerosals by time-resolved laser-induced breakdown spectroscopy (TRELIBS),” High Technol. Plasma Process. 8, 1-22 (2004).
  5. T. Kim, Z. G. Specht, P. S. Vary, and C. T. Lin, “Spectral fingerprints of bacterial strains by laser-induced breakdown spectroscopy,” J. Phys. Chem. B 108, 5477-5482 (2004).
    [CrossRef]
  6. P. B. Dixon and D. W. Hahn, “Feasibility of detection and identification of individual bioaerosols using laser-induced breakdown spectroscopy,” Anal. Chem. 77, 631-638 (2005).
    [CrossRef] [PubMed]
  7. M. Baudelet, L. Guyon, J. Yu, J.-P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, “Spectral signature of native CN bonds for bacterium detection and identification using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 88, 063901(2006).
    [CrossRef]
  8. M. Baudelet, L. Guyon, J. Yu, J.-P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, “Femtosecond time-resolved laser-induced breakdown spectroscopy for detection and identification of bacteria: A comparison to the nanosecond regime,” J. Appl. Phys. 99, 084701 (2006).
    [CrossRef]
  9. J. Diedrich, S. J. Rehse, and S. Palchaudhuri, “Escherichia coli identification and strain discrimination using nanosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 90, 163901 (2007).
    [CrossRef]
  10. H. L. Xu, G. Mejean, W. Liu, Y. Kamali, J.-F. Daigle, A. Azarm, P. T. Simard, P. Mathieu, G. Roy, J.-R. Simard, and S. L. Chin, “Remote detection of similar biological materials using femtosecond filament-induced breakdown spectroscopy,” Appl. Phys. B 87, 151-156 (2007).
    [CrossRef]
  11. S. J. Rehse, N. Jeyasingham, J. Diedrich, and S. Palchaudhuri, “A membrane basis for bacterial identification and discrimination using laser-induced breakdown spectroscopy,” J. Appl. Phys. 105, 102034 (2009).
    [CrossRef]
  12. M. Baudelet, M. Boueri, J. Yu, X. Mao, S. S. Mao, and R. Russo, “Laser ablation of organic materials for discrimination of bacteria in an inorganic background,” Proc. SPIE 7214, 72140J (2009).
    [CrossRef]
  13. A. L. Smith, “Central nervous System,” in Mechanisms of Microbial Disease, 3rd ed., M. Schaechter, N. C. Engleberg, B. I. Eisenstein, and G. Medoff, eds. (ASM Press, 1999), pp. 535-548.
  14. Jay H. Stein, Internal Medicine, 5th ed. (Mosby, 1998).
  15. A. L. Truant, ed., Manual of Commercial Methods in Clinical Microbiology (ASM Press, 2002).
  16. J. S. Santo Domingo and M. J. Sadowsky, eds., Microbial Source Tracking (ASM Press, 2007).
  17. D. Wang, L. Coscoy, M. Zylberberg, P. C. Avila, H. A. Boushey, D. Ganem, and J. L. DeRisi, “Microarray-based detection and genotyping of viral pathogens,” Proc. Natl. Acad. Sci. U.S.A. 99, 15687-15692 (2002).
    [CrossRef] [PubMed]
  18. D. R. Calla, M. K. Boruckia, and F. J. Loged, “Detection of bacterial pathogens in environmental samples using DNA microarrays,” J. Microbiol. Meth. 53, 235-243 (2003).
    [CrossRef]
  19. Q. Hoshino, L. S. Yilmaz, D. R. Noguera, H. Daims, and M. Wagner, “Quantification of target molecules need to detect microorganisms by fluorescence in situ hybridization (FISH) and catalyzed reporter deposition-FISH,” Appl. Environ. Microbiol. 74, 5068-5077 (2008).
    [CrossRef] [PubMed]
  20. D. R. DeMarco and D. V. Lim, “Detection of Escherichia coli O157∶H7 in 10- and 25-gram ground beef samples with an evanescent-wave biosensor with silica and polystyrene waveguides,” J. Food Prot. 65, 596-602 (2002).
    [PubMed]
  21. C. Massonet, T. De Baere, and J. Van Eldere, “Direct identification of bacteria in clinical respiratory samples using fluorescent amplicon length analysis of 16 S-23 S rRNA spacer-region,” J. Microbiol. Meth. 66, 369-379 (2006).
    [CrossRef]
  22. Ø. Kommedal, B. Karlsen, and Ø. Sæbø, “Analysis of mixed sequencing chromatograms and its application in direct 16 S rRNA gene sequencing of polymicrobial samples,” J. Clin. Microbiol. 46, 3766-3771 (2008).
    [CrossRef] [PubMed]
  23. D. Mara and N. J. Horan, Handbook of Water and Wastewater Microbiology, 1st ed. (Wiley, 2003).
  24. H. Salimnia, Technical Director Molecular Biology Detroit Medical Center University Laboratories, Detroit Michigan, USA (personal communication).
  25. S. J. Rehse and Q. I. Mohaidat, “The effect of sequential dual-gas testing on a LIBS-based discrimination of brass and bacteria,” Spectrochim. Acta B 64, 1020-1027 (2009).
    [CrossRef]
  26. J. Diedrich, S. J. Rehse, and S. Palchaudhuri, “Pathogenic Escherichia coli strain discrimination using laser-induced breakdown spectroscopy,” J. Appl. Phys. 102, 014702(2007).
    [CrossRef]
  27. R. K. Poole, Advances in Microbial Physiology (Academic Press, 2009), Vol. 55.
    [PubMed]
  28. S. J. Rehse, J. Diedrich, and S. Palchaudhuri, “Identification and discrimination of Pseudomonas aeruginosa bacteria grown in blood and bile by laser-induced breakdown spectroscopy,” Spectrochim. Acta B 62, 1169-1176 (2007).
    [CrossRef]
  29. A. C. Samuels, F. C. DeLucia, Jr., K. L. McNesby, and A. W. Miziolek, “Laser-induced breakdown spectroscopy of bacterial spores, molds, pollens, and protein: initial studies of discrimination potential,” Appl. Opt. 42, 6205-6209 (2003).
    [CrossRef] [PubMed]
  30. C. A. Munson, F. C. DeLucia, T. Piehler, K. L. McNesby, and A. W. Miziolek, “Investigation of statistics strategies for improving the discriminating power of laser-induced breakdown spectroscopy for chemical and biological warfare agent simulants,” Spectrochim. Acta B 60, 1217-1224 (2005).
    [CrossRef]
  31. F. C. DeLucia Jr., A. C. Samuels, R. S. Harmon, R. A. Walter, K. L. McNesby, A. LaPointe, R. J. Winkel, Jr., and A. W. Miziolek, “Laser-induced breakdown spectroscopy (LIBS): a promising versatile chemical sensor technology for hazardous material detection,” IEEE Sens. J. 50, 681-689 (2005).
    [CrossRef]
  32. M. Baudelet, J. Yu, M. Bossu, J. Jovelet, J.-P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, “Discrimination of microbiological samples using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 89, 163903 (2006).
    [CrossRef]
  33. J. L. Gottfried, F. C. De Lucia, Jr., C. A. Munson, and A. W. Miziolek, “Double-pulse standoff laser-induced breakdown spectroscopy for versatile hazardous materials detection,” Spectrochim. Acta B 62, 1405-1411 (2007).
    [CrossRef]
  34. J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Standoff detection of chemical and biological threats using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 62, 353-363 (2008).
    [CrossRef] [PubMed]

2009 (3)

S. J. Rehse, N. Jeyasingham, J. Diedrich, and S. Palchaudhuri, “A membrane basis for bacterial identification and discrimination using laser-induced breakdown spectroscopy,” J. Appl. Phys. 105, 102034 (2009).
[CrossRef]

M. Baudelet, M. Boueri, J. Yu, X. Mao, S. S. Mao, and R. Russo, “Laser ablation of organic materials for discrimination of bacteria in an inorganic background,” Proc. SPIE 7214, 72140J (2009).
[CrossRef]

S. J. Rehse and Q. I. Mohaidat, “The effect of sequential dual-gas testing on a LIBS-based discrimination of brass and bacteria,” Spectrochim. Acta B 64, 1020-1027 (2009).
[CrossRef]

2008 (3)

Q. Hoshino, L. S. Yilmaz, D. R. Noguera, H. Daims, and M. Wagner, “Quantification of target molecules need to detect microorganisms by fluorescence in situ hybridization (FISH) and catalyzed reporter deposition-FISH,” Appl. Environ. Microbiol. 74, 5068-5077 (2008).
[CrossRef] [PubMed]

Ø. Kommedal, B. Karlsen, and Ø. Sæbø, “Analysis of mixed sequencing chromatograms and its application in direct 16 S rRNA gene sequencing of polymicrobial samples,” J. Clin. Microbiol. 46, 3766-3771 (2008).
[CrossRef] [PubMed]

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Standoff detection of chemical and biological threats using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 62, 353-363 (2008).
[CrossRef] [PubMed]

2007 (5)

J. L. Gottfried, F. C. De Lucia, Jr., C. A. Munson, and A. W. Miziolek, “Double-pulse standoff laser-induced breakdown spectroscopy for versatile hazardous materials detection,” Spectrochim. Acta B 62, 1405-1411 (2007).
[CrossRef]

J. Diedrich, S. J. Rehse, and S. Palchaudhuri, “Pathogenic Escherichia coli strain discrimination using laser-induced breakdown spectroscopy,” J. Appl. Phys. 102, 014702(2007).
[CrossRef]

S. J. Rehse, J. Diedrich, and S. Palchaudhuri, “Identification and discrimination of Pseudomonas aeruginosa bacteria grown in blood and bile by laser-induced breakdown spectroscopy,” Spectrochim. Acta B 62, 1169-1176 (2007).
[CrossRef]

J. Diedrich, S. J. Rehse, and S. Palchaudhuri, “Escherichia coli identification and strain discrimination using nanosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 90, 163901 (2007).
[CrossRef]

H. L. Xu, G. Mejean, W. Liu, Y. Kamali, J.-F. Daigle, A. Azarm, P. T. Simard, P. Mathieu, G. Roy, J.-R. Simard, and S. L. Chin, “Remote detection of similar biological materials using femtosecond filament-induced breakdown spectroscopy,” Appl. Phys. B 87, 151-156 (2007).
[CrossRef]

2006 (4)

M. Baudelet, L. Guyon, J. Yu, J.-P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, “Spectral signature of native CN bonds for bacterium detection and identification using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 88, 063901(2006).
[CrossRef]

M. Baudelet, L. Guyon, J. Yu, J.-P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, “Femtosecond time-resolved laser-induced breakdown spectroscopy for detection and identification of bacteria: A comparison to the nanosecond regime,” J. Appl. Phys. 99, 084701 (2006).
[CrossRef]

M. Baudelet, J. Yu, M. Bossu, J. Jovelet, J.-P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, “Discrimination of microbiological samples using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 89, 163903 (2006).
[CrossRef]

C. Massonet, T. De Baere, and J. Van Eldere, “Direct identification of bacteria in clinical respiratory samples using fluorescent amplicon length analysis of 16 S-23 S rRNA spacer-region,” J. Microbiol. Meth. 66, 369-379 (2006).
[CrossRef]

2005 (3)

C. A. Munson, F. C. DeLucia, T. Piehler, K. L. McNesby, and A. W. Miziolek, “Investigation of statistics strategies for improving the discriminating power of laser-induced breakdown spectroscopy for chemical and biological warfare agent simulants,” Spectrochim. Acta B 60, 1217-1224 (2005).
[CrossRef]

F. C. DeLucia Jr., A. C. Samuels, R. S. Harmon, R. A. Walter, K. L. McNesby, A. LaPointe, R. J. Winkel, Jr., and A. W. Miziolek, “Laser-induced breakdown spectroscopy (LIBS): a promising versatile chemical sensor technology for hazardous material detection,” IEEE Sens. J. 50, 681-689 (2005).
[CrossRef]

P. B. Dixon and D. W. Hahn, “Feasibility of detection and identification of individual bioaerosols using laser-induced breakdown spectroscopy,” Anal. Chem. 77, 631-638 (2005).
[CrossRef] [PubMed]

2004 (2)

N. Leone, G. D'Arthur, P. Adam, and J. Amouroux, “Detection of bacterial deposits and bioaerosals by time-resolved laser-induced breakdown spectroscopy (TRELIBS),” High Technol. Plasma Process. 8, 1-22 (2004).

T. Kim, Z. G. Specht, P. S. Vary, and C. T. Lin, “Spectral fingerprints of bacterial strains by laser-induced breakdown spectroscopy,” J. Phys. Chem. B 108, 5477-5482 (2004).
[CrossRef]

2003 (5)

2002 (2)

D. R. DeMarco and D. V. Lim, “Detection of Escherichia coli O157∶H7 in 10- and 25-gram ground beef samples with an evanescent-wave biosensor with silica and polystyrene waveguides,” J. Food Prot. 65, 596-602 (2002).
[PubMed]

D. Wang, L. Coscoy, M. Zylberberg, P. C. Avila, H. A. Boushey, D. Ganem, and J. L. DeRisi, “Microarray-based detection and genotyping of viral pathogens,” Proc. Natl. Acad. Sci. U.S.A. 99, 15687-15692 (2002).
[CrossRef] [PubMed]

Adam, P.

N. Leone, G. D'Arthur, P. Adam, and J. Amouroux, “Detection of bacterial deposits and bioaerosals by time-resolved laser-induced breakdown spectroscopy (TRELIBS),” High Technol. Plasma Process. 8, 1-22 (2004).

S. Morel, M. Leone, P. Adam, and J. Amouroux, “Detection of bacteria by time-resolved laser-induced breakdown spectroscopy,” Appl. Opt. 42, 6184-6191 (2003).
[CrossRef] [PubMed]

Amodeo, T.

M. Baudelet, L. Guyon, J. Yu, J.-P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, “Spectral signature of native CN bonds for bacterium detection and identification using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 88, 063901(2006).
[CrossRef]

M. Baudelet, L. Guyon, J. Yu, J.-P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, “Femtosecond time-resolved laser-induced breakdown spectroscopy for detection and identification of bacteria: A comparison to the nanosecond regime,” J. Appl. Phys. 99, 084701 (2006).
[CrossRef]

M. Baudelet, J. Yu, M. Bossu, J. Jovelet, J.-P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, “Discrimination of microbiological samples using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 89, 163903 (2006).
[CrossRef]

Amouroux, J.

N. Leone, G. D'Arthur, P. Adam, and J. Amouroux, “Detection of bacterial deposits and bioaerosals by time-resolved laser-induced breakdown spectroscopy (TRELIBS),” High Technol. Plasma Process. 8, 1-22 (2004).

S. Morel, M. Leone, P. Adam, and J. Amouroux, “Detection of bacteria by time-resolved laser-induced breakdown spectroscopy,” Appl. Opt. 42, 6184-6191 (2003).
[CrossRef] [PubMed]

Avila, P. C.

D. Wang, L. Coscoy, M. Zylberberg, P. C. Avila, H. A. Boushey, D. Ganem, and J. L. DeRisi, “Microarray-based detection and genotyping of viral pathogens,” Proc. Natl. Acad. Sci. U.S.A. 99, 15687-15692 (2002).
[CrossRef] [PubMed]

Azarm, A.

H. L. Xu, G. Mejean, W. Liu, Y. Kamali, J.-F. Daigle, A. Azarm, P. T. Simard, P. Mathieu, G. Roy, J.-R. Simard, and S. L. Chin, “Remote detection of similar biological materials using femtosecond filament-induced breakdown spectroscopy,” Appl. Phys. B 87, 151-156 (2007).
[CrossRef]

Baudelet, M.

M. Baudelet, M. Boueri, J. Yu, X. Mao, S. S. Mao, and R. Russo, “Laser ablation of organic materials for discrimination of bacteria in an inorganic background,” Proc. SPIE 7214, 72140J (2009).
[CrossRef]

M. Baudelet, J. Yu, M. Bossu, J. Jovelet, J.-P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, “Discrimination of microbiological samples using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 89, 163903 (2006).
[CrossRef]

M. Baudelet, L. Guyon, J. Yu, J.-P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, “Spectral signature of native CN bonds for bacterium detection and identification using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 88, 063901(2006).
[CrossRef]

M. Baudelet, L. Guyon, J. Yu, J.-P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, “Femtosecond time-resolved laser-induced breakdown spectroscopy for detection and identification of bacteria: A comparison to the nanosecond regime,” J. Appl. Phys. 99, 084701 (2006).
[CrossRef]

Beddows, D. C. S.

Boruckia, M. K.

D. R. Calla, M. K. Boruckia, and F. J. Loged, “Detection of bacterial pathogens in environmental samples using DNA microarrays,” J. Microbiol. Meth. 53, 235-243 (2003).
[CrossRef]

Bossu, M.

M. Baudelet, J. Yu, M. Bossu, J. Jovelet, J.-P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, “Discrimination of microbiological samples using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 89, 163903 (2006).
[CrossRef]

Boueri, M.

M. Baudelet, M. Boueri, J. Yu, X. Mao, S. S. Mao, and R. Russo, “Laser ablation of organic materials for discrimination of bacteria in an inorganic background,” Proc. SPIE 7214, 72140J (2009).
[CrossRef]

Boushey, H. A.

D. Wang, L. Coscoy, M. Zylberberg, P. C. Avila, H. A. Boushey, D. Ganem, and J. L. DeRisi, “Microarray-based detection and genotyping of viral pathogens,” Proc. Natl. Acad. Sci. U.S.A. 99, 15687-15692 (2002).
[CrossRef] [PubMed]

Boyain-Goitia, A. R.

Buckley, S. G.

Calla, D. R.

D. R. Calla, M. K. Boruckia, and F. J. Loged, “Detection of bacterial pathogens in environmental samples using DNA microarrays,” J. Microbiol. Meth. 53, 235-243 (2003).
[CrossRef]

Chin, S. L.

H. L. Xu, G. Mejean, W. Liu, Y. Kamali, J.-F. Daigle, A. Azarm, P. T. Simard, P. Mathieu, G. Roy, J.-R. Simard, and S. L. Chin, “Remote detection of similar biological materials using femtosecond filament-induced breakdown spectroscopy,” Appl. Phys. B 87, 151-156 (2007).
[CrossRef]

Coscoy, L.

D. Wang, L. Coscoy, M. Zylberberg, P. C. Avila, H. A. Boushey, D. Ganem, and J. L. DeRisi, “Microarray-based detection and genotyping of viral pathogens,” Proc. Natl. Acad. Sci. U.S.A. 99, 15687-15692 (2002).
[CrossRef] [PubMed]

Daigle, J.-F.

H. L. Xu, G. Mejean, W. Liu, Y. Kamali, J.-F. Daigle, A. Azarm, P. T. Simard, P. Mathieu, G. Roy, J.-R. Simard, and S. L. Chin, “Remote detection of similar biological materials using femtosecond filament-induced breakdown spectroscopy,” Appl. Phys. B 87, 151-156 (2007).
[CrossRef]

Daims, H.

Q. Hoshino, L. S. Yilmaz, D. R. Noguera, H. Daims, and M. Wagner, “Quantification of target molecules need to detect microorganisms by fluorescence in situ hybridization (FISH) and catalyzed reporter deposition-FISH,” Appl. Environ. Microbiol. 74, 5068-5077 (2008).
[CrossRef] [PubMed]

D'Arthur, G.

N. Leone, G. D'Arthur, P. Adam, and J. Amouroux, “Detection of bacterial deposits and bioaerosals by time-resolved laser-induced breakdown spectroscopy (TRELIBS),” High Technol. Plasma Process. 8, 1-22 (2004).

De Baere, T.

C. Massonet, T. De Baere, and J. Van Eldere, “Direct identification of bacteria in clinical respiratory samples using fluorescent amplicon length analysis of 16 S-23 S rRNA spacer-region,” J. Microbiol. Meth. 66, 369-379 (2006).
[CrossRef]

De Lucia, F. C.

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Standoff detection of chemical and biological threats using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 62, 353-363 (2008).
[CrossRef] [PubMed]

J. L. Gottfried, F. C. De Lucia, Jr., C. A. Munson, and A. W. Miziolek, “Double-pulse standoff laser-induced breakdown spectroscopy for versatile hazardous materials detection,” Spectrochim. Acta B 62, 1405-1411 (2007).
[CrossRef]

DeLucia, F. C.

F. C. DeLucia Jr., A. C. Samuels, R. S. Harmon, R. A. Walter, K. L. McNesby, A. LaPointe, R. J. Winkel, Jr., and A. W. Miziolek, “Laser-induced breakdown spectroscopy (LIBS): a promising versatile chemical sensor technology for hazardous material detection,” IEEE Sens. J. 50, 681-689 (2005).
[CrossRef]

C. A. Munson, F. C. DeLucia, T. Piehler, K. L. McNesby, and A. W. Miziolek, “Investigation of statistics strategies for improving the discriminating power of laser-induced breakdown spectroscopy for chemical and biological warfare agent simulants,” Spectrochim. Acta B 60, 1217-1224 (2005).
[CrossRef]

A. C. Samuels, F. C. DeLucia, Jr., K. L. McNesby, and A. W. Miziolek, “Laser-induced breakdown spectroscopy of bacterial spores, molds, pollens, and protein: initial studies of discrimination potential,” Appl. Opt. 42, 6205-6209 (2003).
[CrossRef] [PubMed]

DeMarco, D. R.

D. R. DeMarco and D. V. Lim, “Detection of Escherichia coli O157∶H7 in 10- and 25-gram ground beef samples with an evanescent-wave biosensor with silica and polystyrene waveguides,” J. Food Prot. 65, 596-602 (2002).
[PubMed]

DeRisi, J. L.

D. Wang, L. Coscoy, M. Zylberberg, P. C. Avila, H. A. Boushey, D. Ganem, and J. L. DeRisi, “Microarray-based detection and genotyping of viral pathogens,” Proc. Natl. Acad. Sci. U.S.A. 99, 15687-15692 (2002).
[CrossRef] [PubMed]

Diedrich, J.

S. J. Rehse, N. Jeyasingham, J. Diedrich, and S. Palchaudhuri, “A membrane basis for bacterial identification and discrimination using laser-induced breakdown spectroscopy,” J. Appl. Phys. 105, 102034 (2009).
[CrossRef]

S. J. Rehse, J. Diedrich, and S. Palchaudhuri, “Identification and discrimination of Pseudomonas aeruginosa bacteria grown in blood and bile by laser-induced breakdown spectroscopy,” Spectrochim. Acta B 62, 1169-1176 (2007).
[CrossRef]

J. Diedrich, S. J. Rehse, and S. Palchaudhuri, “Pathogenic Escherichia coli strain discrimination using laser-induced breakdown spectroscopy,” J. Appl. Phys. 102, 014702(2007).
[CrossRef]

J. Diedrich, S. J. Rehse, and S. Palchaudhuri, “Escherichia coli identification and strain discrimination using nanosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 90, 163901 (2007).
[CrossRef]

Dixon, P. B.

P. B. Dixon and D. W. Hahn, “Feasibility of detection and identification of individual bioaerosols using laser-induced breakdown spectroscopy,” Anal. Chem. 77, 631-638 (2005).
[CrossRef] [PubMed]

Frejafon, E.

M. Baudelet, J. Yu, M. Bossu, J. Jovelet, J.-P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, “Discrimination of microbiological samples using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 89, 163903 (2006).
[CrossRef]

M. Baudelet, L. Guyon, J. Yu, J.-P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, “Femtosecond time-resolved laser-induced breakdown spectroscopy for detection and identification of bacteria: A comparison to the nanosecond regime,” J. Appl. Phys. 99, 084701 (2006).
[CrossRef]

M. Baudelet, L. Guyon, J. Yu, J.-P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, “Spectral signature of native CN bonds for bacterium detection and identification using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 88, 063901(2006).
[CrossRef]

Ganem, D.

D. Wang, L. Coscoy, M. Zylberberg, P. C. Avila, H. A. Boushey, D. Ganem, and J. L. DeRisi, “Microarray-based detection and genotyping of viral pathogens,” Proc. Natl. Acad. Sci. U.S.A. 99, 15687-15692 (2002).
[CrossRef] [PubMed]

Gottfried, J. L.

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Standoff detection of chemical and biological threats using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 62, 353-363 (2008).
[CrossRef] [PubMed]

J. L. Gottfried, F. C. De Lucia, Jr., C. A. Munson, and A. W. Miziolek, “Double-pulse standoff laser-induced breakdown spectroscopy for versatile hazardous materials detection,” Spectrochim. Acta B 62, 1405-1411 (2007).
[CrossRef]

Griffiths, B. C.

Guyon, L.

M. Baudelet, L. Guyon, J. Yu, J.-P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, “Spectral signature of native CN bonds for bacterium detection and identification using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 88, 063901(2006).
[CrossRef]

M. Baudelet, L. Guyon, J. Yu, J.-P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, “Femtosecond time-resolved laser-induced breakdown spectroscopy for detection and identification of bacteria: A comparison to the nanosecond regime,” J. Appl. Phys. 99, 084701 (2006).
[CrossRef]

Hahn, D. W.

P. B. Dixon and D. W. Hahn, “Feasibility of detection and identification of individual bioaerosols using laser-induced breakdown spectroscopy,” Anal. Chem. 77, 631-638 (2005).
[CrossRef] [PubMed]

Harmon, R. S.

F. C. DeLucia Jr., A. C. Samuels, R. S. Harmon, R. A. Walter, K. L. McNesby, A. LaPointe, R. J. Winkel, Jr., and A. W. Miziolek, “Laser-induced breakdown spectroscopy (LIBS): a promising versatile chemical sensor technology for hazardous material detection,” IEEE Sens. J. 50, 681-689 (2005).
[CrossRef]

Horan, N. J.

D. Mara and N. J. Horan, Handbook of Water and Wastewater Microbiology, 1st ed. (Wiley, 2003).

Hoshino, Q.

Q. Hoshino, L. S. Yilmaz, D. R. Noguera, H. Daims, and M. Wagner, “Quantification of target molecules need to detect microorganisms by fluorescence in situ hybridization (FISH) and catalyzed reporter deposition-FISH,” Appl. Environ. Microbiol. 74, 5068-5077 (2008).
[CrossRef] [PubMed]

Hybl, J. D.

Jeyasingham, N.

S. J. Rehse, N. Jeyasingham, J. Diedrich, and S. Palchaudhuri, “A membrane basis for bacterial identification and discrimination using laser-induced breakdown spectroscopy,” J. Appl. Phys. 105, 102034 (2009).
[CrossRef]

Jovelet, J.

M. Baudelet, J. Yu, M. Bossu, J. Jovelet, J.-P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, “Discrimination of microbiological samples using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 89, 163903 (2006).
[CrossRef]

Kamali, Y.

H. L. Xu, G. Mejean, W. Liu, Y. Kamali, J.-F. Daigle, A. Azarm, P. T. Simard, P. Mathieu, G. Roy, J.-R. Simard, and S. L. Chin, “Remote detection of similar biological materials using femtosecond filament-induced breakdown spectroscopy,” Appl. Phys. B 87, 151-156 (2007).
[CrossRef]

Karlsen, B.

Ø. Kommedal, B. Karlsen, and Ø. Sæbø, “Analysis of mixed sequencing chromatograms and its application in direct 16 S rRNA gene sequencing of polymicrobial samples,” J. Clin. Microbiol. 46, 3766-3771 (2008).
[CrossRef] [PubMed]

Kim, T.

T. Kim, Z. G. Specht, P. S. Vary, and C. T. Lin, “Spectral fingerprints of bacterial strains by laser-induced breakdown spectroscopy,” J. Phys. Chem. B 108, 5477-5482 (2004).
[CrossRef]

Kommedal, Ø.

Ø. Kommedal, B. Karlsen, and Ø. Sæbø, “Analysis of mixed sequencing chromatograms and its application in direct 16 S rRNA gene sequencing of polymicrobial samples,” J. Clin. Microbiol. 46, 3766-3771 (2008).
[CrossRef] [PubMed]

Laloi, P.

M. Baudelet, L. Guyon, J. Yu, J.-P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, “Spectral signature of native CN bonds for bacterium detection and identification using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 88, 063901(2006).
[CrossRef]

M. Baudelet, L. Guyon, J. Yu, J.-P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, “Femtosecond time-resolved laser-induced breakdown spectroscopy for detection and identification of bacteria: A comparison to the nanosecond regime,” J. Appl. Phys. 99, 084701 (2006).
[CrossRef]

M. Baudelet, J. Yu, M. Bossu, J. Jovelet, J.-P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, “Discrimination of microbiological samples using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 89, 163903 (2006).
[CrossRef]

LaPointe, A.

F. C. DeLucia Jr., A. C. Samuels, R. S. Harmon, R. A. Walter, K. L. McNesby, A. LaPointe, R. J. Winkel, Jr., and A. W. Miziolek, “Laser-induced breakdown spectroscopy (LIBS): a promising versatile chemical sensor technology for hazardous material detection,” IEEE Sens. J. 50, 681-689 (2005).
[CrossRef]

Leone, M.

Leone, N.

N. Leone, G. D'Arthur, P. Adam, and J. Amouroux, “Detection of bacterial deposits and bioaerosals by time-resolved laser-induced breakdown spectroscopy (TRELIBS),” High Technol. Plasma Process. 8, 1-22 (2004).

Lim, D. V.

D. R. DeMarco and D. V. Lim, “Detection of Escherichia coli O157∶H7 in 10- and 25-gram ground beef samples with an evanescent-wave biosensor with silica and polystyrene waveguides,” J. Food Prot. 65, 596-602 (2002).
[PubMed]

Lin, C. T.

T. Kim, Z. G. Specht, P. S. Vary, and C. T. Lin, “Spectral fingerprints of bacterial strains by laser-induced breakdown spectroscopy,” J. Phys. Chem. B 108, 5477-5482 (2004).
[CrossRef]

Lithgow, G. A.

Liu, W.

H. L. Xu, G. Mejean, W. Liu, Y. Kamali, J.-F. Daigle, A. Azarm, P. T. Simard, P. Mathieu, G. Roy, J.-R. Simard, and S. L. Chin, “Remote detection of similar biological materials using femtosecond filament-induced breakdown spectroscopy,” Appl. Phys. B 87, 151-156 (2007).
[CrossRef]

Loged, F. J.

D. R. Calla, M. K. Boruckia, and F. J. Loged, “Detection of bacterial pathogens in environmental samples using DNA microarrays,” J. Microbiol. Meth. 53, 235-243 (2003).
[CrossRef]

Mao, S. S.

M. Baudelet, M. Boueri, J. Yu, X. Mao, S. S. Mao, and R. Russo, “Laser ablation of organic materials for discrimination of bacteria in an inorganic background,” Proc. SPIE 7214, 72140J (2009).
[CrossRef]

Mao, X.

M. Baudelet, M. Boueri, J. Yu, X. Mao, S. S. Mao, and R. Russo, “Laser ablation of organic materials for discrimination of bacteria in an inorganic background,” Proc. SPIE 7214, 72140J (2009).
[CrossRef]

Mara, D.

D. Mara and N. J. Horan, Handbook of Water and Wastewater Microbiology, 1st ed. (Wiley, 2003).

Massonet, C.

C. Massonet, T. De Baere, and J. Van Eldere, “Direct identification of bacteria in clinical respiratory samples using fluorescent amplicon length analysis of 16 S-23 S rRNA spacer-region,” J. Microbiol. Meth. 66, 369-379 (2006).
[CrossRef]

Mathieu, P.

H. L. Xu, G. Mejean, W. Liu, Y. Kamali, J.-F. Daigle, A. Azarm, P. T. Simard, P. Mathieu, G. Roy, J.-R. Simard, and S. L. Chin, “Remote detection of similar biological materials using femtosecond filament-induced breakdown spectroscopy,” Appl. Phys. B 87, 151-156 (2007).
[CrossRef]

McNesby, K. L.

F. C. DeLucia Jr., A. C. Samuels, R. S. Harmon, R. A. Walter, K. L. McNesby, A. LaPointe, R. J. Winkel, Jr., and A. W. Miziolek, “Laser-induced breakdown spectroscopy (LIBS): a promising versatile chemical sensor technology for hazardous material detection,” IEEE Sens. J. 50, 681-689 (2005).
[CrossRef]

C. A. Munson, F. C. DeLucia, T. Piehler, K. L. McNesby, and A. W. Miziolek, “Investigation of statistics strategies for improving the discriminating power of laser-induced breakdown spectroscopy for chemical and biological warfare agent simulants,” Spectrochim. Acta B 60, 1217-1224 (2005).
[CrossRef]

A. C. Samuels, F. C. DeLucia, Jr., K. L. McNesby, and A. W. Miziolek, “Laser-induced breakdown spectroscopy of bacterial spores, molds, pollens, and protein: initial studies of discrimination potential,” Appl. Opt. 42, 6205-6209 (2003).
[CrossRef] [PubMed]

Mejean, G.

H. L. Xu, G. Mejean, W. Liu, Y. Kamali, J.-F. Daigle, A. Azarm, P. T. Simard, P. Mathieu, G. Roy, J.-R. Simard, and S. L. Chin, “Remote detection of similar biological materials using femtosecond filament-induced breakdown spectroscopy,” Appl. Phys. B 87, 151-156 (2007).
[CrossRef]

Miziolek, A. W.

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Standoff detection of chemical and biological threats using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 62, 353-363 (2008).
[CrossRef] [PubMed]

J. L. Gottfried, F. C. De Lucia, Jr., C. A. Munson, and A. W. Miziolek, “Double-pulse standoff laser-induced breakdown spectroscopy for versatile hazardous materials detection,” Spectrochim. Acta B 62, 1405-1411 (2007).
[CrossRef]

F. C. DeLucia Jr., A. C. Samuels, R. S. Harmon, R. A. Walter, K. L. McNesby, A. LaPointe, R. J. Winkel, Jr., and A. W. Miziolek, “Laser-induced breakdown spectroscopy (LIBS): a promising versatile chemical sensor technology for hazardous material detection,” IEEE Sens. J. 50, 681-689 (2005).
[CrossRef]

C. A. Munson, F. C. DeLucia, T. Piehler, K. L. McNesby, and A. W. Miziolek, “Investigation of statistics strategies for improving the discriminating power of laser-induced breakdown spectroscopy for chemical and biological warfare agent simulants,” Spectrochim. Acta B 60, 1217-1224 (2005).
[CrossRef]

A. C. Samuels, F. C. DeLucia, Jr., K. L. McNesby, and A. W. Miziolek, “Laser-induced breakdown spectroscopy of bacterial spores, molds, pollens, and protein: initial studies of discrimination potential,” Appl. Opt. 42, 6205-6209 (2003).
[CrossRef] [PubMed]

Mohaidat, Q. I.

S. J. Rehse and Q. I. Mohaidat, “The effect of sequential dual-gas testing on a LIBS-based discrimination of brass and bacteria,” Spectrochim. Acta B 64, 1020-1027 (2009).
[CrossRef]

Morel, S.

Munson, C. A.

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Standoff detection of chemical and biological threats using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 62, 353-363 (2008).
[CrossRef] [PubMed]

J. L. Gottfried, F. C. De Lucia, Jr., C. A. Munson, and A. W. Miziolek, “Double-pulse standoff laser-induced breakdown spectroscopy for versatile hazardous materials detection,” Spectrochim. Acta B 62, 1405-1411 (2007).
[CrossRef]

C. A. Munson, F. C. DeLucia, T. Piehler, K. L. McNesby, and A. W. Miziolek, “Investigation of statistics strategies for improving the discriminating power of laser-induced breakdown spectroscopy for chemical and biological warfare agent simulants,” Spectrochim. Acta B 60, 1217-1224 (2005).
[CrossRef]

Noguera, D. R.

Q. Hoshino, L. S. Yilmaz, D. R. Noguera, H. Daims, and M. Wagner, “Quantification of target molecules need to detect microorganisms by fluorescence in situ hybridization (FISH) and catalyzed reporter deposition-FISH,” Appl. Environ. Microbiol. 74, 5068-5077 (2008).
[CrossRef] [PubMed]

Palchaudhuri, S.

S. J. Rehse, N. Jeyasingham, J. Diedrich, and S. Palchaudhuri, “A membrane basis for bacterial identification and discrimination using laser-induced breakdown spectroscopy,” J. Appl. Phys. 105, 102034 (2009).
[CrossRef]

S. J. Rehse, J. Diedrich, and S. Palchaudhuri, “Identification and discrimination of Pseudomonas aeruginosa bacteria grown in blood and bile by laser-induced breakdown spectroscopy,” Spectrochim. Acta B 62, 1169-1176 (2007).
[CrossRef]

J. Diedrich, S. J. Rehse, and S. Palchaudhuri, “Pathogenic Escherichia coli strain discrimination using laser-induced breakdown spectroscopy,” J. Appl. Phys. 102, 014702(2007).
[CrossRef]

J. Diedrich, S. J. Rehse, and S. Palchaudhuri, “Escherichia coli identification and strain discrimination using nanosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 90, 163901 (2007).
[CrossRef]

Piehler, T.

C. A. Munson, F. C. DeLucia, T. Piehler, K. L. McNesby, and A. W. Miziolek, “Investigation of statistics strategies for improving the discriminating power of laser-induced breakdown spectroscopy for chemical and biological warfare agent simulants,” Spectrochim. Acta B 60, 1217-1224 (2005).
[CrossRef]

Poole, R. K.

R. K. Poole, Advances in Microbial Physiology (Academic Press, 2009), Vol. 55.
[PubMed]

Rehse, S. J.

S. J. Rehse, N. Jeyasingham, J. Diedrich, and S. Palchaudhuri, “A membrane basis for bacterial identification and discrimination using laser-induced breakdown spectroscopy,” J. Appl. Phys. 105, 102034 (2009).
[CrossRef]

S. J. Rehse and Q. I. Mohaidat, “The effect of sequential dual-gas testing on a LIBS-based discrimination of brass and bacteria,” Spectrochim. Acta B 64, 1020-1027 (2009).
[CrossRef]

S. J. Rehse, J. Diedrich, and S. Palchaudhuri, “Identification and discrimination of Pseudomonas aeruginosa bacteria grown in blood and bile by laser-induced breakdown spectroscopy,” Spectrochim. Acta B 62, 1169-1176 (2007).
[CrossRef]

J. Diedrich, S. J. Rehse, and S. Palchaudhuri, “Pathogenic Escherichia coli strain discrimination using laser-induced breakdown spectroscopy,” J. Appl. Phys. 102, 014702(2007).
[CrossRef]

J. Diedrich, S. J. Rehse, and S. Palchaudhuri, “Escherichia coli identification and strain discrimination using nanosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 90, 163901 (2007).
[CrossRef]

Roy, G.

H. L. Xu, G. Mejean, W. Liu, Y. Kamali, J.-F. Daigle, A. Azarm, P. T. Simard, P. Mathieu, G. Roy, J.-R. Simard, and S. L. Chin, “Remote detection of similar biological materials using femtosecond filament-induced breakdown spectroscopy,” Appl. Phys. B 87, 151-156 (2007).
[CrossRef]

Russo, R.

M. Baudelet, M. Boueri, J. Yu, X. Mao, S. S. Mao, and R. Russo, “Laser ablation of organic materials for discrimination of bacteria in an inorganic background,” Proc. SPIE 7214, 72140J (2009).
[CrossRef]

Sæbø, Ø.

Ø. Kommedal, B. Karlsen, and Ø. Sæbø, “Analysis of mixed sequencing chromatograms and its application in direct 16 S rRNA gene sequencing of polymicrobial samples,” J. Clin. Microbiol. 46, 3766-3771 (2008).
[CrossRef] [PubMed]

Salimnia, H.

H. Salimnia, Technical Director Molecular Biology Detroit Medical Center University Laboratories, Detroit Michigan, USA (personal communication).

Samuels, A. C.

F. C. DeLucia Jr., A. C. Samuels, R. S. Harmon, R. A. Walter, K. L. McNesby, A. LaPointe, R. J. Winkel, Jr., and A. W. Miziolek, “Laser-induced breakdown spectroscopy (LIBS): a promising versatile chemical sensor technology for hazardous material detection,” IEEE Sens. J. 50, 681-689 (2005).
[CrossRef]

A. C. Samuels, F. C. DeLucia, Jr., K. L. McNesby, and A. W. Miziolek, “Laser-induced breakdown spectroscopy of bacterial spores, molds, pollens, and protein: initial studies of discrimination potential,” Appl. Opt. 42, 6205-6209 (2003).
[CrossRef] [PubMed]

Simard, J.-R.

H. L. Xu, G. Mejean, W. Liu, Y. Kamali, J.-F. Daigle, A. Azarm, P. T. Simard, P. Mathieu, G. Roy, J.-R. Simard, and S. L. Chin, “Remote detection of similar biological materials using femtosecond filament-induced breakdown spectroscopy,” Appl. Phys. B 87, 151-156 (2007).
[CrossRef]

Simard, P. T.

H. L. Xu, G. Mejean, W. Liu, Y. Kamali, J.-F. Daigle, A. Azarm, P. T. Simard, P. Mathieu, G. Roy, J.-R. Simard, and S. L. Chin, “Remote detection of similar biological materials using femtosecond filament-induced breakdown spectroscopy,” Appl. Phys. B 87, 151-156 (2007).
[CrossRef]

Smith, A. L.

A. L. Smith, “Central nervous System,” in Mechanisms of Microbial Disease, 3rd ed., M. Schaechter, N. C. Engleberg, B. I. Eisenstein, and G. Medoff, eds. (ASM Press, 1999), pp. 535-548.

Specht, Z. G.

T. Kim, Z. G. Specht, P. S. Vary, and C. T. Lin, “Spectral fingerprints of bacterial strains by laser-induced breakdown spectroscopy,” J. Phys. Chem. B 108, 5477-5482 (2004).
[CrossRef]

Stein, Jay H.

Jay H. Stein, Internal Medicine, 5th ed. (Mosby, 1998).

Telle, H. H.

Van Eldere, J.

C. Massonet, T. De Baere, and J. Van Eldere, “Direct identification of bacteria in clinical respiratory samples using fluorescent amplicon length analysis of 16 S-23 S rRNA spacer-region,” J. Microbiol. Meth. 66, 369-379 (2006).
[CrossRef]

Vary, P. S.

T. Kim, Z. G. Specht, P. S. Vary, and C. T. Lin, “Spectral fingerprints of bacterial strains by laser-induced breakdown spectroscopy,” J. Phys. Chem. B 108, 5477-5482 (2004).
[CrossRef]

Wagner, M.

Q. Hoshino, L. S. Yilmaz, D. R. Noguera, H. Daims, and M. Wagner, “Quantification of target molecules need to detect microorganisms by fluorescence in situ hybridization (FISH) and catalyzed reporter deposition-FISH,” Appl. Environ. Microbiol. 74, 5068-5077 (2008).
[CrossRef] [PubMed]

Walter, R. A.

F. C. DeLucia Jr., A. C. Samuels, R. S. Harmon, R. A. Walter, K. L. McNesby, A. LaPointe, R. J. Winkel, Jr., and A. W. Miziolek, “Laser-induced breakdown spectroscopy (LIBS): a promising versatile chemical sensor technology for hazardous material detection,” IEEE Sens. J. 50, 681-689 (2005).
[CrossRef]

Wang, D.

D. Wang, L. Coscoy, M. Zylberberg, P. C. Avila, H. A. Boushey, D. Ganem, and J. L. DeRisi, “Microarray-based detection and genotyping of viral pathogens,” Proc. Natl. Acad. Sci. U.S.A. 99, 15687-15692 (2002).
[CrossRef] [PubMed]

Winkel, R. J.

F. C. DeLucia Jr., A. C. Samuels, R. S. Harmon, R. A. Walter, K. L. McNesby, A. LaPointe, R. J. Winkel, Jr., and A. W. Miziolek, “Laser-induced breakdown spectroscopy (LIBS): a promising versatile chemical sensor technology for hazardous material detection,” IEEE Sens. J. 50, 681-689 (2005).
[CrossRef]

Wolf, J.-P.

M. Baudelet, J. Yu, M. Bossu, J. Jovelet, J.-P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, “Discrimination of microbiological samples using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 89, 163903 (2006).
[CrossRef]

M. Baudelet, L. Guyon, J. Yu, J.-P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, “Spectral signature of native CN bonds for bacterium detection and identification using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 88, 063901(2006).
[CrossRef]

M. Baudelet, L. Guyon, J. Yu, J.-P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, “Femtosecond time-resolved laser-induced breakdown spectroscopy for detection and identification of bacteria: A comparison to the nanosecond regime,” J. Appl. Phys. 99, 084701 (2006).
[CrossRef]

Xu, H. L.

H. L. Xu, G. Mejean, W. Liu, Y. Kamali, J.-F. Daigle, A. Azarm, P. T. Simard, P. Mathieu, G. Roy, J.-R. Simard, and S. L. Chin, “Remote detection of similar biological materials using femtosecond filament-induced breakdown spectroscopy,” Appl. Phys. B 87, 151-156 (2007).
[CrossRef]

Yilmaz, L. S.

Q. Hoshino, L. S. Yilmaz, D. R. Noguera, H. Daims, and M. Wagner, “Quantification of target molecules need to detect microorganisms by fluorescence in situ hybridization (FISH) and catalyzed reporter deposition-FISH,” Appl. Environ. Microbiol. 74, 5068-5077 (2008).
[CrossRef] [PubMed]

Yu, J.

M. Baudelet, M. Boueri, J. Yu, X. Mao, S. S. Mao, and R. Russo, “Laser ablation of organic materials for discrimination of bacteria in an inorganic background,” Proc. SPIE 7214, 72140J (2009).
[CrossRef]

M. Baudelet, J. Yu, M. Bossu, J. Jovelet, J.-P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, “Discrimination of microbiological samples using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 89, 163903 (2006).
[CrossRef]

M. Baudelet, L. Guyon, J. Yu, J.-P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, “Femtosecond time-resolved laser-induced breakdown spectroscopy for detection and identification of bacteria: A comparison to the nanosecond regime,” J. Appl. Phys. 99, 084701 (2006).
[CrossRef]

M. Baudelet, L. Guyon, J. Yu, J.-P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, “Spectral signature of native CN bonds for bacterium detection and identification using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 88, 063901(2006).
[CrossRef]

Zylberberg, M.

D. Wang, L. Coscoy, M. Zylberberg, P. C. Avila, H. A. Boushey, D. Ganem, and J. L. DeRisi, “Microarray-based detection and genotyping of viral pathogens,” Proc. Natl. Acad. Sci. U.S.A. 99, 15687-15692 (2002).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

D. Wang, L. Coscoy, M. Zylberberg, P. C. Avila, H. A. Boushey, D. Ganem, and J. L. DeRisi, “Microarray-based detection and genotyping of viral pathogens,” Proc. Natl. Acad. Sci. U.S.A. 99, 15687-15692 (2002).
[CrossRef] [PubMed]

Anal. Chem. (1)

P. B. Dixon and D. W. Hahn, “Feasibility of detection and identification of individual bioaerosols using laser-induced breakdown spectroscopy,” Anal. Chem. 77, 631-638 (2005).
[CrossRef] [PubMed]

Appl. Environ. Microbiol. (1)

Q. Hoshino, L. S. Yilmaz, D. R. Noguera, H. Daims, and M. Wagner, “Quantification of target molecules need to detect microorganisms by fluorescence in situ hybridization (FISH) and catalyzed reporter deposition-FISH,” Appl. Environ. Microbiol. 74, 5068-5077 (2008).
[CrossRef] [PubMed]

Appl. Opt. (3)

Appl. Phys. B (1)

H. L. Xu, G. Mejean, W. Liu, Y. Kamali, J.-F. Daigle, A. Azarm, P. T. Simard, P. Mathieu, G. Roy, J.-R. Simard, and S. L. Chin, “Remote detection of similar biological materials using femtosecond filament-induced breakdown spectroscopy,” Appl. Phys. B 87, 151-156 (2007).
[CrossRef]

Appl. Phys. Lett. (3)

M. Baudelet, L. Guyon, J. Yu, J.-P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, “Spectral signature of native CN bonds for bacterium detection and identification using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 88, 063901(2006).
[CrossRef]

J. Diedrich, S. J. Rehse, and S. Palchaudhuri, “Escherichia coli identification and strain discrimination using nanosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 90, 163901 (2007).
[CrossRef]

M. Baudelet, J. Yu, M. Bossu, J. Jovelet, J.-P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, “Discrimination of microbiological samples using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 89, 163903 (2006).
[CrossRef]

Appl. Spectrosc. (2)

High Technol. Plasma Process. (1)

N. Leone, G. D'Arthur, P. Adam, and J. Amouroux, “Detection of bacterial deposits and bioaerosals by time-resolved laser-induced breakdown spectroscopy (TRELIBS),” High Technol. Plasma Process. 8, 1-22 (2004).

IEEE Sens. J. (1)

F. C. DeLucia Jr., A. C. Samuels, R. S. Harmon, R. A. Walter, K. L. McNesby, A. LaPointe, R. J. Winkel, Jr., and A. W. Miziolek, “Laser-induced breakdown spectroscopy (LIBS): a promising versatile chemical sensor technology for hazardous material detection,” IEEE Sens. J. 50, 681-689 (2005).
[CrossRef]

J. Appl. Phys. (3)

J. Diedrich, S. J. Rehse, and S. Palchaudhuri, “Pathogenic Escherichia coli strain discrimination using laser-induced breakdown spectroscopy,” J. Appl. Phys. 102, 014702(2007).
[CrossRef]

M. Baudelet, L. Guyon, J. Yu, J.-P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, “Femtosecond time-resolved laser-induced breakdown spectroscopy for detection and identification of bacteria: A comparison to the nanosecond regime,” J. Appl. Phys. 99, 084701 (2006).
[CrossRef]

S. J. Rehse, N. Jeyasingham, J. Diedrich, and S. Palchaudhuri, “A membrane basis for bacterial identification and discrimination using laser-induced breakdown spectroscopy,” J. Appl. Phys. 105, 102034 (2009).
[CrossRef]

J. Clin. Microbiol. (1)

Ø. Kommedal, B. Karlsen, and Ø. Sæbø, “Analysis of mixed sequencing chromatograms and its application in direct 16 S rRNA gene sequencing of polymicrobial samples,” J. Clin. Microbiol. 46, 3766-3771 (2008).
[CrossRef] [PubMed]

J. Food Prot. (1)

D. R. DeMarco and D. V. Lim, “Detection of Escherichia coli O157∶H7 in 10- and 25-gram ground beef samples with an evanescent-wave biosensor with silica and polystyrene waveguides,” J. Food Prot. 65, 596-602 (2002).
[PubMed]

J. Microbiol. Meth. (2)

C. Massonet, T. De Baere, and J. Van Eldere, “Direct identification of bacteria in clinical respiratory samples using fluorescent amplicon length analysis of 16 S-23 S rRNA spacer-region,” J. Microbiol. Meth. 66, 369-379 (2006).
[CrossRef]

D. R. Calla, M. K. Boruckia, and F. J. Loged, “Detection of bacterial pathogens in environmental samples using DNA microarrays,” J. Microbiol. Meth. 53, 235-243 (2003).
[CrossRef]

J. Phys. Chem. B (1)

T. Kim, Z. G. Specht, P. S. Vary, and C. T. Lin, “Spectral fingerprints of bacterial strains by laser-induced breakdown spectroscopy,” J. Phys. Chem. B 108, 5477-5482 (2004).
[CrossRef]

Proc. SPIE (1)

M. Baudelet, M. Boueri, J. Yu, X. Mao, S. S. Mao, and R. Russo, “Laser ablation of organic materials for discrimination of bacteria in an inorganic background,” Proc. SPIE 7214, 72140J (2009).
[CrossRef]

Spectrochim. Acta B (4)

S. J. Rehse and Q. I. Mohaidat, “The effect of sequential dual-gas testing on a LIBS-based discrimination of brass and bacteria,” Spectrochim. Acta B 64, 1020-1027 (2009).
[CrossRef]

S. J. Rehse, J. Diedrich, and S. Palchaudhuri, “Identification and discrimination of Pseudomonas aeruginosa bacteria grown in blood and bile by laser-induced breakdown spectroscopy,” Spectrochim. Acta B 62, 1169-1176 (2007).
[CrossRef]

C. A. Munson, F. C. DeLucia, T. Piehler, K. L. McNesby, and A. W. Miziolek, “Investigation of statistics strategies for improving the discriminating power of laser-induced breakdown spectroscopy for chemical and biological warfare agent simulants,” Spectrochim. Acta B 60, 1217-1224 (2005).
[CrossRef]

J. L. Gottfried, F. C. De Lucia, Jr., C. A. Munson, and A. W. Miziolek, “Double-pulse standoff laser-induced breakdown spectroscopy for versatile hazardous materials detection,” Spectrochim. Acta B 62, 1405-1411 (2007).
[CrossRef]

Other (7)

R. K. Poole, Advances in Microbial Physiology (Academic Press, 2009), Vol. 55.
[PubMed]

D. Mara and N. J. Horan, Handbook of Water and Wastewater Microbiology, 1st ed. (Wiley, 2003).

H. Salimnia, Technical Director Molecular Biology Detroit Medical Center University Laboratories, Detroit Michigan, USA (personal communication).

A. L. Smith, “Central nervous System,” in Mechanisms of Microbial Disease, 3rd ed., M. Schaechter, N. C. Engleberg, B. I. Eisenstein, and G. Medoff, eds. (ASM Press, 1999), pp. 535-548.

Jay H. Stein, Internal Medicine, 5th ed. (Mosby, 1998).

A. L. Truant, ed., Manual of Commercial Methods in Clinical Microbiology (ASM Press, 2002).

J. S. Santo Domingo and M. J. Sadowsky, eds., Microbial Source Tracking (ASM Press, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Photograph of three 10 μL bacterial “pads” mounted on a nutrient-free bacto-agar substrate. The pads are extremely thin, basically transparent, and very difficult to observe with the eye. These pads were made significantly thicker to aid in visualization. Visible in each pad is an array of dimpled craters where the LIBS laser has been rastered. Approximately 500–1500 bacteria were present in any single sampling location.

Fig. 2
Fig. 2

First three discriminant function scores from a DFA of the LIBS spectra from pure samples of three different bacteria: (1) Mycobacterium smegmatis (WT), (2) E. coli C, and (3) Streptococcus viridans, in addition to (4) the agar substrate on which they were ablated.

Fig. 3
Fig. 3

DFA plot showing the first two discriminant function scores for the spectra obtained from pure samples of two bacteria, (1) a wild type strain of M. smegmatis (WT) and (6) a strain of E. coli (C) and four mixtures of those two bacteria at various mixing fraction (2–5). As the fraction of E. coli in the mixture became progressively higher, the DF1 score of the mixture (indicative of the primary discrimination between the two bacterial types) shifted closer to the DF1 score of pure E. coli.

Fig. 4
Fig. 4

DFA plot showing the first two DF scores for three different concentrations of M. smegmatis (WT) (1–3), a highly similar mutant called M. smegmatis (TE) (4), and the Gram-positive S. viridans (5). The ability to identify and differentiate the M. smegmatis (WT) samples was independent of sample concentration.

Fig. 5
Fig. 5

Typical LIBS spectrum from the lowest concentration of M. smegmatis (WT) tested in this study. The sample was ablated in argon, and the emission lines are identified. A total of approximately 2500 bacteria were ablated to create this spectrum.

Fig. 6
Fig. 6

Total spectral power associated with each of the five elements observed in the LIBS spectrum of M. smegmatis (WT) ablated in argon as a function of bacterial cell number. A linear dependence was observed.

Fig. 7
Fig. 7

DFA plot showing the first two DF scores for LIBS spectra from two species of Staphylococcus (aureus and saprophyticus), two species of Streptococcus (viridans and mutans), two conditional mutants of M. smegmatis (WT and TE), and four strains of E. coli (enterohemorrhagic E. coli O 157 H 7 , Nino C, HF4714, and HfrK12).

Tables (3)

Tables Icon

Table 1 Resolved Spectral Emission Lines from the LIBS Plasma Utilized as Independent Variables in the Discriminant Function Analysis of Bacteria a

Tables Icon

Table 2 Classification Results from the Discriminant Function Analysis of M. smegmatis/E. coli Mixed Samples

Tables Icon

Table 3 Classification Results from the Discriminant Function Analysis of 10 Different Bacteria

Metrics