Abstract

Laser-induced breakdown spectroscopy (LIBS) is an analytical technique real-time geochemical analysis that is being developed for portable use outside of the laboratory. In this study, statistical signal processing and classification techniques were applied to single-shot, broadband LIBS spectra, comprising measured plasma light intensities between 200 and 960nm, for a suite of 157 garnets of different composition from 92 locations worldwide. Partial least squares discriminant analysis was applied to sets of 25 LIBS spectra for each garnet sample and used to classify the garnet samples based on composition and geographic origin. Careful consideration was given to the cross-validation procedure to ensure that the classification algorithm is robust to unseen data. The results indicate that broadband LIBS analysis can be used to discriminate garnets of different composition and has the potential to discern geographic origin.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. S. Harmon, F. C. DeLucia Jr., A. W. Miziolek, K. L. McNesby, R. A. Walters, and P. D. French, “Laser-induced breakdown spectroscopy (LIBS)--an emerging field-portable sensor technology for real-time, in situ geochemical and environmental analysis,” Geochem. Explor. Environ. Anal. 5, 21-28 (2005).
    [CrossRef]
  2. R. S. Harmon, F. C. DeLucia Jr., C. E. McManus, N. J. McMillan, T. F. Jenkins, M. E. Walsh, and A. W. Miziolek, “Laser-induced breakdown spectroscopy--an emerging chemical sensor technology for field-portable, real-time geochemical, mineralogical, and environmental applications,” Appl. Geochem. 21, 730-747 (2005).
    [CrossRef]
  3. R. S. Harmon, J. Remus, N. J. McMillan, C. McManus, L. Collins, and J. L. Gottfried, “LIBS analysis of geomaterials: geochemical fingerprinting for the rapid analysis and discrimination of minerals,” Appl. Geochem . 24, 1125-1141 (2008).
    [CrossRef]
  4. N. J. McMillan, C. E. McManus, R. S. Harmon, F. C. DeLucia Jr., and A. W. Miziolek, “Laser-induced breakdown spectroscopy analysis of complex silicate minerals--Beryl,” Anal. Bioanal. Chem. 385, 263-271 (2006).
    [CrossRef] [PubMed]
  5. N. J. McMillan, R. S. Harmon, F. C. De Lucia Jr., and A. W. Miziolek, “Laser-induced breakdown spectroscopy analysis of minerals--carbonates and silicates,” Spectrochim. Acta Part B 62, 1578-1536 (2007).
    [CrossRef]
  6. C. E. McManus, N. J. McMillan, R. S. Harmon, R. C. Whitmore, F. C. DeLucia Jr., and A. W. Miziolek, “The use of laser induced breakdown spectroscopy (LIBS) in the determination of gem provenance--Beryls,” Appl. Opt. 47, G72-G79 (2008).
    [CrossRef]
  7. J. L. Gottfried, R. S. Harmon, F. C. De Lucia Jr., and A. W. Miziolek, “Multivariate analysis of LIBS spectra for geomaterial classification,” Spectrochim. Acta Part B 64, 1009-1019(2009).
    [CrossRef]
  8. W. A. Deer, R. A. Howie, and J. Zussman, Rock-Forming Minerals, Volume 1. Ortho- and Ring Silicates (Longman Press, 1975).
  9. W. E. Ford, “A study of the relations existing between the chemical, optical, and other physical properties of the members of the garnet group,” Am. J. Sci. 40, 33-49 (1919).
    [CrossRef]
  10. M. J. Fleisher, “The relation between chemical composition and physical properties in the garnet group,” Am. Mineral. 22, 751-758 (1937).
  11. C. S. Hurlbut and C. Klein, Manual of Mineralogy (Wiley, 1977).
  12. J. W. Anthony, R. A. Bideaux, K. W. Bladh, and M. C. Nichols, Handbook of Mineralogy (Mineralogical Society of America, 2001); http://www.handbookofmineralogy.org/pdfs/Pyrope.PDF, http://www.handbookofmineralogy.org/Almandine.PDF, http://www.handbookofmineralogy.org/Andradite.PDF, http://www.handbookofmineralogy.org/Grossular.PDF, http://www.handbookofmineralogy.org/Spessartine.PDF, http://www.handbookofmineralogy.org/Uvarovite.PDF.
  13. J. Ganguly and J. C. Kennedy, “The energetics of natural garnet solid solution,” Contrib. Mineral. Petrol. 48, 137-148(1974).
    [CrossRef]
  14. R. J. Tracy, P. Robinson, and A. B. Thompson, “Garnet composition and zoning in the determination of temperature and pressure of metamorphism, central Massachusetts,” Am. Mineral. 61, 762-775 (1976).
  15. J. Ito and C. Frondel, “Synthesis of the grossularite-spessartite series,” Am. Mineral. 53, 1036-1038 (1968).
  16. J. Ito and C. Frondel, “Stilpnomelane and spessartite-grossularite from Franklin, New Jersey,” Am. Mineral. 50, 498-501 (1965).
  17. R. J. Tracy, P. Robinson, and A. B. Thompson, “Garnet composition and zoning in the determination of temperature and pressure of metamorphism, central Massachusetts,” Am. Mineral. 61, 762-775 (1976).
  18. T. P. Loomis, “Reaction of zoning of garnet,” Contrib. Mineral. Petrol. 52, 285-305 (1975).
    [CrossRef]
  19. W. H. Blackburn, “Zoned and unzoned garnets from the Grenville gneisses around Gananoque, Ontario,” Canad. Mineral 9, 691-698 (1969).
  20. D. Smith and F. R. Boyd, “Compositional zonation in garnets in peridotite xenoliths,” Contrib. Mineral Petrol. 112, 134-147 (1992).
    [CrossRef]
  21. B. M. Loeffler and R. G. Burns, “Shedding light on the color of gems and minerals,” Am. Scientist 64, 636-647 (1976).
  22. K. Nassau, “The origin of color in minerals,” Am. Mineral. 63, 219-229 (1978).
  23. G. R. Rossman, “The California Institute of Technology Mineral Spectroscopy Database” (California Institute of Technology, 2009); http://minerals.gps.caltech.edu/FILES/Visible/garnet/index.htm.
  24. Y. Ralchenko, A. E. Kramida, J. Reader, and NIST ASD Team, NIST Atomic Spectra Database (version 3.1.5) (National Institute of Standards and Technology, 2008); available online, http://physics.nist.gov/asd3.
  25. S. Wold, M. Sjöström, and L. Eriksson, “PLS-regression: a basic tool of chemometrics,” Chemometr. Intel. Lab. Syst. 58, 109-130 (2001).
    [CrossRef]
  26. C. M. Bishop, Pattern Recognition and Machine Learning (Springer, 2007).
  27. J. E. Gentle, Matrix Algebra: Theory, Computations, and Applications in Statistics (Springer, 2007).
  28. I.-G. Chong and C.-H. Jun, “Performance of some variable selection methods when multicollinearity is present,” Chemometr. Intel. Lab. Syst. 78, 103-112 (2005).
    [CrossRef]

2009

J. L. Gottfried, R. S. Harmon, F. C. De Lucia Jr., and A. W. Miziolek, “Multivariate analysis of LIBS spectra for geomaterial classification,” Spectrochim. Acta Part B 64, 1009-1019(2009).
[CrossRef]

2008

C. E. McManus, N. J. McMillan, R. S. Harmon, R. C. Whitmore, F. C. DeLucia Jr., and A. W. Miziolek, “The use of laser induced breakdown spectroscopy (LIBS) in the determination of gem provenance--Beryls,” Appl. Opt. 47, G72-G79 (2008).
[CrossRef]

R. S. Harmon, J. Remus, N. J. McMillan, C. McManus, L. Collins, and J. L. Gottfried, “LIBS analysis of geomaterials: geochemical fingerprinting for the rapid analysis and discrimination of minerals,” Appl. Geochem . 24, 1125-1141 (2008).
[CrossRef]

2007

N. J. McMillan, R. S. Harmon, F. C. De Lucia Jr., and A. W. Miziolek, “Laser-induced breakdown spectroscopy analysis of minerals--carbonates and silicates,” Spectrochim. Acta Part B 62, 1578-1536 (2007).
[CrossRef]

2006

N. J. McMillan, C. E. McManus, R. S. Harmon, F. C. DeLucia Jr., and A. W. Miziolek, “Laser-induced breakdown spectroscopy analysis of complex silicate minerals--Beryl,” Anal. Bioanal. Chem. 385, 263-271 (2006).
[CrossRef] [PubMed]

2005

R. S. Harmon, F. C. DeLucia Jr., A. W. Miziolek, K. L. McNesby, R. A. Walters, and P. D. French, “Laser-induced breakdown spectroscopy (LIBS)--an emerging field-portable sensor technology for real-time, in situ geochemical and environmental analysis,” Geochem. Explor. Environ. Anal. 5, 21-28 (2005).
[CrossRef]

R. S. Harmon, F. C. DeLucia Jr., C. E. McManus, N. J. McMillan, T. F. Jenkins, M. E. Walsh, and A. W. Miziolek, “Laser-induced breakdown spectroscopy--an emerging chemical sensor technology for field-portable, real-time geochemical, mineralogical, and environmental applications,” Appl. Geochem. 21, 730-747 (2005).
[CrossRef]

I.-G. Chong and C.-H. Jun, “Performance of some variable selection methods when multicollinearity is present,” Chemometr. Intel. Lab. Syst. 78, 103-112 (2005).
[CrossRef]

2001

S. Wold, M. Sjöström, and L. Eriksson, “PLS-regression: a basic tool of chemometrics,” Chemometr. Intel. Lab. Syst. 58, 109-130 (2001).
[CrossRef]

1992

D. Smith and F. R. Boyd, “Compositional zonation in garnets in peridotite xenoliths,” Contrib. Mineral Petrol. 112, 134-147 (1992).
[CrossRef]

1978

K. Nassau, “The origin of color in minerals,” Am. Mineral. 63, 219-229 (1978).

1976

B. M. Loeffler and R. G. Burns, “Shedding light on the color of gems and minerals,” Am. Scientist 64, 636-647 (1976).

R. J. Tracy, P. Robinson, and A. B. Thompson, “Garnet composition and zoning in the determination of temperature and pressure of metamorphism, central Massachusetts,” Am. Mineral. 61, 762-775 (1976).

R. J. Tracy, P. Robinson, and A. B. Thompson, “Garnet composition and zoning in the determination of temperature and pressure of metamorphism, central Massachusetts,” Am. Mineral. 61, 762-775 (1976).

1975

T. P. Loomis, “Reaction of zoning of garnet,” Contrib. Mineral. Petrol. 52, 285-305 (1975).
[CrossRef]

1974

J. Ganguly and J. C. Kennedy, “The energetics of natural garnet solid solution,” Contrib. Mineral. Petrol. 48, 137-148(1974).
[CrossRef]

1969

W. H. Blackburn, “Zoned and unzoned garnets from the Grenville gneisses around Gananoque, Ontario,” Canad. Mineral 9, 691-698 (1969).

1968

J. Ito and C. Frondel, “Synthesis of the grossularite-spessartite series,” Am. Mineral. 53, 1036-1038 (1968).

1965

J. Ito and C. Frondel, “Stilpnomelane and spessartite-grossularite from Franklin, New Jersey,” Am. Mineral. 50, 498-501 (1965).

1937

M. J. Fleisher, “The relation between chemical composition and physical properties in the garnet group,” Am. Mineral. 22, 751-758 (1937).

1919

W. E. Ford, “A study of the relations existing between the chemical, optical, and other physical properties of the members of the garnet group,” Am. J. Sci. 40, 33-49 (1919).
[CrossRef]

Anthony, J. W.

J. W. Anthony, R. A. Bideaux, K. W. Bladh, and M. C. Nichols, Handbook of Mineralogy (Mineralogical Society of America, 2001); http://www.handbookofmineralogy.org/pdfs/Pyrope.PDF, http://www.handbookofmineralogy.org/Almandine.PDF, http://www.handbookofmineralogy.org/Andradite.PDF, http://www.handbookofmineralogy.org/Grossular.PDF, http://www.handbookofmineralogy.org/Spessartine.PDF, http://www.handbookofmineralogy.org/Uvarovite.PDF.

Bideaux, R. A.

J. W. Anthony, R. A. Bideaux, K. W. Bladh, and M. C. Nichols, Handbook of Mineralogy (Mineralogical Society of America, 2001); http://www.handbookofmineralogy.org/pdfs/Pyrope.PDF, http://www.handbookofmineralogy.org/Almandine.PDF, http://www.handbookofmineralogy.org/Andradite.PDF, http://www.handbookofmineralogy.org/Grossular.PDF, http://www.handbookofmineralogy.org/Spessartine.PDF, http://www.handbookofmineralogy.org/Uvarovite.PDF.

Bishop, C. M.

C. M. Bishop, Pattern Recognition and Machine Learning (Springer, 2007).

Blackburn, W. H.

W. H. Blackburn, “Zoned and unzoned garnets from the Grenville gneisses around Gananoque, Ontario,” Canad. Mineral 9, 691-698 (1969).

Bladh, K. W.

J. W. Anthony, R. A. Bideaux, K. W. Bladh, and M. C. Nichols, Handbook of Mineralogy (Mineralogical Society of America, 2001); http://www.handbookofmineralogy.org/pdfs/Pyrope.PDF, http://www.handbookofmineralogy.org/Almandine.PDF, http://www.handbookofmineralogy.org/Andradite.PDF, http://www.handbookofmineralogy.org/Grossular.PDF, http://www.handbookofmineralogy.org/Spessartine.PDF, http://www.handbookofmineralogy.org/Uvarovite.PDF.

Boyd, F. R.

D. Smith and F. R. Boyd, “Compositional zonation in garnets in peridotite xenoliths,” Contrib. Mineral Petrol. 112, 134-147 (1992).
[CrossRef]

Burns, R. G.

B. M. Loeffler and R. G. Burns, “Shedding light on the color of gems and minerals,” Am. Scientist 64, 636-647 (1976).

Chong, I.-G.

I.-G. Chong and C.-H. Jun, “Performance of some variable selection methods when multicollinearity is present,” Chemometr. Intel. Lab. Syst. 78, 103-112 (2005).
[CrossRef]

Collins, L.

R. S. Harmon, J. Remus, N. J. McMillan, C. McManus, L. Collins, and J. L. Gottfried, “LIBS analysis of geomaterials: geochemical fingerprinting for the rapid analysis and discrimination of minerals,” Appl. Geochem . 24, 1125-1141 (2008).
[CrossRef]

De Lucia, F. C.

J. L. Gottfried, R. S. Harmon, F. C. De Lucia Jr., and A. W. Miziolek, “Multivariate analysis of LIBS spectra for geomaterial classification,” Spectrochim. Acta Part B 64, 1009-1019(2009).
[CrossRef]

N. J. McMillan, R. S. Harmon, F. C. De Lucia Jr., and A. W. Miziolek, “Laser-induced breakdown spectroscopy analysis of minerals--carbonates and silicates,” Spectrochim. Acta Part B 62, 1578-1536 (2007).
[CrossRef]

Deer, W. A.

W. A. Deer, R. A. Howie, and J. Zussman, Rock-Forming Minerals, Volume 1. Ortho- and Ring Silicates (Longman Press, 1975).

DeLucia, F. C.

C. E. McManus, N. J. McMillan, R. S. Harmon, R. C. Whitmore, F. C. DeLucia Jr., and A. W. Miziolek, “The use of laser induced breakdown spectroscopy (LIBS) in the determination of gem provenance--Beryls,” Appl. Opt. 47, G72-G79 (2008).
[CrossRef]

N. J. McMillan, C. E. McManus, R. S. Harmon, F. C. DeLucia Jr., and A. W. Miziolek, “Laser-induced breakdown spectroscopy analysis of complex silicate minerals--Beryl,” Anal. Bioanal. Chem. 385, 263-271 (2006).
[CrossRef] [PubMed]

R. S. Harmon, F. C. DeLucia Jr., A. W. Miziolek, K. L. McNesby, R. A. Walters, and P. D. French, “Laser-induced breakdown spectroscopy (LIBS)--an emerging field-portable sensor technology for real-time, in situ geochemical and environmental analysis,” Geochem. Explor. Environ. Anal. 5, 21-28 (2005).
[CrossRef]

R. S. Harmon, F. C. DeLucia Jr., C. E. McManus, N. J. McMillan, T. F. Jenkins, M. E. Walsh, and A. W. Miziolek, “Laser-induced breakdown spectroscopy--an emerging chemical sensor technology for field-portable, real-time geochemical, mineralogical, and environmental applications,” Appl. Geochem. 21, 730-747 (2005).
[CrossRef]

Eriksson, L.

S. Wold, M. Sjöström, and L. Eriksson, “PLS-regression: a basic tool of chemometrics,” Chemometr. Intel. Lab. Syst. 58, 109-130 (2001).
[CrossRef]

Fleisher, M. J.

M. J. Fleisher, “The relation between chemical composition and physical properties in the garnet group,” Am. Mineral. 22, 751-758 (1937).

Ford, W. E.

W. E. Ford, “A study of the relations existing between the chemical, optical, and other physical properties of the members of the garnet group,” Am. J. Sci. 40, 33-49 (1919).
[CrossRef]

French, P. D.

R. S. Harmon, F. C. DeLucia Jr., A. W. Miziolek, K. L. McNesby, R. A. Walters, and P. D. French, “Laser-induced breakdown spectroscopy (LIBS)--an emerging field-portable sensor technology for real-time, in situ geochemical and environmental analysis,” Geochem. Explor. Environ. Anal. 5, 21-28 (2005).
[CrossRef]

Frondel, C.

J. Ito and C. Frondel, “Synthesis of the grossularite-spessartite series,” Am. Mineral. 53, 1036-1038 (1968).

J. Ito and C. Frondel, “Stilpnomelane and spessartite-grossularite from Franklin, New Jersey,” Am. Mineral. 50, 498-501 (1965).

Ganguly, J.

J. Ganguly and J. C. Kennedy, “The energetics of natural garnet solid solution,” Contrib. Mineral. Petrol. 48, 137-148(1974).
[CrossRef]

Gentle, J. E.

J. E. Gentle, Matrix Algebra: Theory, Computations, and Applications in Statistics (Springer, 2007).

Gottfried, J. L.

J. L. Gottfried, R. S. Harmon, F. C. De Lucia Jr., and A. W. Miziolek, “Multivariate analysis of LIBS spectra for geomaterial classification,” Spectrochim. Acta Part B 64, 1009-1019(2009).
[CrossRef]

R. S. Harmon, J. Remus, N. J. McMillan, C. McManus, L. Collins, and J. L. Gottfried, “LIBS analysis of geomaterials: geochemical fingerprinting for the rapid analysis and discrimination of minerals,” Appl. Geochem . 24, 1125-1141 (2008).
[CrossRef]

Harmon, R. S.

J. L. Gottfried, R. S. Harmon, F. C. De Lucia Jr., and A. W. Miziolek, “Multivariate analysis of LIBS spectra for geomaterial classification,” Spectrochim. Acta Part B 64, 1009-1019(2009).
[CrossRef]

C. E. McManus, N. J. McMillan, R. S. Harmon, R. C. Whitmore, F. C. DeLucia Jr., and A. W. Miziolek, “The use of laser induced breakdown spectroscopy (LIBS) in the determination of gem provenance--Beryls,” Appl. Opt. 47, G72-G79 (2008).
[CrossRef]

R. S. Harmon, J. Remus, N. J. McMillan, C. McManus, L. Collins, and J. L. Gottfried, “LIBS analysis of geomaterials: geochemical fingerprinting for the rapid analysis and discrimination of minerals,” Appl. Geochem . 24, 1125-1141 (2008).
[CrossRef]

N. J. McMillan, R. S. Harmon, F. C. De Lucia Jr., and A. W. Miziolek, “Laser-induced breakdown spectroscopy analysis of minerals--carbonates and silicates,” Spectrochim. Acta Part B 62, 1578-1536 (2007).
[CrossRef]

N. J. McMillan, C. E. McManus, R. S. Harmon, F. C. DeLucia Jr., and A. W. Miziolek, “Laser-induced breakdown spectroscopy analysis of complex silicate minerals--Beryl,” Anal. Bioanal. Chem. 385, 263-271 (2006).
[CrossRef] [PubMed]

R. S. Harmon, F. C. DeLucia Jr., A. W. Miziolek, K. L. McNesby, R. A. Walters, and P. D. French, “Laser-induced breakdown spectroscopy (LIBS)--an emerging field-portable sensor technology for real-time, in situ geochemical and environmental analysis,” Geochem. Explor. Environ. Anal. 5, 21-28 (2005).
[CrossRef]

R. S. Harmon, F. C. DeLucia Jr., C. E. McManus, N. J. McMillan, T. F. Jenkins, M. E. Walsh, and A. W. Miziolek, “Laser-induced breakdown spectroscopy--an emerging chemical sensor technology for field-portable, real-time geochemical, mineralogical, and environmental applications,” Appl. Geochem. 21, 730-747 (2005).
[CrossRef]

Howie, R. A.

W. A. Deer, R. A. Howie, and J. Zussman, Rock-Forming Minerals, Volume 1. Ortho- and Ring Silicates (Longman Press, 1975).

Hurlbut, C. S.

C. S. Hurlbut and C. Klein, Manual of Mineralogy (Wiley, 1977).

Ito, J.

J. Ito and C. Frondel, “Synthesis of the grossularite-spessartite series,” Am. Mineral. 53, 1036-1038 (1968).

J. Ito and C. Frondel, “Stilpnomelane and spessartite-grossularite from Franklin, New Jersey,” Am. Mineral. 50, 498-501 (1965).

Jenkins, T. F.

R. S. Harmon, F. C. DeLucia Jr., C. E. McManus, N. J. McMillan, T. F. Jenkins, M. E. Walsh, and A. W. Miziolek, “Laser-induced breakdown spectroscopy--an emerging chemical sensor technology for field-portable, real-time geochemical, mineralogical, and environmental applications,” Appl. Geochem. 21, 730-747 (2005).
[CrossRef]

Jun, C.-H.

I.-G. Chong and C.-H. Jun, “Performance of some variable selection methods when multicollinearity is present,” Chemometr. Intel. Lab. Syst. 78, 103-112 (2005).
[CrossRef]

Kennedy, J. C.

J. Ganguly and J. C. Kennedy, “The energetics of natural garnet solid solution,” Contrib. Mineral. Petrol. 48, 137-148(1974).
[CrossRef]

Klein, C.

C. S. Hurlbut and C. Klein, Manual of Mineralogy (Wiley, 1977).

Kramida, A. E.

Y. Ralchenko, A. E. Kramida, J. Reader, and NIST ASD Team, NIST Atomic Spectra Database (version 3.1.5) (National Institute of Standards and Technology, 2008); available online, http://physics.nist.gov/asd3.

Loeffler, B. M.

B. M. Loeffler and R. G. Burns, “Shedding light on the color of gems and minerals,” Am. Scientist 64, 636-647 (1976).

Loomis, T. P.

T. P. Loomis, “Reaction of zoning of garnet,” Contrib. Mineral. Petrol. 52, 285-305 (1975).
[CrossRef]

McManus, C.

R. S. Harmon, J. Remus, N. J. McMillan, C. McManus, L. Collins, and J. L. Gottfried, “LIBS analysis of geomaterials: geochemical fingerprinting for the rapid analysis and discrimination of minerals,” Appl. Geochem . 24, 1125-1141 (2008).
[CrossRef]

McManus, C. E.

C. E. McManus, N. J. McMillan, R. S. Harmon, R. C. Whitmore, F. C. DeLucia Jr., and A. W. Miziolek, “The use of laser induced breakdown spectroscopy (LIBS) in the determination of gem provenance--Beryls,” Appl. Opt. 47, G72-G79 (2008).
[CrossRef]

N. J. McMillan, C. E. McManus, R. S. Harmon, F. C. DeLucia Jr., and A. W. Miziolek, “Laser-induced breakdown spectroscopy analysis of complex silicate minerals--Beryl,” Anal. Bioanal. Chem. 385, 263-271 (2006).
[CrossRef] [PubMed]

R. S. Harmon, F. C. DeLucia Jr., C. E. McManus, N. J. McMillan, T. F. Jenkins, M. E. Walsh, and A. W. Miziolek, “Laser-induced breakdown spectroscopy--an emerging chemical sensor technology for field-portable, real-time geochemical, mineralogical, and environmental applications,” Appl. Geochem. 21, 730-747 (2005).
[CrossRef]

McMillan, N. J.

R. S. Harmon, J. Remus, N. J. McMillan, C. McManus, L. Collins, and J. L. Gottfried, “LIBS analysis of geomaterials: geochemical fingerprinting for the rapid analysis and discrimination of minerals,” Appl. Geochem . 24, 1125-1141 (2008).
[CrossRef]

C. E. McManus, N. J. McMillan, R. S. Harmon, R. C. Whitmore, F. C. DeLucia Jr., and A. W. Miziolek, “The use of laser induced breakdown spectroscopy (LIBS) in the determination of gem provenance--Beryls,” Appl. Opt. 47, G72-G79 (2008).
[CrossRef]

N. J. McMillan, R. S. Harmon, F. C. De Lucia Jr., and A. W. Miziolek, “Laser-induced breakdown spectroscopy analysis of minerals--carbonates and silicates,” Spectrochim. Acta Part B 62, 1578-1536 (2007).
[CrossRef]

N. J. McMillan, C. E. McManus, R. S. Harmon, F. C. DeLucia Jr., and A. W. Miziolek, “Laser-induced breakdown spectroscopy analysis of complex silicate minerals--Beryl,” Anal. Bioanal. Chem. 385, 263-271 (2006).
[CrossRef] [PubMed]

R. S. Harmon, F. C. DeLucia Jr., C. E. McManus, N. J. McMillan, T. F. Jenkins, M. E. Walsh, and A. W. Miziolek, “Laser-induced breakdown spectroscopy--an emerging chemical sensor technology for field-portable, real-time geochemical, mineralogical, and environmental applications,” Appl. Geochem. 21, 730-747 (2005).
[CrossRef]

McNesby, K. L.

R. S. Harmon, F. C. DeLucia Jr., A. W. Miziolek, K. L. McNesby, R. A. Walters, and P. D. French, “Laser-induced breakdown spectroscopy (LIBS)--an emerging field-portable sensor technology for real-time, in situ geochemical and environmental analysis,” Geochem. Explor. Environ. Anal. 5, 21-28 (2005).
[CrossRef]

Miziolek, A. W.

J. L. Gottfried, R. S. Harmon, F. C. De Lucia Jr., and A. W. Miziolek, “Multivariate analysis of LIBS spectra for geomaterial classification,” Spectrochim. Acta Part B 64, 1009-1019(2009).
[CrossRef]

C. E. McManus, N. J. McMillan, R. S. Harmon, R. C. Whitmore, F. C. DeLucia Jr., and A. W. Miziolek, “The use of laser induced breakdown spectroscopy (LIBS) in the determination of gem provenance--Beryls,” Appl. Opt. 47, G72-G79 (2008).
[CrossRef]

N. J. McMillan, R. S. Harmon, F. C. De Lucia Jr., and A. W. Miziolek, “Laser-induced breakdown spectroscopy analysis of minerals--carbonates and silicates,” Spectrochim. Acta Part B 62, 1578-1536 (2007).
[CrossRef]

N. J. McMillan, C. E. McManus, R. S. Harmon, F. C. DeLucia Jr., and A. W. Miziolek, “Laser-induced breakdown spectroscopy analysis of complex silicate minerals--Beryl,” Anal. Bioanal. Chem. 385, 263-271 (2006).
[CrossRef] [PubMed]

R. S. Harmon, F. C. DeLucia Jr., A. W. Miziolek, K. L. McNesby, R. A. Walters, and P. D. French, “Laser-induced breakdown spectroscopy (LIBS)--an emerging field-portable sensor technology for real-time, in situ geochemical and environmental analysis,” Geochem. Explor. Environ. Anal. 5, 21-28 (2005).
[CrossRef]

R. S. Harmon, F. C. DeLucia Jr., C. E. McManus, N. J. McMillan, T. F. Jenkins, M. E. Walsh, and A. W. Miziolek, “Laser-induced breakdown spectroscopy--an emerging chemical sensor technology for field-portable, real-time geochemical, mineralogical, and environmental applications,” Appl. Geochem. 21, 730-747 (2005).
[CrossRef]

Nassau, K.

K. Nassau, “The origin of color in minerals,” Am. Mineral. 63, 219-229 (1978).

Nichols, M. C.

J. W. Anthony, R. A. Bideaux, K. W. Bladh, and M. C. Nichols, Handbook of Mineralogy (Mineralogical Society of America, 2001); http://www.handbookofmineralogy.org/pdfs/Pyrope.PDF, http://www.handbookofmineralogy.org/Almandine.PDF, http://www.handbookofmineralogy.org/Andradite.PDF, http://www.handbookofmineralogy.org/Grossular.PDF, http://www.handbookofmineralogy.org/Spessartine.PDF, http://www.handbookofmineralogy.org/Uvarovite.PDF.

Ralchenko, Y.

Y. Ralchenko, A. E. Kramida, J. Reader, and NIST ASD Team, NIST Atomic Spectra Database (version 3.1.5) (National Institute of Standards and Technology, 2008); available online, http://physics.nist.gov/asd3.

Reader, J.

Y. Ralchenko, A. E. Kramida, J. Reader, and NIST ASD Team, NIST Atomic Spectra Database (version 3.1.5) (National Institute of Standards and Technology, 2008); available online, http://physics.nist.gov/asd3.

Remus, J.

R. S. Harmon, J. Remus, N. J. McMillan, C. McManus, L. Collins, and J. L. Gottfried, “LIBS analysis of geomaterials: geochemical fingerprinting for the rapid analysis and discrimination of minerals,” Appl. Geochem . 24, 1125-1141 (2008).
[CrossRef]

Robinson, P.

R. J. Tracy, P. Robinson, and A. B. Thompson, “Garnet composition and zoning in the determination of temperature and pressure of metamorphism, central Massachusetts,” Am. Mineral. 61, 762-775 (1976).

R. J. Tracy, P. Robinson, and A. B. Thompson, “Garnet composition and zoning in the determination of temperature and pressure of metamorphism, central Massachusetts,” Am. Mineral. 61, 762-775 (1976).

Rossman, G. R.

G. R. Rossman, “The California Institute of Technology Mineral Spectroscopy Database” (California Institute of Technology, 2009); http://minerals.gps.caltech.edu/FILES/Visible/garnet/index.htm.

Sjöström, M.

S. Wold, M. Sjöström, and L. Eriksson, “PLS-regression: a basic tool of chemometrics,” Chemometr. Intel. Lab. Syst. 58, 109-130 (2001).
[CrossRef]

Smith, D.

D. Smith and F. R. Boyd, “Compositional zonation in garnets in peridotite xenoliths,” Contrib. Mineral Petrol. 112, 134-147 (1992).
[CrossRef]

Thompson, A. B.

R. J. Tracy, P. Robinson, and A. B. Thompson, “Garnet composition and zoning in the determination of temperature and pressure of metamorphism, central Massachusetts,” Am. Mineral. 61, 762-775 (1976).

R. J. Tracy, P. Robinson, and A. B. Thompson, “Garnet composition and zoning in the determination of temperature and pressure of metamorphism, central Massachusetts,” Am. Mineral. 61, 762-775 (1976).

Tracy, R. J.

R. J. Tracy, P. Robinson, and A. B. Thompson, “Garnet composition and zoning in the determination of temperature and pressure of metamorphism, central Massachusetts,” Am. Mineral. 61, 762-775 (1976).

R. J. Tracy, P. Robinson, and A. B. Thompson, “Garnet composition and zoning in the determination of temperature and pressure of metamorphism, central Massachusetts,” Am. Mineral. 61, 762-775 (1976).

Walsh, M. E.

R. S. Harmon, F. C. DeLucia Jr., C. E. McManus, N. J. McMillan, T. F. Jenkins, M. E. Walsh, and A. W. Miziolek, “Laser-induced breakdown spectroscopy--an emerging chemical sensor technology for field-portable, real-time geochemical, mineralogical, and environmental applications,” Appl. Geochem. 21, 730-747 (2005).
[CrossRef]

Walters, R. A.

R. S. Harmon, F. C. DeLucia Jr., A. W. Miziolek, K. L. McNesby, R. A. Walters, and P. D. French, “Laser-induced breakdown spectroscopy (LIBS)--an emerging field-portable sensor technology for real-time, in situ geochemical and environmental analysis,” Geochem. Explor. Environ. Anal. 5, 21-28 (2005).
[CrossRef]

Whitmore, R. C.

Wold, S.

S. Wold, M. Sjöström, and L. Eriksson, “PLS-regression: a basic tool of chemometrics,” Chemometr. Intel. Lab. Syst. 58, 109-130 (2001).
[CrossRef]

Zussman, J.

W. A. Deer, R. A. Howie, and J. Zussman, Rock-Forming Minerals, Volume 1. Ortho- and Ring Silicates (Longman Press, 1975).

Am. J. Sci.

W. E. Ford, “A study of the relations existing between the chemical, optical, and other physical properties of the members of the garnet group,” Am. J. Sci. 40, 33-49 (1919).
[CrossRef]

Am. Mineral.

M. J. Fleisher, “The relation between chemical composition and physical properties in the garnet group,” Am. Mineral. 22, 751-758 (1937).

R. J. Tracy, P. Robinson, and A. B. Thompson, “Garnet composition and zoning in the determination of temperature and pressure of metamorphism, central Massachusetts,” Am. Mineral. 61, 762-775 (1976).

J. Ito and C. Frondel, “Synthesis of the grossularite-spessartite series,” Am. Mineral. 53, 1036-1038 (1968).

J. Ito and C. Frondel, “Stilpnomelane and spessartite-grossularite from Franklin, New Jersey,” Am. Mineral. 50, 498-501 (1965).

R. J. Tracy, P. Robinson, and A. B. Thompson, “Garnet composition and zoning in the determination of temperature and pressure of metamorphism, central Massachusetts,” Am. Mineral. 61, 762-775 (1976).

K. Nassau, “The origin of color in minerals,” Am. Mineral. 63, 219-229 (1978).

Am. Scientist

B. M. Loeffler and R. G. Burns, “Shedding light on the color of gems and minerals,” Am. Scientist 64, 636-647 (1976).

Anal. Bioanal. Chem.

N. J. McMillan, C. E. McManus, R. S. Harmon, F. C. DeLucia Jr., and A. W. Miziolek, “Laser-induced breakdown spectroscopy analysis of complex silicate minerals--Beryl,” Anal. Bioanal. Chem. 385, 263-271 (2006).
[CrossRef] [PubMed]

Appl. Geochem

R. S. Harmon, J. Remus, N. J. McMillan, C. McManus, L. Collins, and J. L. Gottfried, “LIBS analysis of geomaterials: geochemical fingerprinting for the rapid analysis and discrimination of minerals,” Appl. Geochem . 24, 1125-1141 (2008).
[CrossRef]

Appl. Geochem.

R. S. Harmon, F. C. DeLucia Jr., C. E. McManus, N. J. McMillan, T. F. Jenkins, M. E. Walsh, and A. W. Miziolek, “Laser-induced breakdown spectroscopy--an emerging chemical sensor technology for field-portable, real-time geochemical, mineralogical, and environmental applications,” Appl. Geochem. 21, 730-747 (2005).
[CrossRef]

Appl. Opt.

Canad. Mineral

W. H. Blackburn, “Zoned and unzoned garnets from the Grenville gneisses around Gananoque, Ontario,” Canad. Mineral 9, 691-698 (1969).

Chemometr. Intel. Lab. Syst.

I.-G. Chong and C.-H. Jun, “Performance of some variable selection methods when multicollinearity is present,” Chemometr. Intel. Lab. Syst. 78, 103-112 (2005).
[CrossRef]

S. Wold, M. Sjöström, and L. Eriksson, “PLS-regression: a basic tool of chemometrics,” Chemometr. Intel. Lab. Syst. 58, 109-130 (2001).
[CrossRef]

Contrib. Mineral Petrol.

D. Smith and F. R. Boyd, “Compositional zonation in garnets in peridotite xenoliths,” Contrib. Mineral Petrol. 112, 134-147 (1992).
[CrossRef]

Contrib. Mineral. Petrol.

J. Ganguly and J. C. Kennedy, “The energetics of natural garnet solid solution,” Contrib. Mineral. Petrol. 48, 137-148(1974).
[CrossRef]

T. P. Loomis, “Reaction of zoning of garnet,” Contrib. Mineral. Petrol. 52, 285-305 (1975).
[CrossRef]

Geochem. Explor. Environ. Anal.

R. S. Harmon, F. C. DeLucia Jr., A. W. Miziolek, K. L. McNesby, R. A. Walters, and P. D. French, “Laser-induced breakdown spectroscopy (LIBS)--an emerging field-portable sensor technology for real-time, in situ geochemical and environmental analysis,” Geochem. Explor. Environ. Anal. 5, 21-28 (2005).
[CrossRef]

Spectrochim. Acta Part B

N. J. McMillan, R. S. Harmon, F. C. De Lucia Jr., and A. W. Miziolek, “Laser-induced breakdown spectroscopy analysis of minerals--carbonates and silicates,” Spectrochim. Acta Part B 62, 1578-1536 (2007).
[CrossRef]

J. L. Gottfried, R. S. Harmon, F. C. De Lucia Jr., and A. W. Miziolek, “Multivariate analysis of LIBS spectra for geomaterial classification,” Spectrochim. Acta Part B 64, 1009-1019(2009).
[CrossRef]

Other

W. A. Deer, R. A. Howie, and J. Zussman, Rock-Forming Minerals, Volume 1. Ortho- and Ring Silicates (Longman Press, 1975).

C. S. Hurlbut and C. Klein, Manual of Mineralogy (Wiley, 1977).

J. W. Anthony, R. A. Bideaux, K. W. Bladh, and M. C. Nichols, Handbook of Mineralogy (Mineralogical Society of America, 2001); http://www.handbookofmineralogy.org/pdfs/Pyrope.PDF, http://www.handbookofmineralogy.org/Almandine.PDF, http://www.handbookofmineralogy.org/Andradite.PDF, http://www.handbookofmineralogy.org/Grossular.PDF, http://www.handbookofmineralogy.org/Spessartine.PDF, http://www.handbookofmineralogy.org/Uvarovite.PDF.

G. R. Rossman, “The California Institute of Technology Mineral Spectroscopy Database” (California Institute of Technology, 2009); http://minerals.gps.caltech.edu/FILES/Visible/garnet/index.htm.

Y. Ralchenko, A. E. Kramida, J. Reader, and NIST ASD Team, NIST Atomic Spectra Database (version 3.1.5) (National Institute of Standards and Technology, 2008); available online, http://physics.nist.gov/asd3.

C. M. Bishop, Pattern Recognition and Machine Learning (Springer, 2007).

J. E. Gentle, Matrix Algebra: Theory, Computations, and Applications in Statistics (Springer, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

(a) Natural garnet exhibiting mixed rhombic dodecahedron and trapezohedron crystal forms. Credit: Miller Museum of Geology and Mineralogy, Queens University. (b) Crystal structure of garnet, A 3 B 2 Si 3 O 12 , comprised of distorted Si O 4 tetraheda, AO 8 polyhedra (“A” typically is Ca 2 + , Mg 2 + , Fe 2 + , or Mn 2 + ) and BO 6 octahedra (“B” is usually Al 3 + but also can be Fe 3 + or Cr 3 + ). Modified from: http://www.britannica.com.

Fig. 2
Fig. 2

Examples of broadband LIBS spectra for the six common garnet compositional types: almandine [ Fe 3 Al 2 ( Si O 4 ) 3 ], pyrope [ Mg 3 Al 2 ( Si O 4 ) 3 ], spessartine [ Mn 3 Al 2 ( Si O 4 ) 3 ], andradite [ Ca 3 Fe 2 ( Si O 4 ) 3 ], grossular [ Ca 3 Al 2 ( Si O 4 ) 3 ], and uvarovite [ Ca 3 Cr 2 ( Si O 4 ) 3 ]. The clear differences observed in the broadband spectra reflect the chemical differences in the structural composition of the six garnets.

Fig. 3
Fig. 3

Comparison of broadband LIBS spectra, with emission lines for selected elements identified, for (a) a pure end-ember uvarovite garnet [ Ca 3 Cr 2 ( Si O 4 ) 3 ] from Quebec, Canada, that shows the strong Ca emission lines together with the weak Cr and Si emission lines and (b) a mixed composition almandine- spessartine garnet from New Hampshire, USA, characterized by extensive solid solution between [ Fe 3 Al 2 ( Si O 4 ) 3 ] and [ Mn 3 Al 2 ( Si O 4 ) 3 ] components as indicated by strong emission lines for Fe, Mn, and Al. Note that emission lines are present in both figures for Li and Na (elements present in the garnets in very low abundance) because LIBS has a high sensitivity for low atomic weight elements that are difficult to determine by other real-time analytical techniques.

Fig. 4
Fig. 4

Principal components projection of the LIBS spectra database with samples labeled by garnet compositional group and type. Gray symbols denote pyralspite: circles = almandine , upright triangles = spessartine , and squares = pyrope . Black symbols denote ugrandite: diamonds = andradite , inverted triangles = grossular , and stars = uvarovite .

Fig. 5
Fig. 5

Garnet minor species classification performance as a function of the number of latent variables of a PLSDA classifier.

Fig. 6
Fig. 6

Classification confusion matrix for the PLSDA classifier trained to identify minor species. Each entry in the matrix indicates the percentage of samples that were identified as the column class when they are actually of the row class. Legend: Al = almandine [ Fe 3 Al 2 ( Si O 4 ) 3 ] , PY = pyrope   [ Mg 3 Al 2 ( Si O 4 ) 3 ] , SP = spessartine   [ Mn 3 Al 2 ( Si O 4 ) 3 ] , AN = andradite   [ Ca 3 Fe 2 ( Si O 4 ) 3 ] , GR = grossular   [ Ca 3 Al 2 ( Si O 4 ) 3 ] , and UV = uvarovite   [ Ca 3 Cr 2 ( Si O 4 ) 3 ] . Percent classification success = 94.7 % .

Fig. 7
Fig. 7

Total distance matrix for the 157 garnet samples analyzed in this study (37 andradites—A, 28 spessartines—SP, 26 almandines—AL, 32 grossulars—GR, 19 pyropes—PY, and 10 uvarovites—UV). The white rows and columns denote the boundaries between each of the six garnet types. The dark to light shading for each block in the diagram illustrates the comparative compositional similarity ( dark = similar , light = dissimilar ) among the samples of a row or column to the sample lying on the principal diagonal of the diagram.

Fig. 8
Fig. 8

Classification confusion matrices for the PLSDA classifier applied to locations for each garnet type consisting of three or more samples. The two-letter abbreviation along the left side and bottom of each matrix denote the geographic location ( AA = Austria , CT = Connecticut , NC = North Carolina , NH = New Hampshire , AZ = Arizona , CZ = the Czech Republic , SA = South Africa , AU = Australia , BR = Brazil , CH = China , CO = Colorado , VA = Virginia , IT = Italy , NJ = New Jersey , SW = Switzerland , CA = California , MX = Mexico , QU = Quebec , RU = Siberia ,   Russia , and UR = Ural Mountains ,   Russia ). Additional details of location are given in the text. The numbers in brackets along the right side of each matrix indicated the number of samples analyzed from each locality of that matrix row.

Fig. 9
Fig. 9

Classification of garnets of different type by geographic origin. Legend: AL = almandine   [ Fe 3 Al 2 ( Si O 4 ) 3 ] , PY = pyrope [ Mg 3 Al 2 ( Si O 4 ) 3 ] , SP = spessartine   [ Mn 3 Al 2 ( Si O 4 ) 3 ] , AN = andradite   [ Ca 3 Fe 2 ( Si O 4 ) 3 ] , GR = grossular   [ Ca 3 Al 2 ( Si O 4 ) 3 ] , and UV = uvarovite   [ Ca 3 Cr 2 ( Si O 4 ) 3 ] .

Fig. 10
Fig. 10

Total distance matrix for the six different garnet types for geographic locations with three or more samples. The white rows and columns denote the boundaries between each of the six garnet types. Legend: for almandine, AA = Austria , CT = Connecticut , NC = North Carolina , and NH = New Hampshire ; for pyrope, AZ = Arizona , CZ = Czech Republic , and SA = South Africa ; for spessartine, AU = Australia , BR = Brazil , CH = China , CO = Colorado , VA = Virginia ; for andradite, IT = Italy , NJ = New Jersey , and SW = Switzerland ; for grossular, CA = California , MX = Mexico , QU = Quebec , and RU = Russia ; for uvarovite, CA = California and   UR = Ural Mountains .

Fig. 11
Fig. 11

VIP scores for PLSDA models at selected wavelengths (Table 2). VIP scores for the garnet composition model are shown in hatched pattern and the average VIP scores for the six location of origin classification models are shown in solid pattern for the 12 elements most important for garnet classification with LIBS. Error bars indicate two standard deviations.

Tables (2)

Tables Icon

Table 1 List of Garnet Samples Analyzed in Study a

Tables Icon

Table 2 Selected Elemental and Ionic Emission Lines from the Garnet LIBS Spectra (Wavelengths in Nanometers)

Metrics