Abstract

The chlorine concentration in concrete samples was measured by laser-induced breakdown spectroscopy (LIBS). One or two pulsed second harmonic Nd:YAG lasers (λ=532nm) were used for the generation of laser-induced breakdown, and an intensified CCD camera, spectrometer, and optical bundle fiber were used for spectral measurement. To maximize the spectral intensity of the chlorine fluorescence line at a wavelength of 837.59nm, the time delay between laser irradiation and spectral measurement, the time delay between the two laser pulses in double-pulse measurement, and the gate width of the spectral measurement were optimized. The linear relationship between the spectral intensity of the chlorine fluorescence line and the chlorine concentration was verified for pressed samples with chlorine con centrations from 0.18 to 5.4kg/m3. The signal-to-noise ratio was higher than 2 for the sample with a chlorine concentration of 0.18kg/m3 (0.008  wt.  %). Thus, a chlorine concentration of 0.6kg/m3, at which the reinforcing bars in concrete structures start to corrode, can be detected. These results show that LIBS is effective for the quantitative measurement of chlorine concentration in concrete with high sensitivity.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. Cremers and L. J. Radziemski, “Detection of chlorine and fluorine in air by laser-induced breakdown spectrometry,” Anal. Chem. 55, 1252-1256 (1983).
    [CrossRef]
  2. L. St-Onge, E. Kwong, M. Sabsabi, and E. B. Vadas, “Quantitative analysis of pharmaceutical products by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 57, 1131-1140 (2002).
    [CrossRef]
  3. V. S. Burakov, V. V. Kiris, and S. N. Raikov, “Optimization of conditions for spectral determination of chlorine content in cement-based materials,” J. Appl. Spectrosc. 74, 321-327(2007).
    [CrossRef]
  4. C. D. Gehlen, E. Wiens, R. Noll, G. Wilsch, and K. Reichling, “Chlorine detection in cement with laser-induced breakdown spectroscopy in the infrared and ultraviolet spectral range,” Spectrochim. Acta Part B 64, 1135-1140 (2009).
    [CrossRef]
  5. G. Wilsch, F. Weritz, D. Schaurich, and H. Wiggenhauser, “Determination of chloride content in concrete structures with laser-induced breakdown spectroscopy,” Construct. Build. Mater. 19, 724-730 (2005).
    [CrossRef]
  6. F. Weritz, D. Schaurich, A. Taffe and G. Wilsch, “Effect of heterogeneity on the quantitative determination of trace elements in concrete,” Anal. Bioanal. Chem. 385, 248-255(2006).
    [CrossRef] [PubMed]
  7. F. Weritz, S. Ryahi, D. Schaurich, and G. Wilsch, “Quantitative determination of sulfur content in concrete with laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 60, 1121-1131 (2005).
    [CrossRef]
  8. V. S. Burakov, N. V. Tarasenko, M. I. Nedelko, V. A. Kononov, N. N. Vasilev, and S. N. Isakov, “Analysis of lead and sulfur in environmental samples by double pulse laser induced breakdown spectroscopy,” Spectrochim. Acta Part B 64, 141-146(2009).
    [CrossRef]
  9. A.W.Miziolek, V.Palleschi, and I.Schechter, eds., Laser-Induced Breakdown Spectroscopy (Cambridge Univ. Press, 2006).
    [CrossRef]
  10. D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, 2006).
    [CrossRef]
  11. J. P. Singh, H. Zhang, F.-Y. Yueh, and K. P. Carney, “Investigation of the effects of atmospheric conditions on the quantification of metal hydrides using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 50, 764-773 (1996).
    [CrossRef]

2009 (2)

C. D. Gehlen, E. Wiens, R. Noll, G. Wilsch, and K. Reichling, “Chlorine detection in cement with laser-induced breakdown spectroscopy in the infrared and ultraviolet spectral range,” Spectrochim. Acta Part B 64, 1135-1140 (2009).
[CrossRef]

V. S. Burakov, N. V. Tarasenko, M. I. Nedelko, V. A. Kononov, N. N. Vasilev, and S. N. Isakov, “Analysis of lead and sulfur in environmental samples by double pulse laser induced breakdown spectroscopy,” Spectrochim. Acta Part B 64, 141-146(2009).
[CrossRef]

2007 (1)

V. S. Burakov, V. V. Kiris, and S. N. Raikov, “Optimization of conditions for spectral determination of chlorine content in cement-based materials,” J. Appl. Spectrosc. 74, 321-327(2007).
[CrossRef]

2006 (1)

F. Weritz, D. Schaurich, A. Taffe and G. Wilsch, “Effect of heterogeneity on the quantitative determination of trace elements in concrete,” Anal. Bioanal. Chem. 385, 248-255(2006).
[CrossRef] [PubMed]

2005 (2)

F. Weritz, S. Ryahi, D. Schaurich, and G. Wilsch, “Quantitative determination of sulfur content in concrete with laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 60, 1121-1131 (2005).
[CrossRef]

G. Wilsch, F. Weritz, D. Schaurich, and H. Wiggenhauser, “Determination of chloride content in concrete structures with laser-induced breakdown spectroscopy,” Construct. Build. Mater. 19, 724-730 (2005).
[CrossRef]

2002 (1)

L. St-Onge, E. Kwong, M. Sabsabi, and E. B. Vadas, “Quantitative analysis of pharmaceutical products by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 57, 1131-1140 (2002).
[CrossRef]

1996 (1)

1983 (1)

D. A. Cremers and L. J. Radziemski, “Detection of chlorine and fluorine in air by laser-induced breakdown spectrometry,” Anal. Chem. 55, 1252-1256 (1983).
[CrossRef]

Burakov, V. S.

V. S. Burakov, N. V. Tarasenko, M. I. Nedelko, V. A. Kononov, N. N. Vasilev, and S. N. Isakov, “Analysis of lead and sulfur in environmental samples by double pulse laser induced breakdown spectroscopy,” Spectrochim. Acta Part B 64, 141-146(2009).
[CrossRef]

V. S. Burakov, V. V. Kiris, and S. N. Raikov, “Optimization of conditions for spectral determination of chlorine content in cement-based materials,” J. Appl. Spectrosc. 74, 321-327(2007).
[CrossRef]

Carney, K. P.

Cremers, D. A.

D. A. Cremers and L. J. Radziemski, “Detection of chlorine and fluorine in air by laser-induced breakdown spectrometry,” Anal. Chem. 55, 1252-1256 (1983).
[CrossRef]

D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, 2006).
[CrossRef]

Gehlen, C. D.

C. D. Gehlen, E. Wiens, R. Noll, G. Wilsch, and K. Reichling, “Chlorine detection in cement with laser-induced breakdown spectroscopy in the infrared and ultraviolet spectral range,” Spectrochim. Acta Part B 64, 1135-1140 (2009).
[CrossRef]

Isakov, S. N.

V. S. Burakov, N. V. Tarasenko, M. I. Nedelko, V. A. Kononov, N. N. Vasilev, and S. N. Isakov, “Analysis of lead and sulfur in environmental samples by double pulse laser induced breakdown spectroscopy,” Spectrochim. Acta Part B 64, 141-146(2009).
[CrossRef]

Kiris, V. V.

V. S. Burakov, V. V. Kiris, and S. N. Raikov, “Optimization of conditions for spectral determination of chlorine content in cement-based materials,” J. Appl. Spectrosc. 74, 321-327(2007).
[CrossRef]

Kononov, V. A.

V. S. Burakov, N. V. Tarasenko, M. I. Nedelko, V. A. Kononov, N. N. Vasilev, and S. N. Isakov, “Analysis of lead and sulfur in environmental samples by double pulse laser induced breakdown spectroscopy,” Spectrochim. Acta Part B 64, 141-146(2009).
[CrossRef]

Kwong, E.

L. St-Onge, E. Kwong, M. Sabsabi, and E. B. Vadas, “Quantitative analysis of pharmaceutical products by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 57, 1131-1140 (2002).
[CrossRef]

Nedelko, M. I.

V. S. Burakov, N. V. Tarasenko, M. I. Nedelko, V. A. Kononov, N. N. Vasilev, and S. N. Isakov, “Analysis of lead and sulfur in environmental samples by double pulse laser induced breakdown spectroscopy,” Spectrochim. Acta Part B 64, 141-146(2009).
[CrossRef]

Noll, R.

C. D. Gehlen, E. Wiens, R. Noll, G. Wilsch, and K. Reichling, “Chlorine detection in cement with laser-induced breakdown spectroscopy in the infrared and ultraviolet spectral range,” Spectrochim. Acta Part B 64, 1135-1140 (2009).
[CrossRef]

Radziemski, L. J.

D. A. Cremers and L. J. Radziemski, “Detection of chlorine and fluorine in air by laser-induced breakdown spectrometry,” Anal. Chem. 55, 1252-1256 (1983).
[CrossRef]

D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, 2006).
[CrossRef]

Raikov, S. N.

V. S. Burakov, V. V. Kiris, and S. N. Raikov, “Optimization of conditions for spectral determination of chlorine content in cement-based materials,” J. Appl. Spectrosc. 74, 321-327(2007).
[CrossRef]

Reichling, K.

C. D. Gehlen, E. Wiens, R. Noll, G. Wilsch, and K. Reichling, “Chlorine detection in cement with laser-induced breakdown spectroscopy in the infrared and ultraviolet spectral range,” Spectrochim. Acta Part B 64, 1135-1140 (2009).
[CrossRef]

Ryahi, S.

F. Weritz, S. Ryahi, D. Schaurich, and G. Wilsch, “Quantitative determination of sulfur content in concrete with laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 60, 1121-1131 (2005).
[CrossRef]

Sabsabi, M.

L. St-Onge, E. Kwong, M. Sabsabi, and E. B. Vadas, “Quantitative analysis of pharmaceutical products by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 57, 1131-1140 (2002).
[CrossRef]

Schaurich, D.

F. Weritz, D. Schaurich, A. Taffe and G. Wilsch, “Effect of heterogeneity on the quantitative determination of trace elements in concrete,” Anal. Bioanal. Chem. 385, 248-255(2006).
[CrossRef] [PubMed]

F. Weritz, S. Ryahi, D. Schaurich, and G. Wilsch, “Quantitative determination of sulfur content in concrete with laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 60, 1121-1131 (2005).
[CrossRef]

G. Wilsch, F. Weritz, D. Schaurich, and H. Wiggenhauser, “Determination of chloride content in concrete structures with laser-induced breakdown spectroscopy,” Construct. Build. Mater. 19, 724-730 (2005).
[CrossRef]

Singh, J. P.

St-Onge, L.

L. St-Onge, E. Kwong, M. Sabsabi, and E. B. Vadas, “Quantitative analysis of pharmaceutical products by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 57, 1131-1140 (2002).
[CrossRef]

Taffe, A.

F. Weritz, D. Schaurich, A. Taffe and G. Wilsch, “Effect of heterogeneity on the quantitative determination of trace elements in concrete,” Anal. Bioanal. Chem. 385, 248-255(2006).
[CrossRef] [PubMed]

Tarasenko, N. V.

V. S. Burakov, N. V. Tarasenko, M. I. Nedelko, V. A. Kononov, N. N. Vasilev, and S. N. Isakov, “Analysis of lead and sulfur in environmental samples by double pulse laser induced breakdown spectroscopy,” Spectrochim. Acta Part B 64, 141-146(2009).
[CrossRef]

Vadas, E. B.

L. St-Onge, E. Kwong, M. Sabsabi, and E. B. Vadas, “Quantitative analysis of pharmaceutical products by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 57, 1131-1140 (2002).
[CrossRef]

Vasilev, N. N.

V. S. Burakov, N. V. Tarasenko, M. I. Nedelko, V. A. Kononov, N. N. Vasilev, and S. N. Isakov, “Analysis of lead and sulfur in environmental samples by double pulse laser induced breakdown spectroscopy,” Spectrochim. Acta Part B 64, 141-146(2009).
[CrossRef]

Weritz, F.

F. Weritz, D. Schaurich, A. Taffe and G. Wilsch, “Effect of heterogeneity on the quantitative determination of trace elements in concrete,” Anal. Bioanal. Chem. 385, 248-255(2006).
[CrossRef] [PubMed]

F. Weritz, S. Ryahi, D. Schaurich, and G. Wilsch, “Quantitative determination of sulfur content in concrete with laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 60, 1121-1131 (2005).
[CrossRef]

G. Wilsch, F. Weritz, D. Schaurich, and H. Wiggenhauser, “Determination of chloride content in concrete structures with laser-induced breakdown spectroscopy,” Construct. Build. Mater. 19, 724-730 (2005).
[CrossRef]

Wiens, E.

C. D. Gehlen, E. Wiens, R. Noll, G. Wilsch, and K. Reichling, “Chlorine detection in cement with laser-induced breakdown spectroscopy in the infrared and ultraviolet spectral range,” Spectrochim. Acta Part B 64, 1135-1140 (2009).
[CrossRef]

Wiggenhauser, H.

G. Wilsch, F. Weritz, D. Schaurich, and H. Wiggenhauser, “Determination of chloride content in concrete structures with laser-induced breakdown spectroscopy,” Construct. Build. Mater. 19, 724-730 (2005).
[CrossRef]

Wilsch, G.

C. D. Gehlen, E. Wiens, R. Noll, G. Wilsch, and K. Reichling, “Chlorine detection in cement with laser-induced breakdown spectroscopy in the infrared and ultraviolet spectral range,” Spectrochim. Acta Part B 64, 1135-1140 (2009).
[CrossRef]

F. Weritz, D. Schaurich, A. Taffe and G. Wilsch, “Effect of heterogeneity on the quantitative determination of trace elements in concrete,” Anal. Bioanal. Chem. 385, 248-255(2006).
[CrossRef] [PubMed]

G. Wilsch, F. Weritz, D. Schaurich, and H. Wiggenhauser, “Determination of chloride content in concrete structures with laser-induced breakdown spectroscopy,” Construct. Build. Mater. 19, 724-730 (2005).
[CrossRef]

F. Weritz, S. Ryahi, D. Schaurich, and G. Wilsch, “Quantitative determination of sulfur content in concrete with laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 60, 1121-1131 (2005).
[CrossRef]

Yueh, F.-Y.

Zhang, H.

Anal. Bioanal. Chem. (1)

F. Weritz, D. Schaurich, A. Taffe and G. Wilsch, “Effect of heterogeneity on the quantitative determination of trace elements in concrete,” Anal. Bioanal. Chem. 385, 248-255(2006).
[CrossRef] [PubMed]

Anal. Chem. (1)

D. A. Cremers and L. J. Radziemski, “Detection of chlorine and fluorine in air by laser-induced breakdown spectrometry,” Anal. Chem. 55, 1252-1256 (1983).
[CrossRef]

Appl. Spectrosc. (1)

Construct. Build. Mater. (1)

G. Wilsch, F. Weritz, D. Schaurich, and H. Wiggenhauser, “Determination of chloride content in concrete structures with laser-induced breakdown spectroscopy,” Construct. Build. Mater. 19, 724-730 (2005).
[CrossRef]

J. Appl. Spectrosc. (1)

V. S. Burakov, V. V. Kiris, and S. N. Raikov, “Optimization of conditions for spectral determination of chlorine content in cement-based materials,” J. Appl. Spectrosc. 74, 321-327(2007).
[CrossRef]

Spectrochim. Acta Part B (4)

C. D. Gehlen, E. Wiens, R. Noll, G. Wilsch, and K. Reichling, “Chlorine detection in cement with laser-induced breakdown spectroscopy in the infrared and ultraviolet spectral range,” Spectrochim. Acta Part B 64, 1135-1140 (2009).
[CrossRef]

L. St-Onge, E. Kwong, M. Sabsabi, and E. B. Vadas, “Quantitative analysis of pharmaceutical products by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 57, 1131-1140 (2002).
[CrossRef]

F. Weritz, S. Ryahi, D. Schaurich, and G. Wilsch, “Quantitative determination of sulfur content in concrete with laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 60, 1121-1131 (2005).
[CrossRef]

V. S. Burakov, N. V. Tarasenko, M. I. Nedelko, V. A. Kononov, N. N. Vasilev, and S. N. Isakov, “Analysis of lead and sulfur in environmental samples by double pulse laser induced breakdown spectroscopy,” Spectrochim. Acta Part B 64, 141-146(2009).
[CrossRef]

Other (2)

A.W.Miziolek, V.Palleschi, and I.Schechter, eds., Laser-Induced Breakdown Spectroscopy (Cambridge Univ. Press, 2006).
[CrossRef]

D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, 2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (18)

Fig. 1
Fig. 1

Experimental setup and concrete pressed samples.

Fig. 2
Fig. 2

Emission spectra and plot of 5-point moving average of intensity.

Fig. 3
Fig. 3

Effect of helium buffer gas on emission spectra.

Fig. 4
Fig. 4

Dependence of chlorine fluorescence intensity on laser energy for single-pulse measurement.

Fig. 5
Fig. 5

Variation of emission spectra with gate delay time from laser irradiation ( t 1 g ) in single-pulse measurement.

Fig. 6
Fig. 6

Chlorine fluorescence intensity and SNR versus gate delay time from laser irradiation ( t 1 g ) in single-pulse measurement.

Fig. 7
Fig. 7

(a) Zero position of the focal point of laser 2 in the horizontal direction and (b) overlapped volume between the pulse of laser 2 and the ablation plasma generated by laser 1 for double-pulse measurement.

Fig. 8
Fig. 8

Chlorine fluorescence intensity versus focal point of laser 2 in the horizontal direction for double-pulse measurement. The vertical distance between the pulse of laser 2 and the sample surface was fixed at 1.5 mm .

Fig. 9
Fig. 9

Chlorine fluorescence intensity versus vertical distance between the pulse of laser 2 and sample surface for double-pulse measurement. The focal point of laser 2 in the horizontal direction was fixed at 3 mm .

Fig. 10
Fig. 10

Dependence of chlorine fluorescence intensity on the energy of laser 2 for double-pulse measurement.

Fig. 11
Fig. 11

Variation of emission spectra with interpulse delay time between laser 1 and laser 2 ( t 12 ) in double-pulse measurement.

Fig. 12
Fig. 12

Chlorine fluorescence intensity and SNR versus interpulse delay time between laser 1 and laser 2 ( t 12 ) in double-pulse measurement when gate delay time from laser 2 pulse ( t 2 g ) is 1.0 μs .

Fig. 13
Fig. 13

Chlorine fluorescence intensity and SNR versus gate delay time from laser 2 pulse ( t 2 g ) in double-pulse measurement.

Fig. 14
Fig. 14

Chlorine fluorescence intensity and SNR versus gate width ( t g ) in (a) single-pulse and (b) double-pulse measurements.

Fig. 15
Fig. 15

Emission spectra obtained under optimum conditions in single- and double-pulse measurements.

Fig. 16
Fig. 16

Fluorescence spectra versus chlorine concentration obtained with the accumulation of 500 laser pulses for (a) single-pulse and (b) double-pulse measurement. A five-point moving average was used for the intensity at each wavelength. The numbers in the figure denote chlorine concentrations in kilograms per cubic meter.

Fig. 17
Fig. 17

Chlorine fluorescence intensity versus chlorine concentration in single- and double-pulse measurements.

Fig. 18
Fig. 18

Shadowgraph images of helium buffer gas (a) without and (b) with ablation plasma.

Metrics