Abstract

The development of a remote laser-induced breakdown spectroscopy (LIBS) setup with an off-axis Newtonian collection optics, Galilean-based focusing telescope, and a 532nm flattop laser beam source is presented. The device was tested at a 6m distance on a slice of bone to simulate its possible use in the field, e.g., during archaeological excavations. It is shown that this setup is sufficiently sensitive to both major (P, Mg) and minor elements (Na, Zn, Sr). The measured quantities of Mg, Zn, and Sr correspond to the values obtained by reference laser ablation–inductively coupled plasma–mass spectrometry (LA-ICP-MS) measurements within an approximately 20% range of uncertainty. A single point calibration was performed by use of a bone meal standard . The radial element distribution is almost invariable by use of LA-ICP-MS, whereas the LIBS measurement showed a strong dependence on the sample porosity. Based on these results, this remote LIBS setup with a relatively large (350mm) collecting mirror is capable of semiquantitative analysis at the level of units of mgkg1.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, 2006).
    [CrossRef]
  2. A. W. Miziolek, V. Palleschi, and I. Schechter, Laser-Induced Breakdown Spectroscopy, Fundamentals and Applications (Cambridge U. Press, 2006).
    [CrossRef]
  3. B. Sallé, P. Mauchien, and S. Maurice, “Laser-induced breakdown spectroscopy in open-path configuration for the analysis of distant objects,” Spectrochim. Acta Part B 62, 739-768(2007).
    [CrossRef]
  4. H. W. Hubble, M. Ghosh, S. K. Sharma, K. A. Horton, P. G. Lucey, S. M. Angel, and R. C. Wiens, “A combined remote LIBS and Raman spectroscopic study of minerals,” in Lunar Planetary Science Conference, Vol. XXXIII (Lunar and Planetary Institute, 2002), abstract 1935, http://www.lpi.usra.edu/meetings/lpsc2002/pdf/1935.pdf.
  5. S. K. Sharma, A. K. Misra, P. G. Lucey, R. C. Wiens, and S. M. Clegg, “Combined remote LIBS and Raman spectroscopy at 8.6 m of sulfur-containing minerals, and minerals coated with hematite or covered with basaltic dust,” Spectrochim. Acta Part A 68, 1036-1045 (2007).
    [CrossRef]
  6. S. K. Sharma, A. K. Misra, P. G. Lucey, and R. C. F. Lentz, “A combined remote Raman, LIBS instrument for characterizing minerals with 532 nm laser excitation,” Spectrochim. Acta Part A 73, 468-476 (2009).
    [CrossRef]
  7. R. Gronlund, M. Lundqvist, and S. Svanberg, “Remote imaging laser-induced breakdown spectroscopy and laser-induced fluorescence spectroscopy using nanosecond pulses from a mobile lidar system,” Appl. Spectrosc. 60, 853-859 (2006).
    [CrossRef] [PubMed]
  8. J. R. Thompson, R. C. Wiens, J. E. Barefield, D. T. Vaniman, H. E. Newsom, and S. M. Clegg, “Remote laser induced breakdown spectroscopy (LIBS) analyses of Dar al Gani 476 and Zagami Martian meteorites,” J. Geophys. Res. Planets 111, E05006 (2006).
    [CrossRef]
  9. B. Sallé, J. L. Lacour, P. Mauchien, P. Fichet, S. Maurice, and G. Manhès, “Comparative study of different methodologies for quantitative rock analysis by laser-induced breakdown spectroscopy in a simulated Martian atmosphere,” Spectrochim. Acta Part B 61, 301-313 (2006).
    [CrossRef]
  10. C. López-Moreno, S. Palanco, J. J. Laserna, F. DeLucia Jr., A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, “Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces,” J. Anal. At. Spectrom. 21, 55-60 (2006).
    [CrossRef]
  11. S. Palanco, S. Conesa, and J. J. Laserna, “Analytical control of liquid steel in an induction melting furnace using a remote laser induced plasma spectrometer,” J. Anal. At. Spectrom. 19, 462-467 (2004).
    [CrossRef]
  12. P. L. Garcia, J. M. Vadillo, and J. J. Laserna, “Real-time monitoring of high temperature corrosion in stainless steel by open-path laser-induced plasma spectrometry,” Appl. Spectrosc. 58, 1347-1352 (2004).
    [CrossRef]
  13. C. López-Moreno, S. Palanco, and J. J. Laserna, “Quantitative analysis of samples at high temperature with remote laser-induced breakdown spectrometry using a room-temperature calibration plot,” Spectrochim. Acta Part B 60, 1034-1039(2005).
    [CrossRef]
  14. A. Ferrero and J. J. Laserna, “A theoretical study of atmospheric propagation of laser and return light for stand-off laser induced breakdown spectroscopy purposes,” Spectrochim. Acta Part B 63, 305-311 (2008).
    [CrossRef]
  15. J. B. Lambert, S. Vlasak Simpson, J. E. Buikstra, and D. Hanson, “Electron microprobe analysis of elemental distribution in excavated human femurs,” Am. J. Phys. Anthropol. 62, 409-423 (1983).
    [CrossRef] [PubMed]
  16. R. B. Parker and H. Toots, “Minor elements in fossil bone,” Geol. Soc. Am. Bull. 81, 925-932 (1970).
    [CrossRef]
  17. N. Boscher-Barre, P. Trocellier, N. Deschamps, C. Dardenne, J. Blondiaux, and L. Buchet, “Nuclear miroprobe study of trace element in archaeological bones,” J. Trace Microprobe Tech. 10, 77-90 (1992).
  18. N. Boscher-Barre and P. Trocellier, “Nuclear microprobe study of a woman's skeleton from the sixth century,” Nucl. Instrum. Methods Phys. Res. B 73, 413-416 (1993).
    [CrossRef]
  19. R. Brenn, Ch. Haug, U. Klar, S. Zander, K. W. Alt, D. N. Jamieson, K. K. Lee, and H. Schutkowski, “Post-mortem intake of lead in 11th century human bones and teeth studied by milli- and microbeam PIXE and RBS,” Nucl. Instrum. Methods Phys. Res. B 158, 270-274 (1999).
    [CrossRef]
  20. St. Jankuhn, T. Butz, R.-H. Flagmeyer, T. Reinert, J. Vogt, B. Barckhausen, J. Hammerl, R. Protsch von Zieten, D. Grambole, F. Herrmann, and K. Bethge, “Ion microprobe analyses of ancient human bone,” Nucl. Instrum. Methods Phys. Res. B 136-138, 329-333 (1998).
    [CrossRef]
  21. P. Voglis, A. Attaelmanan, P. Engström, S. Larsson, A. Rindby, K. Boström, and C. G. Helander, “Elemental mapping of bone tissues by use of capillary focused XRF,” X-Ray Spectrom. 22, 229-233 (1993).
    [CrossRef]
  22. M. L. Carvalho, A. F. Marques, M. T. Lima, and U. Reus, “Trace elements distribution and post-mortem intake in human bones from middle age by total reflection x-ray fluorescence,” Spectrochim. Acta Part B 59, 1251-1257 (2004).
    [CrossRef]
  23. D. Kang, D. Amarasiriwardena, and A. H. Goodman, “Application of laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) to investigate trace metal spatial distributions in human tooth enamel and dentine growth layer and pulp,” Anal. Bioanal. Chem. 378, 1608-1615 (2004).
    [CrossRef] [PubMed]
  24. D. J. Bellis, K. M. Hetter, J. Jones, D. Amarasiriwardena, and P. J. Parsons, “Calibration of laser ablation inductively coupled plasma mass spectrometry for quantitative measurements of lead in bone,” J. Anal. At. Spectrom. 21, 948-954(2006).
    [CrossRef]
  25. M. D. Seltzer, V. A. Lance, and R. M. Elsey, “Laser ablation ICP-MS analysis of the radial distribution of lead in the femur of Alligator mississippiensis,” Sci. Total Environ. 363, 245-252 (2006).
    [CrossRef]
  26. O. Samek, D. C. S. Beddows, H. H. Telle, J. Kaiser, M. Liška, J. O. Cáceres, and A. Gonzáles Ureña, “Quantitative laser-induced breakdown spectroscopy analysis of calcified tissue samples,” Spectrochim. Acta Part B 56, 865-875 (2001).
    [CrossRef]
  27. M. Z. Martin, N. Labbé, N. André, R. Harris, M. Ebinger, S. D. Wullschleger, and A. A. Vass, “High resolution applications of laser-induced breakdown spectroscopy for environmental and forensic applications,” Spectrochim. Acta Part B 62, 1426-1432 (2007).
    [CrossRef]
  28. T. A. Elliott and G. W. Grime, “Examining of diagenetic alteration of human bone material from a range of archaeological burial sites using nuclear microscopy,” Nucl. Instrum. Methods Phys. Res. B 77, 537-547 (1993).
    [CrossRef]
  29. S. Palanco, C. Lopez-Moreno, and J. J. Laserna, “Design, construction and assessment of a field-deployable laser-induced breakdown spectrometer for remote elemental sensing,” Spectrochim. Acta Part B 61, 88-95 (2006).
    [CrossRef]

2009 (1)

S. K. Sharma, A. K. Misra, P. G. Lucey, and R. C. F. Lentz, “A combined remote Raman, LIBS instrument for characterizing minerals with 532 nm laser excitation,” Spectrochim. Acta Part A 73, 468-476 (2009).
[CrossRef]

2008 (1)

A. Ferrero and J. J. Laserna, “A theoretical study of atmospheric propagation of laser and return light for stand-off laser induced breakdown spectroscopy purposes,” Spectrochim. Acta Part B 63, 305-311 (2008).
[CrossRef]

2007 (3)

M. Z. Martin, N. Labbé, N. André, R. Harris, M. Ebinger, S. D. Wullschleger, and A. A. Vass, “High resolution applications of laser-induced breakdown spectroscopy for environmental and forensic applications,” Spectrochim. Acta Part B 62, 1426-1432 (2007).
[CrossRef]

B. Sallé, P. Mauchien, and S. Maurice, “Laser-induced breakdown spectroscopy in open-path configuration for the analysis of distant objects,” Spectrochim. Acta Part B 62, 739-768(2007).
[CrossRef]

S. K. Sharma, A. K. Misra, P. G. Lucey, R. C. Wiens, and S. M. Clegg, “Combined remote LIBS and Raman spectroscopy at 8.6 m of sulfur-containing minerals, and minerals coated with hematite or covered with basaltic dust,” Spectrochim. Acta Part A 68, 1036-1045 (2007).
[CrossRef]

2006 (7)

S. Palanco, C. Lopez-Moreno, and J. J. Laserna, “Design, construction and assessment of a field-deployable laser-induced breakdown spectrometer for remote elemental sensing,” Spectrochim. Acta Part B 61, 88-95 (2006).
[CrossRef]

D. J. Bellis, K. M. Hetter, J. Jones, D. Amarasiriwardena, and P. J. Parsons, “Calibration of laser ablation inductively coupled plasma mass spectrometry for quantitative measurements of lead in bone,” J. Anal. At. Spectrom. 21, 948-954(2006).
[CrossRef]

M. D. Seltzer, V. A. Lance, and R. M. Elsey, “Laser ablation ICP-MS analysis of the radial distribution of lead in the femur of Alligator mississippiensis,” Sci. Total Environ. 363, 245-252 (2006).
[CrossRef]

J. R. Thompson, R. C. Wiens, J. E. Barefield, D. T. Vaniman, H. E. Newsom, and S. M. Clegg, “Remote laser induced breakdown spectroscopy (LIBS) analyses of Dar al Gani 476 and Zagami Martian meteorites,” J. Geophys. Res. Planets 111, E05006 (2006).
[CrossRef]

B. Sallé, J. L. Lacour, P. Mauchien, P. Fichet, S. Maurice, and G. Manhès, “Comparative study of different methodologies for quantitative rock analysis by laser-induced breakdown spectroscopy in a simulated Martian atmosphere,” Spectrochim. Acta Part B 61, 301-313 (2006).
[CrossRef]

C. López-Moreno, S. Palanco, J. J. Laserna, F. DeLucia Jr., A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, “Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces,” J. Anal. At. Spectrom. 21, 55-60 (2006).
[CrossRef]

R. Gronlund, M. Lundqvist, and S. Svanberg, “Remote imaging laser-induced breakdown spectroscopy and laser-induced fluorescence spectroscopy using nanosecond pulses from a mobile lidar system,” Appl. Spectrosc. 60, 853-859 (2006).
[CrossRef] [PubMed]

2005 (1)

C. López-Moreno, S. Palanco, and J. J. Laserna, “Quantitative analysis of samples at high temperature with remote laser-induced breakdown spectrometry using a room-temperature calibration plot,” Spectrochim. Acta Part B 60, 1034-1039(2005).
[CrossRef]

2004 (4)

M. L. Carvalho, A. F. Marques, M. T. Lima, and U. Reus, “Trace elements distribution and post-mortem intake in human bones from middle age by total reflection x-ray fluorescence,” Spectrochim. Acta Part B 59, 1251-1257 (2004).
[CrossRef]

D. Kang, D. Amarasiriwardena, and A. H. Goodman, “Application of laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) to investigate trace metal spatial distributions in human tooth enamel and dentine growth layer and pulp,” Anal. Bioanal. Chem. 378, 1608-1615 (2004).
[CrossRef] [PubMed]

P. L. Garcia, J. M. Vadillo, and J. J. Laserna, “Real-time monitoring of high temperature corrosion in stainless steel by open-path laser-induced plasma spectrometry,” Appl. Spectrosc. 58, 1347-1352 (2004).
[CrossRef]

S. Palanco, S. Conesa, and J. J. Laserna, “Analytical control of liquid steel in an induction melting furnace using a remote laser induced plasma spectrometer,” J. Anal. At. Spectrom. 19, 462-467 (2004).
[CrossRef]

2001 (1)

O. Samek, D. C. S. Beddows, H. H. Telle, J. Kaiser, M. Liška, J. O. Cáceres, and A. Gonzáles Ureña, “Quantitative laser-induced breakdown spectroscopy analysis of calcified tissue samples,” Spectrochim. Acta Part B 56, 865-875 (2001).
[CrossRef]

1999 (1)

R. Brenn, Ch. Haug, U. Klar, S. Zander, K. W. Alt, D. N. Jamieson, K. K. Lee, and H. Schutkowski, “Post-mortem intake of lead in 11th century human bones and teeth studied by milli- and microbeam PIXE and RBS,” Nucl. Instrum. Methods Phys. Res. B 158, 270-274 (1999).
[CrossRef]

1998 (1)

St. Jankuhn, T. Butz, R.-H. Flagmeyer, T. Reinert, J. Vogt, B. Barckhausen, J. Hammerl, R. Protsch von Zieten, D. Grambole, F. Herrmann, and K. Bethge, “Ion microprobe analyses of ancient human bone,” Nucl. Instrum. Methods Phys. Res. B 136-138, 329-333 (1998).
[CrossRef]

1993 (3)

P. Voglis, A. Attaelmanan, P. Engström, S. Larsson, A. Rindby, K. Boström, and C. G. Helander, “Elemental mapping of bone tissues by use of capillary focused XRF,” X-Ray Spectrom. 22, 229-233 (1993).
[CrossRef]

T. A. Elliott and G. W. Grime, “Examining of diagenetic alteration of human bone material from a range of archaeological burial sites using nuclear microscopy,” Nucl. Instrum. Methods Phys. Res. B 77, 537-547 (1993).
[CrossRef]

N. Boscher-Barre and P. Trocellier, “Nuclear microprobe study of a woman's skeleton from the sixth century,” Nucl. Instrum. Methods Phys. Res. B 73, 413-416 (1993).
[CrossRef]

1992 (1)

N. Boscher-Barre, P. Trocellier, N. Deschamps, C. Dardenne, J. Blondiaux, and L. Buchet, “Nuclear miroprobe study of trace element in archaeological bones,” J. Trace Microprobe Tech. 10, 77-90 (1992).

1983 (1)

J. B. Lambert, S. Vlasak Simpson, J. E. Buikstra, and D. Hanson, “Electron microprobe analysis of elemental distribution in excavated human femurs,” Am. J. Phys. Anthropol. 62, 409-423 (1983).
[CrossRef] [PubMed]

1970 (1)

R. B. Parker and H. Toots, “Minor elements in fossil bone,” Geol. Soc. Am. Bull. 81, 925-932 (1970).
[CrossRef]

Alt, K. W.

R. Brenn, Ch. Haug, U. Klar, S. Zander, K. W. Alt, D. N. Jamieson, K. K. Lee, and H. Schutkowski, “Post-mortem intake of lead in 11th century human bones and teeth studied by milli- and microbeam PIXE and RBS,” Nucl. Instrum. Methods Phys. Res. B 158, 270-274 (1999).
[CrossRef]

Amarasiriwardena, D.

D. J. Bellis, K. M. Hetter, J. Jones, D. Amarasiriwardena, and P. J. Parsons, “Calibration of laser ablation inductively coupled plasma mass spectrometry for quantitative measurements of lead in bone,” J. Anal. At. Spectrom. 21, 948-954(2006).
[CrossRef]

D. Kang, D. Amarasiriwardena, and A. H. Goodman, “Application of laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) to investigate trace metal spatial distributions in human tooth enamel and dentine growth layer and pulp,” Anal. Bioanal. Chem. 378, 1608-1615 (2004).
[CrossRef] [PubMed]

André, N.

M. Z. Martin, N. Labbé, N. André, R. Harris, M. Ebinger, S. D. Wullschleger, and A. A. Vass, “High resolution applications of laser-induced breakdown spectroscopy for environmental and forensic applications,” Spectrochim. Acta Part B 62, 1426-1432 (2007).
[CrossRef]

Angel, S. M.

H. W. Hubble, M. Ghosh, S. K. Sharma, K. A. Horton, P. G. Lucey, S. M. Angel, and R. C. Wiens, “A combined remote LIBS and Raman spectroscopic study of minerals,” in Lunar Planetary Science Conference, Vol. XXXIII (Lunar and Planetary Institute, 2002), abstract 1935, http://www.lpi.usra.edu/meetings/lpsc2002/pdf/1935.pdf.

Attaelmanan, A.

P. Voglis, A. Attaelmanan, P. Engström, S. Larsson, A. Rindby, K. Boström, and C. G. Helander, “Elemental mapping of bone tissues by use of capillary focused XRF,” X-Ray Spectrom. 22, 229-233 (1993).
[CrossRef]

Barckhausen, B.

St. Jankuhn, T. Butz, R.-H. Flagmeyer, T. Reinert, J. Vogt, B. Barckhausen, J. Hammerl, R. Protsch von Zieten, D. Grambole, F. Herrmann, and K. Bethge, “Ion microprobe analyses of ancient human bone,” Nucl. Instrum. Methods Phys. Res. B 136-138, 329-333 (1998).
[CrossRef]

Barefield, J. E.

J. R. Thompson, R. C. Wiens, J. E. Barefield, D. T. Vaniman, H. E. Newsom, and S. M. Clegg, “Remote laser induced breakdown spectroscopy (LIBS) analyses of Dar al Gani 476 and Zagami Martian meteorites,” J. Geophys. Res. Planets 111, E05006 (2006).
[CrossRef]

Beddows, D. C. S.

O. Samek, D. C. S. Beddows, H. H. Telle, J. Kaiser, M. Liška, J. O. Cáceres, and A. Gonzáles Ureña, “Quantitative laser-induced breakdown spectroscopy analysis of calcified tissue samples,” Spectrochim. Acta Part B 56, 865-875 (2001).
[CrossRef]

Bellis, D. J.

D. J. Bellis, K. M. Hetter, J. Jones, D. Amarasiriwardena, and P. J. Parsons, “Calibration of laser ablation inductively coupled plasma mass spectrometry for quantitative measurements of lead in bone,” J. Anal. At. Spectrom. 21, 948-954(2006).
[CrossRef]

Bethge, K.

St. Jankuhn, T. Butz, R.-H. Flagmeyer, T. Reinert, J. Vogt, B. Barckhausen, J. Hammerl, R. Protsch von Zieten, D. Grambole, F. Herrmann, and K. Bethge, “Ion microprobe analyses of ancient human bone,” Nucl. Instrum. Methods Phys. Res. B 136-138, 329-333 (1998).
[CrossRef]

Blondiaux, J.

N. Boscher-Barre, P. Trocellier, N. Deschamps, C. Dardenne, J. Blondiaux, and L. Buchet, “Nuclear miroprobe study of trace element in archaeological bones,” J. Trace Microprobe Tech. 10, 77-90 (1992).

Boscher-Barre, N.

N. Boscher-Barre and P. Trocellier, “Nuclear microprobe study of a woman's skeleton from the sixth century,” Nucl. Instrum. Methods Phys. Res. B 73, 413-416 (1993).
[CrossRef]

N. Boscher-Barre, P. Trocellier, N. Deschamps, C. Dardenne, J. Blondiaux, and L. Buchet, “Nuclear miroprobe study of trace element in archaeological bones,” J. Trace Microprobe Tech. 10, 77-90 (1992).

Boström, K.

P. Voglis, A. Attaelmanan, P. Engström, S. Larsson, A. Rindby, K. Boström, and C. G. Helander, “Elemental mapping of bone tissues by use of capillary focused XRF,” X-Ray Spectrom. 22, 229-233 (1993).
[CrossRef]

Brenn, R.

R. Brenn, Ch. Haug, U. Klar, S. Zander, K. W. Alt, D. N. Jamieson, K. K. Lee, and H. Schutkowski, “Post-mortem intake of lead in 11th century human bones and teeth studied by milli- and microbeam PIXE and RBS,” Nucl. Instrum. Methods Phys. Res. B 158, 270-274 (1999).
[CrossRef]

Buchet, L.

N. Boscher-Barre, P. Trocellier, N. Deschamps, C. Dardenne, J. Blondiaux, and L. Buchet, “Nuclear miroprobe study of trace element in archaeological bones,” J. Trace Microprobe Tech. 10, 77-90 (1992).

Buikstra, J. E.

J. B. Lambert, S. Vlasak Simpson, J. E. Buikstra, and D. Hanson, “Electron microprobe analysis of elemental distribution in excavated human femurs,” Am. J. Phys. Anthropol. 62, 409-423 (1983).
[CrossRef] [PubMed]

Butz, T.

St. Jankuhn, T. Butz, R.-H. Flagmeyer, T. Reinert, J. Vogt, B. Barckhausen, J. Hammerl, R. Protsch von Zieten, D. Grambole, F. Herrmann, and K. Bethge, “Ion microprobe analyses of ancient human bone,” Nucl. Instrum. Methods Phys. Res. B 136-138, 329-333 (1998).
[CrossRef]

Cáceres, J. O.

O. Samek, D. C. S. Beddows, H. H. Telle, J. Kaiser, M. Liška, J. O. Cáceres, and A. Gonzáles Ureña, “Quantitative laser-induced breakdown spectroscopy analysis of calcified tissue samples,” Spectrochim. Acta Part B 56, 865-875 (2001).
[CrossRef]

Carvalho, M. L.

M. L. Carvalho, A. F. Marques, M. T. Lima, and U. Reus, “Trace elements distribution and post-mortem intake in human bones from middle age by total reflection x-ray fluorescence,” Spectrochim. Acta Part B 59, 1251-1257 (2004).
[CrossRef]

Clegg, S. M.

S. K. Sharma, A. K. Misra, P. G. Lucey, R. C. Wiens, and S. M. Clegg, “Combined remote LIBS and Raman spectroscopy at 8.6 m of sulfur-containing minerals, and minerals coated with hematite or covered with basaltic dust,” Spectrochim. Acta Part A 68, 1036-1045 (2007).
[CrossRef]

J. R. Thompson, R. C. Wiens, J. E. Barefield, D. T. Vaniman, H. E. Newsom, and S. M. Clegg, “Remote laser induced breakdown spectroscopy (LIBS) analyses of Dar al Gani 476 and Zagami Martian meteorites,” J. Geophys. Res. Planets 111, E05006 (2006).
[CrossRef]

Conesa, S.

S. Palanco, S. Conesa, and J. J. Laserna, “Analytical control of liquid steel in an induction melting furnace using a remote laser induced plasma spectrometer,” J. Anal. At. Spectrom. 19, 462-467 (2004).
[CrossRef]

Cremers, D. A.

D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, 2006).
[CrossRef]

Dardenne, C.

N. Boscher-Barre, P. Trocellier, N. Deschamps, C. Dardenne, J. Blondiaux, and L. Buchet, “Nuclear miroprobe study of trace element in archaeological bones,” J. Trace Microprobe Tech. 10, 77-90 (1992).

DeLucia, F.

C. López-Moreno, S. Palanco, J. J. Laserna, F. DeLucia Jr., A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, “Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces,” J. Anal. At. Spectrom. 21, 55-60 (2006).
[CrossRef]

Deschamps, N.

N. Boscher-Barre, P. Trocellier, N. Deschamps, C. Dardenne, J. Blondiaux, and L. Buchet, “Nuclear miroprobe study of trace element in archaeological bones,” J. Trace Microprobe Tech. 10, 77-90 (1992).

Ebinger, M.

M. Z. Martin, N. Labbé, N. André, R. Harris, M. Ebinger, S. D. Wullschleger, and A. A. Vass, “High resolution applications of laser-induced breakdown spectroscopy for environmental and forensic applications,” Spectrochim. Acta Part B 62, 1426-1432 (2007).
[CrossRef]

Elliott, T. A.

T. A. Elliott and G. W. Grime, “Examining of diagenetic alteration of human bone material from a range of archaeological burial sites using nuclear microscopy,” Nucl. Instrum. Methods Phys. Res. B 77, 537-547 (1993).
[CrossRef]

Elsey, R. M.

M. D. Seltzer, V. A. Lance, and R. M. Elsey, “Laser ablation ICP-MS analysis of the radial distribution of lead in the femur of Alligator mississippiensis,” Sci. Total Environ. 363, 245-252 (2006).
[CrossRef]

Engström, P.

P. Voglis, A. Attaelmanan, P. Engström, S. Larsson, A. Rindby, K. Boström, and C. G. Helander, “Elemental mapping of bone tissues by use of capillary focused XRF,” X-Ray Spectrom. 22, 229-233 (1993).
[CrossRef]

Ferrero, A.

A. Ferrero and J. J. Laserna, “A theoretical study of atmospheric propagation of laser and return light for stand-off laser induced breakdown spectroscopy purposes,” Spectrochim. Acta Part B 63, 305-311 (2008).
[CrossRef]

Fichet, P.

B. Sallé, J. L. Lacour, P. Mauchien, P. Fichet, S. Maurice, and G. Manhès, “Comparative study of different methodologies for quantitative rock analysis by laser-induced breakdown spectroscopy in a simulated Martian atmosphere,” Spectrochim. Acta Part B 61, 301-313 (2006).
[CrossRef]

Flagmeyer, R.-H.

St. Jankuhn, T. Butz, R.-H. Flagmeyer, T. Reinert, J. Vogt, B. Barckhausen, J. Hammerl, R. Protsch von Zieten, D. Grambole, F. Herrmann, and K. Bethge, “Ion microprobe analyses of ancient human bone,” Nucl. Instrum. Methods Phys. Res. B 136-138, 329-333 (1998).
[CrossRef]

Garcia, P. L.

Ghosh, M.

H. W. Hubble, M. Ghosh, S. K. Sharma, K. A. Horton, P. G. Lucey, S. M. Angel, and R. C. Wiens, “A combined remote LIBS and Raman spectroscopic study of minerals,” in Lunar Planetary Science Conference, Vol. XXXIII (Lunar and Planetary Institute, 2002), abstract 1935, http://www.lpi.usra.edu/meetings/lpsc2002/pdf/1935.pdf.

Goodman, A. H.

D. Kang, D. Amarasiriwardena, and A. H. Goodman, “Application of laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) to investigate trace metal spatial distributions in human tooth enamel and dentine growth layer and pulp,” Anal. Bioanal. Chem. 378, 1608-1615 (2004).
[CrossRef] [PubMed]

Grambole, D.

St. Jankuhn, T. Butz, R.-H. Flagmeyer, T. Reinert, J. Vogt, B. Barckhausen, J. Hammerl, R. Protsch von Zieten, D. Grambole, F. Herrmann, and K. Bethge, “Ion microprobe analyses of ancient human bone,” Nucl. Instrum. Methods Phys. Res. B 136-138, 329-333 (1998).
[CrossRef]

Grime, G. W.

T. A. Elliott and G. W. Grime, “Examining of diagenetic alteration of human bone material from a range of archaeological burial sites using nuclear microscopy,” Nucl. Instrum. Methods Phys. Res. B 77, 537-547 (1993).
[CrossRef]

Gronlund, R.

Hammerl, J.

St. Jankuhn, T. Butz, R.-H. Flagmeyer, T. Reinert, J. Vogt, B. Barckhausen, J. Hammerl, R. Protsch von Zieten, D. Grambole, F. Herrmann, and K. Bethge, “Ion microprobe analyses of ancient human bone,” Nucl. Instrum. Methods Phys. Res. B 136-138, 329-333 (1998).
[CrossRef]

Hanson, D.

J. B. Lambert, S. Vlasak Simpson, J. E. Buikstra, and D. Hanson, “Electron microprobe analysis of elemental distribution in excavated human femurs,” Am. J. Phys. Anthropol. 62, 409-423 (1983).
[CrossRef] [PubMed]

Harris, R.

M. Z. Martin, N. Labbé, N. André, R. Harris, M. Ebinger, S. D. Wullschleger, and A. A. Vass, “High resolution applications of laser-induced breakdown spectroscopy for environmental and forensic applications,” Spectrochim. Acta Part B 62, 1426-1432 (2007).
[CrossRef]

Haug, Ch.

R. Brenn, Ch. Haug, U. Klar, S. Zander, K. W. Alt, D. N. Jamieson, K. K. Lee, and H. Schutkowski, “Post-mortem intake of lead in 11th century human bones and teeth studied by milli- and microbeam PIXE and RBS,” Nucl. Instrum. Methods Phys. Res. B 158, 270-274 (1999).
[CrossRef]

Helander, C. G.

P. Voglis, A. Attaelmanan, P. Engström, S. Larsson, A. Rindby, K. Boström, and C. G. Helander, “Elemental mapping of bone tissues by use of capillary focused XRF,” X-Ray Spectrom. 22, 229-233 (1993).
[CrossRef]

Herrmann, F.

St. Jankuhn, T. Butz, R.-H. Flagmeyer, T. Reinert, J. Vogt, B. Barckhausen, J. Hammerl, R. Protsch von Zieten, D. Grambole, F. Herrmann, and K. Bethge, “Ion microprobe analyses of ancient human bone,” Nucl. Instrum. Methods Phys. Res. B 136-138, 329-333 (1998).
[CrossRef]

Hetter, K. M.

D. J. Bellis, K. M. Hetter, J. Jones, D. Amarasiriwardena, and P. J. Parsons, “Calibration of laser ablation inductively coupled plasma mass spectrometry for quantitative measurements of lead in bone,” J. Anal. At. Spectrom. 21, 948-954(2006).
[CrossRef]

Horton, K. A.

H. W. Hubble, M. Ghosh, S. K. Sharma, K. A. Horton, P. G. Lucey, S. M. Angel, and R. C. Wiens, “A combined remote LIBS and Raman spectroscopic study of minerals,” in Lunar Planetary Science Conference, Vol. XXXIII (Lunar and Planetary Institute, 2002), abstract 1935, http://www.lpi.usra.edu/meetings/lpsc2002/pdf/1935.pdf.

Hubble, H. W.

H. W. Hubble, M. Ghosh, S. K. Sharma, K. A. Horton, P. G. Lucey, S. M. Angel, and R. C. Wiens, “A combined remote LIBS and Raman spectroscopic study of minerals,” in Lunar Planetary Science Conference, Vol. XXXIII (Lunar and Planetary Institute, 2002), abstract 1935, http://www.lpi.usra.edu/meetings/lpsc2002/pdf/1935.pdf.

Jamieson, D. N.

R. Brenn, Ch. Haug, U. Klar, S. Zander, K. W. Alt, D. N. Jamieson, K. K. Lee, and H. Schutkowski, “Post-mortem intake of lead in 11th century human bones and teeth studied by milli- and microbeam PIXE and RBS,” Nucl. Instrum. Methods Phys. Res. B 158, 270-274 (1999).
[CrossRef]

Jankuhn, St.

St. Jankuhn, T. Butz, R.-H. Flagmeyer, T. Reinert, J. Vogt, B. Barckhausen, J. Hammerl, R. Protsch von Zieten, D. Grambole, F. Herrmann, and K. Bethge, “Ion microprobe analyses of ancient human bone,” Nucl. Instrum. Methods Phys. Res. B 136-138, 329-333 (1998).
[CrossRef]

Jones, J.

D. J. Bellis, K. M. Hetter, J. Jones, D. Amarasiriwardena, and P. J. Parsons, “Calibration of laser ablation inductively coupled plasma mass spectrometry for quantitative measurements of lead in bone,” J. Anal. At. Spectrom. 21, 948-954(2006).
[CrossRef]

Kaiser, J.

O. Samek, D. C. S. Beddows, H. H. Telle, J. Kaiser, M. Liška, J. O. Cáceres, and A. Gonzáles Ureña, “Quantitative laser-induced breakdown spectroscopy analysis of calcified tissue samples,” Spectrochim. Acta Part B 56, 865-875 (2001).
[CrossRef]

Kang, D.

D. Kang, D. Amarasiriwardena, and A. H. Goodman, “Application of laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) to investigate trace metal spatial distributions in human tooth enamel and dentine growth layer and pulp,” Anal. Bioanal. Chem. 378, 1608-1615 (2004).
[CrossRef] [PubMed]

Klar, U.

R. Brenn, Ch. Haug, U. Klar, S. Zander, K. W. Alt, D. N. Jamieson, K. K. Lee, and H. Schutkowski, “Post-mortem intake of lead in 11th century human bones and teeth studied by milli- and microbeam PIXE and RBS,” Nucl. Instrum. Methods Phys. Res. B 158, 270-274 (1999).
[CrossRef]

Labbé, N.

M. Z. Martin, N. Labbé, N. André, R. Harris, M. Ebinger, S. D. Wullschleger, and A. A. Vass, “High resolution applications of laser-induced breakdown spectroscopy for environmental and forensic applications,” Spectrochim. Acta Part B 62, 1426-1432 (2007).
[CrossRef]

Lacour, J. L.

B. Sallé, J. L. Lacour, P. Mauchien, P. Fichet, S. Maurice, and G. Manhès, “Comparative study of different methodologies for quantitative rock analysis by laser-induced breakdown spectroscopy in a simulated Martian atmosphere,” Spectrochim. Acta Part B 61, 301-313 (2006).
[CrossRef]

Lambert, J. B.

J. B. Lambert, S. Vlasak Simpson, J. E. Buikstra, and D. Hanson, “Electron microprobe analysis of elemental distribution in excavated human femurs,” Am. J. Phys. Anthropol. 62, 409-423 (1983).
[CrossRef] [PubMed]

Lance, V. A.

M. D. Seltzer, V. A. Lance, and R. M. Elsey, “Laser ablation ICP-MS analysis of the radial distribution of lead in the femur of Alligator mississippiensis,” Sci. Total Environ. 363, 245-252 (2006).
[CrossRef]

Larsson, S.

P. Voglis, A. Attaelmanan, P. Engström, S. Larsson, A. Rindby, K. Boström, and C. G. Helander, “Elemental mapping of bone tissues by use of capillary focused XRF,” X-Ray Spectrom. 22, 229-233 (1993).
[CrossRef]

Laserna, J. J.

A. Ferrero and J. J. Laserna, “A theoretical study of atmospheric propagation of laser and return light for stand-off laser induced breakdown spectroscopy purposes,” Spectrochim. Acta Part B 63, 305-311 (2008).
[CrossRef]

C. López-Moreno, S. Palanco, J. J. Laserna, F. DeLucia Jr., A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, “Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces,” J. Anal. At. Spectrom. 21, 55-60 (2006).
[CrossRef]

S. Palanco, C. Lopez-Moreno, and J. J. Laserna, “Design, construction and assessment of a field-deployable laser-induced breakdown spectrometer for remote elemental sensing,” Spectrochim. Acta Part B 61, 88-95 (2006).
[CrossRef]

C. López-Moreno, S. Palanco, and J. J. Laserna, “Quantitative analysis of samples at high temperature with remote laser-induced breakdown spectrometry using a room-temperature calibration plot,” Spectrochim. Acta Part B 60, 1034-1039(2005).
[CrossRef]

S. Palanco, S. Conesa, and J. J. Laserna, “Analytical control of liquid steel in an induction melting furnace using a remote laser induced plasma spectrometer,” J. Anal. At. Spectrom. 19, 462-467 (2004).
[CrossRef]

P. L. Garcia, J. M. Vadillo, and J. J. Laserna, “Real-time monitoring of high temperature corrosion in stainless steel by open-path laser-induced plasma spectrometry,” Appl. Spectrosc. 58, 1347-1352 (2004).
[CrossRef]

Lee, K. K.

R. Brenn, Ch. Haug, U. Klar, S. Zander, K. W. Alt, D. N. Jamieson, K. K. Lee, and H. Schutkowski, “Post-mortem intake of lead in 11th century human bones and teeth studied by milli- and microbeam PIXE and RBS,” Nucl. Instrum. Methods Phys. Res. B 158, 270-274 (1999).
[CrossRef]

Lentz, R. C. F.

S. K. Sharma, A. K. Misra, P. G. Lucey, and R. C. F. Lentz, “A combined remote Raman, LIBS instrument for characterizing minerals with 532 nm laser excitation,” Spectrochim. Acta Part A 73, 468-476 (2009).
[CrossRef]

Lima, M. T.

M. L. Carvalho, A. F. Marques, M. T. Lima, and U. Reus, “Trace elements distribution and post-mortem intake in human bones from middle age by total reflection x-ray fluorescence,” Spectrochim. Acta Part B 59, 1251-1257 (2004).
[CrossRef]

Liška, M.

O. Samek, D. C. S. Beddows, H. H. Telle, J. Kaiser, M. Liška, J. O. Cáceres, and A. Gonzáles Ureña, “Quantitative laser-induced breakdown spectroscopy analysis of calcified tissue samples,” Spectrochim. Acta Part B 56, 865-875 (2001).
[CrossRef]

Lopez-Moreno, C.

S. Palanco, C. Lopez-Moreno, and J. J. Laserna, “Design, construction and assessment of a field-deployable laser-induced breakdown spectrometer for remote elemental sensing,” Spectrochim. Acta Part B 61, 88-95 (2006).
[CrossRef]

López-Moreno, C.

C. López-Moreno, S. Palanco, J. J. Laserna, F. DeLucia Jr., A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, “Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces,” J. Anal. At. Spectrom. 21, 55-60 (2006).
[CrossRef]

C. López-Moreno, S. Palanco, and J. J. Laserna, “Quantitative analysis of samples at high temperature with remote laser-induced breakdown spectrometry using a room-temperature calibration plot,” Spectrochim. Acta Part B 60, 1034-1039(2005).
[CrossRef]

Lucey, P. G.

S. K. Sharma, A. K. Misra, P. G. Lucey, and R. C. F. Lentz, “A combined remote Raman, LIBS instrument for characterizing minerals with 532 nm laser excitation,” Spectrochim. Acta Part A 73, 468-476 (2009).
[CrossRef]

S. K. Sharma, A. K. Misra, P. G. Lucey, R. C. Wiens, and S. M. Clegg, “Combined remote LIBS and Raman spectroscopy at 8.6 m of sulfur-containing minerals, and minerals coated with hematite or covered with basaltic dust,” Spectrochim. Acta Part A 68, 1036-1045 (2007).
[CrossRef]

H. W. Hubble, M. Ghosh, S. K. Sharma, K. A. Horton, P. G. Lucey, S. M. Angel, and R. C. Wiens, “A combined remote LIBS and Raman spectroscopic study of minerals,” in Lunar Planetary Science Conference, Vol. XXXIII (Lunar and Planetary Institute, 2002), abstract 1935, http://www.lpi.usra.edu/meetings/lpsc2002/pdf/1935.pdf.

Lundqvist, M.

Manhès, G.

B. Sallé, J. L. Lacour, P. Mauchien, P. Fichet, S. Maurice, and G. Manhès, “Comparative study of different methodologies for quantitative rock analysis by laser-induced breakdown spectroscopy in a simulated Martian atmosphere,” Spectrochim. Acta Part B 61, 301-313 (2006).
[CrossRef]

Marques, A. F.

M. L. Carvalho, A. F. Marques, M. T. Lima, and U. Reus, “Trace elements distribution and post-mortem intake in human bones from middle age by total reflection x-ray fluorescence,” Spectrochim. Acta Part B 59, 1251-1257 (2004).
[CrossRef]

Martin, M. Z.

M. Z. Martin, N. Labbé, N. André, R. Harris, M. Ebinger, S. D. Wullschleger, and A. A. Vass, “High resolution applications of laser-induced breakdown spectroscopy for environmental and forensic applications,” Spectrochim. Acta Part B 62, 1426-1432 (2007).
[CrossRef]

Mauchien, P.

B. Sallé, P. Mauchien, and S. Maurice, “Laser-induced breakdown spectroscopy in open-path configuration for the analysis of distant objects,” Spectrochim. Acta Part B 62, 739-768(2007).
[CrossRef]

B. Sallé, J. L. Lacour, P. Mauchien, P. Fichet, S. Maurice, and G. Manhès, “Comparative study of different methodologies for quantitative rock analysis by laser-induced breakdown spectroscopy in a simulated Martian atmosphere,” Spectrochim. Acta Part B 61, 301-313 (2006).
[CrossRef]

Maurice, S.

B. Sallé, P. Mauchien, and S. Maurice, “Laser-induced breakdown spectroscopy in open-path configuration for the analysis of distant objects,” Spectrochim. Acta Part B 62, 739-768(2007).
[CrossRef]

B. Sallé, J. L. Lacour, P. Mauchien, P. Fichet, S. Maurice, and G. Manhès, “Comparative study of different methodologies for quantitative rock analysis by laser-induced breakdown spectroscopy in a simulated Martian atmosphere,” Spectrochim. Acta Part B 61, 301-313 (2006).
[CrossRef]

Misra, A. K.

S. K. Sharma, A. K. Misra, P. G. Lucey, and R. C. F. Lentz, “A combined remote Raman, LIBS instrument for characterizing minerals with 532 nm laser excitation,” Spectrochim. Acta Part A 73, 468-476 (2009).
[CrossRef]

S. K. Sharma, A. K. Misra, P. G. Lucey, R. C. Wiens, and S. M. Clegg, “Combined remote LIBS and Raman spectroscopy at 8.6 m of sulfur-containing minerals, and minerals coated with hematite or covered with basaltic dust,” Spectrochim. Acta Part A 68, 1036-1045 (2007).
[CrossRef]

Miziolek, A. W.

C. López-Moreno, S. Palanco, J. J. Laserna, F. DeLucia Jr., A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, “Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces,” J. Anal. At. Spectrom. 21, 55-60 (2006).
[CrossRef]

A. W. Miziolek, V. Palleschi, and I. Schechter, Laser-Induced Breakdown Spectroscopy, Fundamentals and Applications (Cambridge U. Press, 2006).
[CrossRef]

Newsom, H. E.

J. R. Thompson, R. C. Wiens, J. E. Barefield, D. T. Vaniman, H. E. Newsom, and S. M. Clegg, “Remote laser induced breakdown spectroscopy (LIBS) analyses of Dar al Gani 476 and Zagami Martian meteorites,” J. Geophys. Res. Planets 111, E05006 (2006).
[CrossRef]

Palanco, S.

S. Palanco, C. Lopez-Moreno, and J. J. Laserna, “Design, construction and assessment of a field-deployable laser-induced breakdown spectrometer for remote elemental sensing,” Spectrochim. Acta Part B 61, 88-95 (2006).
[CrossRef]

C. López-Moreno, S. Palanco, J. J. Laserna, F. DeLucia Jr., A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, “Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces,” J. Anal. At. Spectrom. 21, 55-60 (2006).
[CrossRef]

C. López-Moreno, S. Palanco, and J. J. Laserna, “Quantitative analysis of samples at high temperature with remote laser-induced breakdown spectrometry using a room-temperature calibration plot,” Spectrochim. Acta Part B 60, 1034-1039(2005).
[CrossRef]

S. Palanco, S. Conesa, and J. J. Laserna, “Analytical control of liquid steel in an induction melting furnace using a remote laser induced plasma spectrometer,” J. Anal. At. Spectrom. 19, 462-467 (2004).
[CrossRef]

Palleschi, V.

A. W. Miziolek, V. Palleschi, and I. Schechter, Laser-Induced Breakdown Spectroscopy, Fundamentals and Applications (Cambridge U. Press, 2006).
[CrossRef]

Parker, R. B.

R. B. Parker and H. Toots, “Minor elements in fossil bone,” Geol. Soc. Am. Bull. 81, 925-932 (1970).
[CrossRef]

Parsons, P. J.

D. J. Bellis, K. M. Hetter, J. Jones, D. Amarasiriwardena, and P. J. Parsons, “Calibration of laser ablation inductively coupled plasma mass spectrometry for quantitative measurements of lead in bone,” J. Anal. At. Spectrom. 21, 948-954(2006).
[CrossRef]

Radziemski, L. J.

D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, 2006).
[CrossRef]

Reinert, T.

St. Jankuhn, T. Butz, R.-H. Flagmeyer, T. Reinert, J. Vogt, B. Barckhausen, J. Hammerl, R. Protsch von Zieten, D. Grambole, F. Herrmann, and K. Bethge, “Ion microprobe analyses of ancient human bone,” Nucl. Instrum. Methods Phys. Res. B 136-138, 329-333 (1998).
[CrossRef]

Reus, U.

M. L. Carvalho, A. F. Marques, M. T. Lima, and U. Reus, “Trace elements distribution and post-mortem intake in human bones from middle age by total reflection x-ray fluorescence,” Spectrochim. Acta Part B 59, 1251-1257 (2004).
[CrossRef]

Rindby, A.

P. Voglis, A. Attaelmanan, P. Engström, S. Larsson, A. Rindby, K. Boström, and C. G. Helander, “Elemental mapping of bone tissues by use of capillary focused XRF,” X-Ray Spectrom. 22, 229-233 (1993).
[CrossRef]

Rose, J.

C. López-Moreno, S. Palanco, J. J. Laserna, F. DeLucia Jr., A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, “Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces,” J. Anal. At. Spectrom. 21, 55-60 (2006).
[CrossRef]

Sallé, B.

B. Sallé, P. Mauchien, and S. Maurice, “Laser-induced breakdown spectroscopy in open-path configuration for the analysis of distant objects,” Spectrochim. Acta Part B 62, 739-768(2007).
[CrossRef]

B. Sallé, J. L. Lacour, P. Mauchien, P. Fichet, S. Maurice, and G. Manhès, “Comparative study of different methodologies for quantitative rock analysis by laser-induced breakdown spectroscopy in a simulated Martian atmosphere,” Spectrochim. Acta Part B 61, 301-313 (2006).
[CrossRef]

Samek, O.

O. Samek, D. C. S. Beddows, H. H. Telle, J. Kaiser, M. Liška, J. O. Cáceres, and A. Gonzáles Ureña, “Quantitative laser-induced breakdown spectroscopy analysis of calcified tissue samples,” Spectrochim. Acta Part B 56, 865-875 (2001).
[CrossRef]

Schechter, I.

A. W. Miziolek, V. Palleschi, and I. Schechter, Laser-Induced Breakdown Spectroscopy, Fundamentals and Applications (Cambridge U. Press, 2006).
[CrossRef]

Schutkowski, H.

R. Brenn, Ch. Haug, U. Klar, S. Zander, K. W. Alt, D. N. Jamieson, K. K. Lee, and H. Schutkowski, “Post-mortem intake of lead in 11th century human bones and teeth studied by milli- and microbeam PIXE and RBS,” Nucl. Instrum. Methods Phys. Res. B 158, 270-274 (1999).
[CrossRef]

Seltzer, M. D.

M. D. Seltzer, V. A. Lance, and R. M. Elsey, “Laser ablation ICP-MS analysis of the radial distribution of lead in the femur of Alligator mississippiensis,” Sci. Total Environ. 363, 245-252 (2006).
[CrossRef]

Sharma, S. K.

S. K. Sharma, A. K. Misra, P. G. Lucey, and R. C. F. Lentz, “A combined remote Raman, LIBS instrument for characterizing minerals with 532 nm laser excitation,” Spectrochim. Acta Part A 73, 468-476 (2009).
[CrossRef]

S. K. Sharma, A. K. Misra, P. G. Lucey, R. C. Wiens, and S. M. Clegg, “Combined remote LIBS and Raman spectroscopy at 8.6 m of sulfur-containing minerals, and minerals coated with hematite or covered with basaltic dust,” Spectrochim. Acta Part A 68, 1036-1045 (2007).
[CrossRef]

H. W. Hubble, M. Ghosh, S. K. Sharma, K. A. Horton, P. G. Lucey, S. M. Angel, and R. C. Wiens, “A combined remote LIBS and Raman spectroscopic study of minerals,” in Lunar Planetary Science Conference, Vol. XXXIII (Lunar and Planetary Institute, 2002), abstract 1935, http://www.lpi.usra.edu/meetings/lpsc2002/pdf/1935.pdf.

Simpson, S. Vlasak

J. B. Lambert, S. Vlasak Simpson, J. E. Buikstra, and D. Hanson, “Electron microprobe analysis of elemental distribution in excavated human femurs,” Am. J. Phys. Anthropol. 62, 409-423 (1983).
[CrossRef] [PubMed]

Svanberg, S.

Telle, H. H.

O. Samek, D. C. S. Beddows, H. H. Telle, J. Kaiser, M. Liška, J. O. Cáceres, and A. Gonzáles Ureña, “Quantitative laser-induced breakdown spectroscopy analysis of calcified tissue samples,” Spectrochim. Acta Part B 56, 865-875 (2001).
[CrossRef]

Thompson, J. R.

J. R. Thompson, R. C. Wiens, J. E. Barefield, D. T. Vaniman, H. E. Newsom, and S. M. Clegg, “Remote laser induced breakdown spectroscopy (LIBS) analyses of Dar al Gani 476 and Zagami Martian meteorites,” J. Geophys. Res. Planets 111, E05006 (2006).
[CrossRef]

Toots, H.

R. B. Parker and H. Toots, “Minor elements in fossil bone,” Geol. Soc. Am. Bull. 81, 925-932 (1970).
[CrossRef]

Trocellier, P.

N. Boscher-Barre and P. Trocellier, “Nuclear microprobe study of a woman's skeleton from the sixth century,” Nucl. Instrum. Methods Phys. Res. B 73, 413-416 (1993).
[CrossRef]

N. Boscher-Barre, P. Trocellier, N. Deschamps, C. Dardenne, J. Blondiaux, and L. Buchet, “Nuclear miroprobe study of trace element in archaeological bones,” J. Trace Microprobe Tech. 10, 77-90 (1992).

Ureña, A. Gonzáles

O. Samek, D. C. S. Beddows, H. H. Telle, J. Kaiser, M. Liška, J. O. Cáceres, and A. Gonzáles Ureña, “Quantitative laser-induced breakdown spectroscopy analysis of calcified tissue samples,” Spectrochim. Acta Part B 56, 865-875 (2001).
[CrossRef]

Vadillo, J. M.

Vaniman, D. T.

J. R. Thompson, R. C. Wiens, J. E. Barefield, D. T. Vaniman, H. E. Newsom, and S. M. Clegg, “Remote laser induced breakdown spectroscopy (LIBS) analyses of Dar al Gani 476 and Zagami Martian meteorites,” J. Geophys. Res. Planets 111, E05006 (2006).
[CrossRef]

Vass, A. A.

M. Z. Martin, N. Labbé, N. André, R. Harris, M. Ebinger, S. D. Wullschleger, and A. A. Vass, “High resolution applications of laser-induced breakdown spectroscopy for environmental and forensic applications,” Spectrochim. Acta Part B 62, 1426-1432 (2007).
[CrossRef]

Voglis, P.

P. Voglis, A. Attaelmanan, P. Engström, S. Larsson, A. Rindby, K. Boström, and C. G. Helander, “Elemental mapping of bone tissues by use of capillary focused XRF,” X-Ray Spectrom. 22, 229-233 (1993).
[CrossRef]

Vogt, J.

St. Jankuhn, T. Butz, R.-H. Flagmeyer, T. Reinert, J. Vogt, B. Barckhausen, J. Hammerl, R. Protsch von Zieten, D. Grambole, F. Herrmann, and K. Bethge, “Ion microprobe analyses of ancient human bone,” Nucl. Instrum. Methods Phys. Res. B 136-138, 329-333 (1998).
[CrossRef]

von Zieten, R. Protsch

St. Jankuhn, T. Butz, R.-H. Flagmeyer, T. Reinert, J. Vogt, B. Barckhausen, J. Hammerl, R. Protsch von Zieten, D. Grambole, F. Herrmann, and K. Bethge, “Ion microprobe analyses of ancient human bone,” Nucl. Instrum. Methods Phys. Res. B 136-138, 329-333 (1998).
[CrossRef]

Walters, R. A.

C. López-Moreno, S. Palanco, J. J. Laserna, F. DeLucia Jr., A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, “Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces,” J. Anal. At. Spectrom. 21, 55-60 (2006).
[CrossRef]

Whitehouse, A. I.

C. López-Moreno, S. Palanco, J. J. Laserna, F. DeLucia Jr., A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, “Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces,” J. Anal. At. Spectrom. 21, 55-60 (2006).
[CrossRef]

Wiens, R. C.

S. K. Sharma, A. K. Misra, P. G. Lucey, R. C. Wiens, and S. M. Clegg, “Combined remote LIBS and Raman spectroscopy at 8.6 m of sulfur-containing minerals, and minerals coated with hematite or covered with basaltic dust,” Spectrochim. Acta Part A 68, 1036-1045 (2007).
[CrossRef]

J. R. Thompson, R. C. Wiens, J. E. Barefield, D. T. Vaniman, H. E. Newsom, and S. M. Clegg, “Remote laser induced breakdown spectroscopy (LIBS) analyses of Dar al Gani 476 and Zagami Martian meteorites,” J. Geophys. Res. Planets 111, E05006 (2006).
[CrossRef]

H. W. Hubble, M. Ghosh, S. K. Sharma, K. A. Horton, P. G. Lucey, S. M. Angel, and R. C. Wiens, “A combined remote LIBS and Raman spectroscopic study of minerals,” in Lunar Planetary Science Conference, Vol. XXXIII (Lunar and Planetary Institute, 2002), abstract 1935, http://www.lpi.usra.edu/meetings/lpsc2002/pdf/1935.pdf.

Wullschleger, S. D.

M. Z. Martin, N. Labbé, N. André, R. Harris, M. Ebinger, S. D. Wullschleger, and A. A. Vass, “High resolution applications of laser-induced breakdown spectroscopy for environmental and forensic applications,” Spectrochim. Acta Part B 62, 1426-1432 (2007).
[CrossRef]

Zander, S.

R. Brenn, Ch. Haug, U. Klar, S. Zander, K. W. Alt, D. N. Jamieson, K. K. Lee, and H. Schutkowski, “Post-mortem intake of lead in 11th century human bones and teeth studied by milli- and microbeam PIXE and RBS,” Nucl. Instrum. Methods Phys. Res. B 158, 270-274 (1999).
[CrossRef]

Am. J. Phys. Anthropol. (1)

J. B. Lambert, S. Vlasak Simpson, J. E. Buikstra, and D. Hanson, “Electron microprobe analysis of elemental distribution in excavated human femurs,” Am. J. Phys. Anthropol. 62, 409-423 (1983).
[CrossRef] [PubMed]

Anal. Bioanal. Chem. (1)

D. Kang, D. Amarasiriwardena, and A. H. Goodman, “Application of laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) to investigate trace metal spatial distributions in human tooth enamel and dentine growth layer and pulp,” Anal. Bioanal. Chem. 378, 1608-1615 (2004).
[CrossRef] [PubMed]

Appl. Spectrosc. (2)

Geol. Soc. Am. Bull. (1)

R. B. Parker and H. Toots, “Minor elements in fossil bone,” Geol. Soc. Am. Bull. 81, 925-932 (1970).
[CrossRef]

J. Anal. At. Spectrom. (3)

D. J. Bellis, K. M. Hetter, J. Jones, D. Amarasiriwardena, and P. J. Parsons, “Calibration of laser ablation inductively coupled plasma mass spectrometry for quantitative measurements of lead in bone,” J. Anal. At. Spectrom. 21, 948-954(2006).
[CrossRef]

C. López-Moreno, S. Palanco, J. J. Laserna, F. DeLucia Jr., A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, “Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces,” J. Anal. At. Spectrom. 21, 55-60 (2006).
[CrossRef]

S. Palanco, S. Conesa, and J. J. Laserna, “Analytical control of liquid steel in an induction melting furnace using a remote laser induced plasma spectrometer,” J. Anal. At. Spectrom. 19, 462-467 (2004).
[CrossRef]

J. Geophys. Res. Planets (1)

J. R. Thompson, R. C. Wiens, J. E. Barefield, D. T. Vaniman, H. E. Newsom, and S. M. Clegg, “Remote laser induced breakdown spectroscopy (LIBS) analyses of Dar al Gani 476 and Zagami Martian meteorites,” J. Geophys. Res. Planets 111, E05006 (2006).
[CrossRef]

J. Trace Microprobe Tech. (1)

N. Boscher-Barre, P. Trocellier, N. Deschamps, C. Dardenne, J. Blondiaux, and L. Buchet, “Nuclear miroprobe study of trace element in archaeological bones,” J. Trace Microprobe Tech. 10, 77-90 (1992).

Nucl. Instrum. Methods Phys. Res. B (4)

N. Boscher-Barre and P. Trocellier, “Nuclear microprobe study of a woman's skeleton from the sixth century,” Nucl. Instrum. Methods Phys. Res. B 73, 413-416 (1993).
[CrossRef]

R. Brenn, Ch. Haug, U. Klar, S. Zander, K. W. Alt, D. N. Jamieson, K. K. Lee, and H. Schutkowski, “Post-mortem intake of lead in 11th century human bones and teeth studied by milli- and microbeam PIXE and RBS,” Nucl. Instrum. Methods Phys. Res. B 158, 270-274 (1999).
[CrossRef]

St. Jankuhn, T. Butz, R.-H. Flagmeyer, T. Reinert, J. Vogt, B. Barckhausen, J. Hammerl, R. Protsch von Zieten, D. Grambole, F. Herrmann, and K. Bethge, “Ion microprobe analyses of ancient human bone,” Nucl. Instrum. Methods Phys. Res. B 136-138, 329-333 (1998).
[CrossRef]

T. A. Elliott and G. W. Grime, “Examining of diagenetic alteration of human bone material from a range of archaeological burial sites using nuclear microscopy,” Nucl. Instrum. Methods Phys. Res. B 77, 537-547 (1993).
[CrossRef]

Sci. Total Environ. (1)

M. D. Seltzer, V. A. Lance, and R. M. Elsey, “Laser ablation ICP-MS analysis of the radial distribution of lead in the femur of Alligator mississippiensis,” Sci. Total Environ. 363, 245-252 (2006).
[CrossRef]

Spectrochim. Acta Part A (2)

S. K. Sharma, A. K. Misra, P. G. Lucey, R. C. Wiens, and S. M. Clegg, “Combined remote LIBS and Raman spectroscopy at 8.6 m of sulfur-containing minerals, and minerals coated with hematite or covered with basaltic dust,” Spectrochim. Acta Part A 68, 1036-1045 (2007).
[CrossRef]

S. K. Sharma, A. K. Misra, P. G. Lucey, and R. C. F. Lentz, “A combined remote Raman, LIBS instrument for characterizing minerals with 532 nm laser excitation,” Spectrochim. Acta Part A 73, 468-476 (2009).
[CrossRef]

Spectrochim. Acta Part B (8)

B. Sallé, J. L. Lacour, P. Mauchien, P. Fichet, S. Maurice, and G. Manhès, “Comparative study of different methodologies for quantitative rock analysis by laser-induced breakdown spectroscopy in a simulated Martian atmosphere,” Spectrochim. Acta Part B 61, 301-313 (2006).
[CrossRef]

M. L. Carvalho, A. F. Marques, M. T. Lima, and U. Reus, “Trace elements distribution and post-mortem intake in human bones from middle age by total reflection x-ray fluorescence,” Spectrochim. Acta Part B 59, 1251-1257 (2004).
[CrossRef]

O. Samek, D. C. S. Beddows, H. H. Telle, J. Kaiser, M. Liška, J. O. Cáceres, and A. Gonzáles Ureña, “Quantitative laser-induced breakdown spectroscopy analysis of calcified tissue samples,” Spectrochim. Acta Part B 56, 865-875 (2001).
[CrossRef]

M. Z. Martin, N. Labbé, N. André, R. Harris, M. Ebinger, S. D. Wullschleger, and A. A. Vass, “High resolution applications of laser-induced breakdown spectroscopy for environmental and forensic applications,” Spectrochim. Acta Part B 62, 1426-1432 (2007).
[CrossRef]

S. Palanco, C. Lopez-Moreno, and J. J. Laserna, “Design, construction and assessment of a field-deployable laser-induced breakdown spectrometer for remote elemental sensing,” Spectrochim. Acta Part B 61, 88-95 (2006).
[CrossRef]

C. López-Moreno, S. Palanco, and J. J. Laserna, “Quantitative analysis of samples at high temperature with remote laser-induced breakdown spectrometry using a room-temperature calibration plot,” Spectrochim. Acta Part B 60, 1034-1039(2005).
[CrossRef]

A. Ferrero and J. J. Laserna, “A theoretical study of atmospheric propagation of laser and return light for stand-off laser induced breakdown spectroscopy purposes,” Spectrochim. Acta Part B 63, 305-311 (2008).
[CrossRef]

B. Sallé, P. Mauchien, and S. Maurice, “Laser-induced breakdown spectroscopy in open-path configuration for the analysis of distant objects,” Spectrochim. Acta Part B 62, 739-768(2007).
[CrossRef]

X-Ray Spectrom. (1)

P. Voglis, A. Attaelmanan, P. Engström, S. Larsson, A. Rindby, K. Boström, and C. G. Helander, “Elemental mapping of bone tissues by use of capillary focused XRF,” X-Ray Spectrom. 22, 229-233 (1993).
[CrossRef]

Other (3)

H. W. Hubble, M. Ghosh, S. K. Sharma, K. A. Horton, P. G. Lucey, S. M. Angel, and R. C. Wiens, “A combined remote LIBS and Raman spectroscopic study of minerals,” in Lunar Planetary Science Conference, Vol. XXXIII (Lunar and Planetary Institute, 2002), abstract 1935, http://www.lpi.usra.edu/meetings/lpsc2002/pdf/1935.pdf.

D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, 2006).
[CrossRef]

A. W. Miziolek, V. Palleschi, and I. Schechter, Laser-Induced Breakdown Spectroscopy, Fundamentals and Applications (Cambridge U. Press, 2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental setup.

Fig. 2
Fig. 2

Shinbone section with ablation craters from remote LIBS (four upper holes, 1 mm diameter) and LA-ICP-MS (lower dense points, spacing of 0.15 mm ).

Fig. 3
Fig. 3

Radial distribution of important elements in compact bone. The positions of the particular points correspond to the crater centers. The right y axis refers to phosphorus only; the left y axis refers to other elements. The depicted values of Zn and Sr content are increased by a factor of 10.

Metrics