Abstract

Laser-induced breakdown spectroscopy (LIBS) offers rapid, localized chemical analysis of solid or liquid materials with high spatial resolution in lateral and depth profiling, without the need for sample preparation. Principal component analysis and partial least squares algorithms were applied to identify a variety of complex organic and inorganic samples. This work illustrates how LIBS analyzers can answer a multitude of real-world needs for rapid analysis, such as determination of lead in paint and children’s toys, analysis of electronic and solder materials, quality control of fiberglass panels, discrimination of coffee beans from different vendors, and identification of generic versus brand-name drugs. Lateral and depth profiling was performed on children’s toys and paint layers. Traditional one-element calibration or multivariate chemometric procedures were applied for elemental quantification, from single laser shot determination of metal traces at 10μg/g to determination of halogens at 90μg/g using 50-shot spectral accumulation. The effectiveness of LIBS for security applications was demonstrated in the field by testing the 50-m standoff LIBS rasterizing detector.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Aragón and J. A. Agueilera, “Characterization of laser induced plasmas by optical emission spectroscopy: a review of experiments and methods,” Spectrochim. Acta Part B 63, 893-916 (2008).
    [CrossRef]
  2. A. Bogaerts and Z. Chen, “Effect of laser parameters on laser ablation and laser-induced plasma formation: anumerical modeling investigation,” Spectrochim. Acta Part B 60, 1280-1307 (2005).
    [CrossRef]
  3. A. Bogaerts, Z. Chen, and D. Bleiner, “Laser ablation of copper in different background gases: comparative study by numerical modeling and experiments,” J. Anal. At. Spectrom. 21, 384-395 (2006).
    [CrossRef]
  4. X. Mao, S.-B. Wen, and R. E. Russo, “Time-resolved laser induced plasma dynamics,” Appl. Surf. Sci. 253, 6316-6321(2007).
    [CrossRef]
  5. J.P.Singh and S.N.Thakur, eds., Laser-Induced Breakdown Spectroscopy (Elsevier, 2007).
  6. D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, 2006).
    [CrossRef]
  7. A.W.Miziolek, V.Palleschi, and I.Schechter, eds., Laser-Induced Breakdown Spectroscopy (LIBS), Fundamentals and Applications (Cambridge University, 2006).
    [CrossRef]
  8. Y.-I. Lee, K. Song, and J. Sneddon, Laser-Induced Breakdown Spectroscopy (Nova Science, 2000).
  9. C. Pasquini, J. Cortez, L. M. C. Silva, and F. B. Gonzaga, “Laser induced breakdown spectroscopy,” J. Brazil. Chem. Soc. 18, 463-512 (2007).
    [CrossRef]
  10. A. A. Boľshakov, A. A. Ganeev, and V. M. Nemets, “Prospects in analytical atomic spectrometry,” Russ. Chem. Rev. 75, 289-302 (2006), http://arxiv.org/pdf/physics/0607078.
    [CrossRef]
  11. J. D. Winefordner, I. B. Gornushkin, T. Correll, E. Gibb, B. W. Smith, and N. Omenetto, “Comparing several atomic spectrometric methods to the super stars: special emphasis on laser induced breakdown spectrometry, LIBS, a future super star,” J. Anal. At. Spectrom. 19, 1061-1083(2004).
    [CrossRef]
  12. P. Fichet, M. Tabarant, B. Sallé, and C. Gautier, “Comparison between LIBS and ICP/OES,” Anal. Bioanal. Chem. 385, 338-344 (2006).
    [CrossRef] [PubMed]
  13. K. A. Slickers, “Spectrochemical analysis in the metallurgical industry,” Pure Appl. Chem. 65, 2443-2452 (1993).
    [CrossRef]
  14. V. B. E. Thomsen, Modern Spectrochemical Analysis of Metals: An Introduction for Users of Arc/Spark Instrumentation (ASM International, 1996).
    [PubMed]
  15. F. C. De Lucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Current status of standoff LIBS security applications at the United States Army Research Laboratory,” Spectroscopy 24, 32-38 (2009).
  16. B. Sallé, P. Mauchien, and S. Maurice, “Laser-induced breakdown spectroscopy in open-path configuration for the analysis of distant objects--a review,” Spectrochim. Acta Part B 62, 739-768 (2007).
    [CrossRef]
  17. Applied Spectra instruments, www.appliedspectra.com/products.
  18. B. Chen, H. Kano, and M. Kuzuya, “Quantitative analysis of trace lead in tin-base lead-free solder by laser-induced plasma spectroscopy in air at atmospheric pressure,” Anal. Sci. 24, 289-291 (2008).
    [CrossRef] [PubMed]
  19. V. Piscitelli, M. A. Martínez, A. J. Fernández, J. J. González, X. L. Mao, and R. E. Russo, “Double pulse laser induced breakdown spectroscopy: experimental study of lead emission intensity dependence on the wavelengths and sample matrix,” Spectrochim. Acta Part B 64, 147-154 (2009).
    [CrossRef]
  20. B. J. Marquardt, S. R. Goode, and S. M. Angel, “In situ determination of lead in paint by laser-induced breakdown spectroscopy using a fiber-optic probe,” Anal. Chem. 68, 977-981 (1996).
    [CrossRef]
  21. B. C. Castle, A. K. Knight, K. Visser, B. W. Smith, and J. D. Winefordner, “Battery powered laser-induced plasma spectrometer for elemental determinations,” J. Anal. At. Spectrom. 13, 589-595 (1998).
    [CrossRef]
  22. K. Y. Yamamoto, D. A. Cremers, M. J. Ferris, and L. E. Foster, “Detection of metals in the environment using a portable laser-induced breakdown spectroscopy instrument,” Appl. Spectrosc. 50, 222-233 (1996).
    [CrossRef]
  23. R. A. Myers, N. J. Kolodziejski, and M. R. Squillante, “Commercialization of laser-induced breakdown spectroscopy for lead-in-paint inspection,” Appl. Opt. 47, G7-G14 (2008).
    [CrossRef]
  24. R. Bruder, D. Menut, and V. Detalle, “Effects of LIBS measurement parameters on wall paintings pigments alteration and detection,” in Lasers in the Conservation of Artworks, J.Nimmrichter, W.Kautek, and M.Schreiner, eds. (Springer, 2007), pp. 367-375.
    [CrossRef]
  25. P. Fichet, P. Mauchien, J.-F. Wagner, and C. Moulin, “Quantitative elemental determination in water and oil by laser induced breakdown spectroscopy,” Anal. Chim. Acta 429, 269-278 (2001).
    [CrossRef]
  26. P. Yaroshchyk, R. J. S. Morrison, D. Body, and B. L. Chadwick, “Quantitative determination of wear metals in engine oils using laser-induced breakdown spectroscopy: a comparison between liquid jets and static liquids,” Spectrochim. Acta Part B 60, 986-992 (2005).
    [CrossRef]
  27. I. Radivojevic, R. Niessner, C. Haisch, S. Florek, H. Becker-Ross, and U. Panne, “Detection of bromine in thermoplasts from consumer electronics by laser-induced plasma spectroscopy,” Spectrochim. Acta Part B 59, 335-343 (2004).
    [CrossRef]
  28. R. Sattmann, I. Mönch, H. Krause, R. Noll, S. Couris, A. Hatziapostolou, A. Mavromanolakis, C. Fotakis, E. Larrauri, and R. Miguel, “Laser-induced breakdown spectroscopy for polymer identification,” Appl. Spectrosc. 52, 456-461 (1998).
    [CrossRef]
  29. L. Caneve, F. Colao, F. Fabbri, R. Fantoni, V. Spizzichino, and J. Striber, “Laser-induced breakdown spectroscopy analysis of asbestos,” Spectrochim. Acta Part B 60, 1115-1120 (2005).
    [CrossRef]
  30. C. J. Lorenzen, C. Carlhoff, U. Hahn, and M. Jogwich, “Applications of laser-induced emission spectral analysis for industrial process and quality control,” J. Anal. At. Spectrom. 7, 1029-1035 (1992).
    [CrossRef]
  31. W. Yin, L. Zhang, L. Dong, M. Weiguang, and S. Jia, “Design of a laser-induced breakdown spectroscopy system for on-line quality analysis of pulverized coal in power plants,” Appl. Spectrosc. 63, 865-872 (2009).
    [CrossRef] [PubMed]
  32. E. J. Ferreira, E. C. Ferreira, A. C. B. Delbem, D. M.B. P. Milori, and D. F. Orsini, “Ensemble of classifiers for analyzing coffees with laser induced breakdown spectroscopy,” in Abstracts of the 5th Euro Mediterranean Symposium on Laser Induced Spectroscopy, Rome, Italy, L.Ganeve, ed. (ENEA, 2009), p. 102.
  33. M. D. Mowery, R. Sing, J. Kirsch, A. Razaghi, S. Béchard, and R. A. Reed, “Rapid at-line analysis of coating thickness and uniformity on tablets using laser induced breakdown spectroscopy,” J. Pharm. Biomed. Anal. 28, 935-943 (2002).
    [CrossRef] [PubMed]
  34. M. C. Madamba, W. M. Mullett, S. Debnath, and E. Kwong, “Characterization of tablet film coatings using a laser-induced breakdown spectroscopic technique,” AAPS PharmSciTech 8, 103 (2007).
    [CrossRef]
  35. M. Hoehse, D. Mory, S. Florek, F. Weritz, I. Gornushkin, and U. Panne, “A combined laser-induced breakdown and Raman spectroscopy echelle system for elemental and molecular microanalysis,” Spectrochim. Acta Part B 64, 1219-1227 (2009).
    [CrossRef]
  36. M. Boueri, M. Baudelet, J. Yu, X. Mao, S. S. Mao, and R. Russo, “Early stage expansion and time-resolved spectral emission of laser-induced plasma from polymer,” Appl. Surf. Sci. 255, 9566-9571 (2009).
    [CrossRef]
  37. J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Standoff detection of chemical and biological threats using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 62, 353-363 (2008).
    [CrossRef] [PubMed]
  38. J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects,” Anal. Bioanal. Chem. 395, 283-300(2009).
    [CrossRef] [PubMed]

2009 (6)

F. C. De Lucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Current status of standoff LIBS security applications at the United States Army Research Laboratory,” Spectroscopy 24, 32-38 (2009).

V. Piscitelli, M. A. Martínez, A. J. Fernández, J. J. González, X. L. Mao, and R. E. Russo, “Double pulse laser induced breakdown spectroscopy: experimental study of lead emission intensity dependence on the wavelengths and sample matrix,” Spectrochim. Acta Part B 64, 147-154 (2009).
[CrossRef]

M. Hoehse, D. Mory, S. Florek, F. Weritz, I. Gornushkin, and U. Panne, “A combined laser-induced breakdown and Raman spectroscopy echelle system for elemental and molecular microanalysis,” Spectrochim. Acta Part B 64, 1219-1227 (2009).
[CrossRef]

M. Boueri, M. Baudelet, J. Yu, X. Mao, S. S. Mao, and R. Russo, “Early stage expansion and time-resolved spectral emission of laser-induced plasma from polymer,” Appl. Surf. Sci. 255, 9566-9571 (2009).
[CrossRef]

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects,” Anal. Bioanal. Chem. 395, 283-300(2009).
[CrossRef] [PubMed]

W. Yin, L. Zhang, L. Dong, M. Weiguang, and S. Jia, “Design of a laser-induced breakdown spectroscopy system for on-line quality analysis of pulverized coal in power plants,” Appl. Spectrosc. 63, 865-872 (2009).
[CrossRef] [PubMed]

2008 (4)

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Standoff detection of chemical and biological threats using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 62, 353-363 (2008).
[CrossRef] [PubMed]

R. A. Myers, N. J. Kolodziejski, and M. R. Squillante, “Commercialization of laser-induced breakdown spectroscopy for lead-in-paint inspection,” Appl. Opt. 47, G7-G14 (2008).
[CrossRef]

B. Chen, H. Kano, and M. Kuzuya, “Quantitative analysis of trace lead in tin-base lead-free solder by laser-induced plasma spectroscopy in air at atmospheric pressure,” Anal. Sci. 24, 289-291 (2008).
[CrossRef] [PubMed]

C. Aragón and J. A. Agueilera, “Characterization of laser induced plasmas by optical emission spectroscopy: a review of experiments and methods,” Spectrochim. Acta Part B 63, 893-916 (2008).
[CrossRef]

2007 (4)

X. Mao, S.-B. Wen, and R. E. Russo, “Time-resolved laser induced plasma dynamics,” Appl. Surf. Sci. 253, 6316-6321(2007).
[CrossRef]

C. Pasquini, J. Cortez, L. M. C. Silva, and F. B. Gonzaga, “Laser induced breakdown spectroscopy,” J. Brazil. Chem. Soc. 18, 463-512 (2007).
[CrossRef]

B. Sallé, P. Mauchien, and S. Maurice, “Laser-induced breakdown spectroscopy in open-path configuration for the analysis of distant objects--a review,” Spectrochim. Acta Part B 62, 739-768 (2007).
[CrossRef]

M. C. Madamba, W. M. Mullett, S. Debnath, and E. Kwong, “Characterization of tablet film coatings using a laser-induced breakdown spectroscopic technique,” AAPS PharmSciTech 8, 103 (2007).
[CrossRef]

2006 (3)

A. Bogaerts, Z. Chen, and D. Bleiner, “Laser ablation of copper in different background gases: comparative study by numerical modeling and experiments,” J. Anal. At. Spectrom. 21, 384-395 (2006).
[CrossRef]

A. A. Boľshakov, A. A. Ganeev, and V. M. Nemets, “Prospects in analytical atomic spectrometry,” Russ. Chem. Rev. 75, 289-302 (2006), http://arxiv.org/pdf/physics/0607078.
[CrossRef]

P. Fichet, M. Tabarant, B. Sallé, and C. Gautier, “Comparison between LIBS and ICP/OES,” Anal. Bioanal. Chem. 385, 338-344 (2006).
[CrossRef] [PubMed]

2005 (3)

A. Bogaerts and Z. Chen, “Effect of laser parameters on laser ablation and laser-induced plasma formation: anumerical modeling investigation,” Spectrochim. Acta Part B 60, 1280-1307 (2005).
[CrossRef]

P. Yaroshchyk, R. J. S. Morrison, D. Body, and B. L. Chadwick, “Quantitative determination of wear metals in engine oils using laser-induced breakdown spectroscopy: a comparison between liquid jets and static liquids,” Spectrochim. Acta Part B 60, 986-992 (2005).
[CrossRef]

L. Caneve, F. Colao, F. Fabbri, R. Fantoni, V. Spizzichino, and J. Striber, “Laser-induced breakdown spectroscopy analysis of asbestos,” Spectrochim. Acta Part B 60, 1115-1120 (2005).
[CrossRef]

2004 (2)

I. Radivojevic, R. Niessner, C. Haisch, S. Florek, H. Becker-Ross, and U. Panne, “Detection of bromine in thermoplasts from consumer electronics by laser-induced plasma spectroscopy,” Spectrochim. Acta Part B 59, 335-343 (2004).
[CrossRef]

J. D. Winefordner, I. B. Gornushkin, T. Correll, E. Gibb, B. W. Smith, and N. Omenetto, “Comparing several atomic spectrometric methods to the super stars: special emphasis on laser induced breakdown spectrometry, LIBS, a future super star,” J. Anal. At. Spectrom. 19, 1061-1083(2004).
[CrossRef]

2002 (1)

M. D. Mowery, R. Sing, J. Kirsch, A. Razaghi, S. Béchard, and R. A. Reed, “Rapid at-line analysis of coating thickness and uniformity on tablets using laser induced breakdown spectroscopy,” J. Pharm. Biomed. Anal. 28, 935-943 (2002).
[CrossRef] [PubMed]

2001 (1)

P. Fichet, P. Mauchien, J.-F. Wagner, and C. Moulin, “Quantitative elemental determination in water and oil by laser induced breakdown spectroscopy,” Anal. Chim. Acta 429, 269-278 (2001).
[CrossRef]

1998 (2)

B. C. Castle, A. K. Knight, K. Visser, B. W. Smith, and J. D. Winefordner, “Battery powered laser-induced plasma spectrometer for elemental determinations,” J. Anal. At. Spectrom. 13, 589-595 (1998).
[CrossRef]

R. Sattmann, I. Mönch, H. Krause, R. Noll, S. Couris, A. Hatziapostolou, A. Mavromanolakis, C. Fotakis, E. Larrauri, and R. Miguel, “Laser-induced breakdown spectroscopy for polymer identification,” Appl. Spectrosc. 52, 456-461 (1998).
[CrossRef]

1996 (2)

K. Y. Yamamoto, D. A. Cremers, M. J. Ferris, and L. E. Foster, “Detection of metals in the environment using a portable laser-induced breakdown spectroscopy instrument,” Appl. Spectrosc. 50, 222-233 (1996).
[CrossRef]

B. J. Marquardt, S. R. Goode, and S. M. Angel, “In situ determination of lead in paint by laser-induced breakdown spectroscopy using a fiber-optic probe,” Anal. Chem. 68, 977-981 (1996).
[CrossRef]

1993 (1)

K. A. Slickers, “Spectrochemical analysis in the metallurgical industry,” Pure Appl. Chem. 65, 2443-2452 (1993).
[CrossRef]

1992 (1)

C. J. Lorenzen, C. Carlhoff, U. Hahn, and M. Jogwich, “Applications of laser-induced emission spectral analysis for industrial process and quality control,” J. Anal. At. Spectrom. 7, 1029-1035 (1992).
[CrossRef]

Agueilera, J. A.

C. Aragón and J. A. Agueilera, “Characterization of laser induced plasmas by optical emission spectroscopy: a review of experiments and methods,” Spectrochim. Acta Part B 63, 893-916 (2008).
[CrossRef]

Angel, S. M.

B. J. Marquardt, S. R. Goode, and S. M. Angel, “In situ determination of lead in paint by laser-induced breakdown spectroscopy using a fiber-optic probe,” Anal. Chem. 68, 977-981 (1996).
[CrossRef]

Aragón, C.

C. Aragón and J. A. Agueilera, “Characterization of laser induced plasmas by optical emission spectroscopy: a review of experiments and methods,” Spectrochim. Acta Part B 63, 893-916 (2008).
[CrossRef]

Baudelet, M.

M. Boueri, M. Baudelet, J. Yu, X. Mao, S. S. Mao, and R. Russo, “Early stage expansion and time-resolved spectral emission of laser-induced plasma from polymer,” Appl. Surf. Sci. 255, 9566-9571 (2009).
[CrossRef]

Béchard, S.

M. D. Mowery, R. Sing, J. Kirsch, A. Razaghi, S. Béchard, and R. A. Reed, “Rapid at-line analysis of coating thickness and uniformity on tablets using laser induced breakdown spectroscopy,” J. Pharm. Biomed. Anal. 28, 935-943 (2002).
[CrossRef] [PubMed]

Becker-Ross, H.

I. Radivojevic, R. Niessner, C. Haisch, S. Florek, H. Becker-Ross, and U. Panne, “Detection of bromine in thermoplasts from consumer electronics by laser-induced plasma spectroscopy,” Spectrochim. Acta Part B 59, 335-343 (2004).
[CrossRef]

Bleiner, D.

A. Bogaerts, Z. Chen, and D. Bleiner, “Laser ablation of copper in different background gases: comparative study by numerical modeling and experiments,” J. Anal. At. Spectrom. 21, 384-395 (2006).
[CrossRef]

Body, D.

P. Yaroshchyk, R. J. S. Morrison, D. Body, and B. L. Chadwick, “Quantitative determination of wear metals in engine oils using laser-induced breakdown spectroscopy: a comparison between liquid jets and static liquids,” Spectrochim. Acta Part B 60, 986-992 (2005).
[CrossRef]

Bogaerts, A.

A. Bogaerts, Z. Chen, and D. Bleiner, “Laser ablation of copper in different background gases: comparative study by numerical modeling and experiments,” J. Anal. At. Spectrom. 21, 384-395 (2006).
[CrossRef]

A. Bogaerts and Z. Chen, “Effect of laser parameters on laser ablation and laser-induced plasma formation: anumerical modeling investigation,” Spectrochim. Acta Part B 60, 1280-1307 (2005).
[CrossRef]

Bolshakov, A. A.

A. A. Boľshakov, A. A. Ganeev, and V. M. Nemets, “Prospects in analytical atomic spectrometry,” Russ. Chem. Rev. 75, 289-302 (2006), http://arxiv.org/pdf/physics/0607078.
[CrossRef]

Boueri, M.

M. Boueri, M. Baudelet, J. Yu, X. Mao, S. S. Mao, and R. Russo, “Early stage expansion and time-resolved spectral emission of laser-induced plasma from polymer,” Appl. Surf. Sci. 255, 9566-9571 (2009).
[CrossRef]

Bruder, R.

R. Bruder, D. Menut, and V. Detalle, “Effects of LIBS measurement parameters on wall paintings pigments alteration and detection,” in Lasers in the Conservation of Artworks, J.Nimmrichter, W.Kautek, and M.Schreiner, eds. (Springer, 2007), pp. 367-375.
[CrossRef]

Caneve, L.

L. Caneve, F. Colao, F. Fabbri, R. Fantoni, V. Spizzichino, and J. Striber, “Laser-induced breakdown spectroscopy analysis of asbestos,” Spectrochim. Acta Part B 60, 1115-1120 (2005).
[CrossRef]

Carlhoff, C.

C. J. Lorenzen, C. Carlhoff, U. Hahn, and M. Jogwich, “Applications of laser-induced emission spectral analysis for industrial process and quality control,” J. Anal. At. Spectrom. 7, 1029-1035 (1992).
[CrossRef]

Castle, B. C.

B. C. Castle, A. K. Knight, K. Visser, B. W. Smith, and J. D. Winefordner, “Battery powered laser-induced plasma spectrometer for elemental determinations,” J. Anal. At. Spectrom. 13, 589-595 (1998).
[CrossRef]

Chadwick, B. L.

P. Yaroshchyk, R. J. S. Morrison, D. Body, and B. L. Chadwick, “Quantitative determination of wear metals in engine oils using laser-induced breakdown spectroscopy: a comparison between liquid jets and static liquids,” Spectrochim. Acta Part B 60, 986-992 (2005).
[CrossRef]

Chen, B.

B. Chen, H. Kano, and M. Kuzuya, “Quantitative analysis of trace lead in tin-base lead-free solder by laser-induced plasma spectroscopy in air at atmospheric pressure,” Anal. Sci. 24, 289-291 (2008).
[CrossRef] [PubMed]

Chen, Z.

A. Bogaerts, Z. Chen, and D. Bleiner, “Laser ablation of copper in different background gases: comparative study by numerical modeling and experiments,” J. Anal. At. Spectrom. 21, 384-395 (2006).
[CrossRef]

A. Bogaerts and Z. Chen, “Effect of laser parameters on laser ablation and laser-induced plasma formation: anumerical modeling investigation,” Spectrochim. Acta Part B 60, 1280-1307 (2005).
[CrossRef]

Colao, F.

L. Caneve, F. Colao, F. Fabbri, R. Fantoni, V. Spizzichino, and J. Striber, “Laser-induced breakdown spectroscopy analysis of asbestos,” Spectrochim. Acta Part B 60, 1115-1120 (2005).
[CrossRef]

Correll, T.

J. D. Winefordner, I. B. Gornushkin, T. Correll, E. Gibb, B. W. Smith, and N. Omenetto, “Comparing several atomic spectrometric methods to the super stars: special emphasis on laser induced breakdown spectrometry, LIBS, a future super star,” J. Anal. At. Spectrom. 19, 1061-1083(2004).
[CrossRef]

Cortez, J.

C. Pasquini, J. Cortez, L. M. C. Silva, and F. B. Gonzaga, “Laser induced breakdown spectroscopy,” J. Brazil. Chem. Soc. 18, 463-512 (2007).
[CrossRef]

Couris, S.

Cremers, D. A.

De Lucia, F. C.

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects,” Anal. Bioanal. Chem. 395, 283-300(2009).
[CrossRef] [PubMed]

F. C. De Lucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Current status of standoff LIBS security applications at the United States Army Research Laboratory,” Spectroscopy 24, 32-38 (2009).

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Standoff detection of chemical and biological threats using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 62, 353-363 (2008).
[CrossRef] [PubMed]

Debnath, S.

M. C. Madamba, W. M. Mullett, S. Debnath, and E. Kwong, “Characterization of tablet film coatings using a laser-induced breakdown spectroscopic technique,” AAPS PharmSciTech 8, 103 (2007).
[CrossRef]

Delbem, A. C. B.

E. J. Ferreira, E. C. Ferreira, A. C. B. Delbem, D. M.B. P. Milori, and D. F. Orsini, “Ensemble of classifiers for analyzing coffees with laser induced breakdown spectroscopy,” in Abstracts of the 5th Euro Mediterranean Symposium on Laser Induced Spectroscopy, Rome, Italy, L.Ganeve, ed. (ENEA, 2009), p. 102.

Detalle, V.

R. Bruder, D. Menut, and V. Detalle, “Effects of LIBS measurement parameters on wall paintings pigments alteration and detection,” in Lasers in the Conservation of Artworks, J.Nimmrichter, W.Kautek, and M.Schreiner, eds. (Springer, 2007), pp. 367-375.
[CrossRef]

Dong, L.

Fabbri, F.

L. Caneve, F. Colao, F. Fabbri, R. Fantoni, V. Spizzichino, and J. Striber, “Laser-induced breakdown spectroscopy analysis of asbestos,” Spectrochim. Acta Part B 60, 1115-1120 (2005).
[CrossRef]

Fantoni, R.

L. Caneve, F. Colao, F. Fabbri, R. Fantoni, V. Spizzichino, and J. Striber, “Laser-induced breakdown spectroscopy analysis of asbestos,” Spectrochim. Acta Part B 60, 1115-1120 (2005).
[CrossRef]

Fernández, A. J.

V. Piscitelli, M. A. Martínez, A. J. Fernández, J. J. González, X. L. Mao, and R. E. Russo, “Double pulse laser induced breakdown spectroscopy: experimental study of lead emission intensity dependence on the wavelengths and sample matrix,” Spectrochim. Acta Part B 64, 147-154 (2009).
[CrossRef]

Ferreira, E. C.

E. J. Ferreira, E. C. Ferreira, A. C. B. Delbem, D. M.B. P. Milori, and D. F. Orsini, “Ensemble of classifiers for analyzing coffees with laser induced breakdown spectroscopy,” in Abstracts of the 5th Euro Mediterranean Symposium on Laser Induced Spectroscopy, Rome, Italy, L.Ganeve, ed. (ENEA, 2009), p. 102.

Ferreira, E. J.

E. J. Ferreira, E. C. Ferreira, A. C. B. Delbem, D. M.B. P. Milori, and D. F. Orsini, “Ensemble of classifiers for analyzing coffees with laser induced breakdown spectroscopy,” in Abstracts of the 5th Euro Mediterranean Symposium on Laser Induced Spectroscopy, Rome, Italy, L.Ganeve, ed. (ENEA, 2009), p. 102.

Ferris, M. J.

Fichet, P.

P. Fichet, M. Tabarant, B. Sallé, and C. Gautier, “Comparison between LIBS and ICP/OES,” Anal. Bioanal. Chem. 385, 338-344 (2006).
[CrossRef] [PubMed]

P. Fichet, P. Mauchien, J.-F. Wagner, and C. Moulin, “Quantitative elemental determination in water and oil by laser induced breakdown spectroscopy,” Anal. Chim. Acta 429, 269-278 (2001).
[CrossRef]

Florek, S.

M. Hoehse, D. Mory, S. Florek, F. Weritz, I. Gornushkin, and U. Panne, “A combined laser-induced breakdown and Raman spectroscopy echelle system for elemental and molecular microanalysis,” Spectrochim. Acta Part B 64, 1219-1227 (2009).
[CrossRef]

I. Radivojevic, R. Niessner, C. Haisch, S. Florek, H. Becker-Ross, and U. Panne, “Detection of bromine in thermoplasts from consumer electronics by laser-induced plasma spectroscopy,” Spectrochim. Acta Part B 59, 335-343 (2004).
[CrossRef]

Foster, L. E.

Fotakis, C.

Ganeev, A. A.

A. A. Boľshakov, A. A. Ganeev, and V. M. Nemets, “Prospects in analytical atomic spectrometry,” Russ. Chem. Rev. 75, 289-302 (2006), http://arxiv.org/pdf/physics/0607078.
[CrossRef]

Gautier, C.

P. Fichet, M. Tabarant, B. Sallé, and C. Gautier, “Comparison between LIBS and ICP/OES,” Anal. Bioanal. Chem. 385, 338-344 (2006).
[CrossRef] [PubMed]

Gibb, E.

J. D. Winefordner, I. B. Gornushkin, T. Correll, E. Gibb, B. W. Smith, and N. Omenetto, “Comparing several atomic spectrometric methods to the super stars: special emphasis on laser induced breakdown spectrometry, LIBS, a future super star,” J. Anal. At. Spectrom. 19, 1061-1083(2004).
[CrossRef]

Gonzaga, F. B.

C. Pasquini, J. Cortez, L. M. C. Silva, and F. B. Gonzaga, “Laser induced breakdown spectroscopy,” J. Brazil. Chem. Soc. 18, 463-512 (2007).
[CrossRef]

González, J. J.

V. Piscitelli, M. A. Martínez, A. J. Fernández, J. J. González, X. L. Mao, and R. E. Russo, “Double pulse laser induced breakdown spectroscopy: experimental study of lead emission intensity dependence on the wavelengths and sample matrix,” Spectrochim. Acta Part B 64, 147-154 (2009).
[CrossRef]

Goode, S. R.

B. J. Marquardt, S. R. Goode, and S. M. Angel, “In situ determination of lead in paint by laser-induced breakdown spectroscopy using a fiber-optic probe,” Anal. Chem. 68, 977-981 (1996).
[CrossRef]

Gornushkin, I.

M. Hoehse, D. Mory, S. Florek, F. Weritz, I. Gornushkin, and U. Panne, “A combined laser-induced breakdown and Raman spectroscopy echelle system for elemental and molecular microanalysis,” Spectrochim. Acta Part B 64, 1219-1227 (2009).
[CrossRef]

Gornushkin, I. B.

J. D. Winefordner, I. B. Gornushkin, T. Correll, E. Gibb, B. W. Smith, and N. Omenetto, “Comparing several atomic spectrometric methods to the super stars: special emphasis on laser induced breakdown spectrometry, LIBS, a future super star,” J. Anal. At. Spectrom. 19, 1061-1083(2004).
[CrossRef]

Gottfried, J. L.

F. C. De Lucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Current status of standoff LIBS security applications at the United States Army Research Laboratory,” Spectroscopy 24, 32-38 (2009).

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects,” Anal. Bioanal. Chem. 395, 283-300(2009).
[CrossRef] [PubMed]

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Standoff detection of chemical and biological threats using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 62, 353-363 (2008).
[CrossRef] [PubMed]

Hahn, U.

C. J. Lorenzen, C. Carlhoff, U. Hahn, and M. Jogwich, “Applications of laser-induced emission spectral analysis for industrial process and quality control,” J. Anal. At. Spectrom. 7, 1029-1035 (1992).
[CrossRef]

Haisch, C.

I. Radivojevic, R. Niessner, C. Haisch, S. Florek, H. Becker-Ross, and U. Panne, “Detection of bromine in thermoplasts from consumer electronics by laser-induced plasma spectroscopy,” Spectrochim. Acta Part B 59, 335-343 (2004).
[CrossRef]

Hatziapostolou, A.

Hoehse, M.

M. Hoehse, D. Mory, S. Florek, F. Weritz, I. Gornushkin, and U. Panne, “A combined laser-induced breakdown and Raman spectroscopy echelle system for elemental and molecular microanalysis,” Spectrochim. Acta Part B 64, 1219-1227 (2009).
[CrossRef]

Jia, S.

Jogwich, M.

C. J. Lorenzen, C. Carlhoff, U. Hahn, and M. Jogwich, “Applications of laser-induced emission spectral analysis for industrial process and quality control,” J. Anal. At. Spectrom. 7, 1029-1035 (1992).
[CrossRef]

Kano, H.

B. Chen, H. Kano, and M. Kuzuya, “Quantitative analysis of trace lead in tin-base lead-free solder by laser-induced plasma spectroscopy in air at atmospheric pressure,” Anal. Sci. 24, 289-291 (2008).
[CrossRef] [PubMed]

Kirsch, J.

M. D. Mowery, R. Sing, J. Kirsch, A. Razaghi, S. Béchard, and R. A. Reed, “Rapid at-line analysis of coating thickness and uniformity on tablets using laser induced breakdown spectroscopy,” J. Pharm. Biomed. Anal. 28, 935-943 (2002).
[CrossRef] [PubMed]

Knight, A. K.

B. C. Castle, A. K. Knight, K. Visser, B. W. Smith, and J. D. Winefordner, “Battery powered laser-induced plasma spectrometer for elemental determinations,” J. Anal. At. Spectrom. 13, 589-595 (1998).
[CrossRef]

Kolodziejski, N. J.

Krause, H.

Kuzuya, M.

B. Chen, H. Kano, and M. Kuzuya, “Quantitative analysis of trace lead in tin-base lead-free solder by laser-induced plasma spectroscopy in air at atmospheric pressure,” Anal. Sci. 24, 289-291 (2008).
[CrossRef] [PubMed]

Kwong, E.

M. C. Madamba, W. M. Mullett, S. Debnath, and E. Kwong, “Characterization of tablet film coatings using a laser-induced breakdown spectroscopic technique,” AAPS PharmSciTech 8, 103 (2007).
[CrossRef]

Larrauri, E.

Lee, Y.-I.

Y.-I. Lee, K. Song, and J. Sneddon, Laser-Induced Breakdown Spectroscopy (Nova Science, 2000).

Lorenzen, C. J.

C. J. Lorenzen, C. Carlhoff, U. Hahn, and M. Jogwich, “Applications of laser-induced emission spectral analysis for industrial process and quality control,” J. Anal. At. Spectrom. 7, 1029-1035 (1992).
[CrossRef]

Madamba, M. C.

M. C. Madamba, W. M. Mullett, S. Debnath, and E. Kwong, “Characterization of tablet film coatings using a laser-induced breakdown spectroscopic technique,” AAPS PharmSciTech 8, 103 (2007).
[CrossRef]

Mao, S. S.

M. Boueri, M. Baudelet, J. Yu, X. Mao, S. S. Mao, and R. Russo, “Early stage expansion and time-resolved spectral emission of laser-induced plasma from polymer,” Appl. Surf. Sci. 255, 9566-9571 (2009).
[CrossRef]

Mao, X.

M. Boueri, M. Baudelet, J. Yu, X. Mao, S. S. Mao, and R. Russo, “Early stage expansion and time-resolved spectral emission of laser-induced plasma from polymer,” Appl. Surf. Sci. 255, 9566-9571 (2009).
[CrossRef]

X. Mao, S.-B. Wen, and R. E. Russo, “Time-resolved laser induced plasma dynamics,” Appl. Surf. Sci. 253, 6316-6321(2007).
[CrossRef]

Mao, X. L.

V. Piscitelli, M. A. Martínez, A. J. Fernández, J. J. González, X. L. Mao, and R. E. Russo, “Double pulse laser induced breakdown spectroscopy: experimental study of lead emission intensity dependence on the wavelengths and sample matrix,” Spectrochim. Acta Part B 64, 147-154 (2009).
[CrossRef]

Marquardt, B. J.

B. J. Marquardt, S. R. Goode, and S. M. Angel, “In situ determination of lead in paint by laser-induced breakdown spectroscopy using a fiber-optic probe,” Anal. Chem. 68, 977-981 (1996).
[CrossRef]

Martínez, M. A.

V. Piscitelli, M. A. Martínez, A. J. Fernández, J. J. González, X. L. Mao, and R. E. Russo, “Double pulse laser induced breakdown spectroscopy: experimental study of lead emission intensity dependence on the wavelengths and sample matrix,” Spectrochim. Acta Part B 64, 147-154 (2009).
[CrossRef]

Mauchien, P.

B. Sallé, P. Mauchien, and S. Maurice, “Laser-induced breakdown spectroscopy in open-path configuration for the analysis of distant objects--a review,” Spectrochim. Acta Part B 62, 739-768 (2007).
[CrossRef]

P. Fichet, P. Mauchien, J.-F. Wagner, and C. Moulin, “Quantitative elemental determination in water and oil by laser induced breakdown spectroscopy,” Anal. Chim. Acta 429, 269-278 (2001).
[CrossRef]

Maurice, S.

B. Sallé, P. Mauchien, and S. Maurice, “Laser-induced breakdown spectroscopy in open-path configuration for the analysis of distant objects--a review,” Spectrochim. Acta Part B 62, 739-768 (2007).
[CrossRef]

Mavromanolakis, A.

Menut, D.

R. Bruder, D. Menut, and V. Detalle, “Effects of LIBS measurement parameters on wall paintings pigments alteration and detection,” in Lasers in the Conservation of Artworks, J.Nimmrichter, W.Kautek, and M.Schreiner, eds. (Springer, 2007), pp. 367-375.
[CrossRef]

Miguel, R.

Milori, D. M.B. P.

E. J. Ferreira, E. C. Ferreira, A. C. B. Delbem, D. M.B. P. Milori, and D. F. Orsini, “Ensemble of classifiers for analyzing coffees with laser induced breakdown spectroscopy,” in Abstracts of the 5th Euro Mediterranean Symposium on Laser Induced Spectroscopy, Rome, Italy, L.Ganeve, ed. (ENEA, 2009), p. 102.

Miziolek, A. W.

F. C. De Lucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Current status of standoff LIBS security applications at the United States Army Research Laboratory,” Spectroscopy 24, 32-38 (2009).

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects,” Anal. Bioanal. Chem. 395, 283-300(2009).
[CrossRef] [PubMed]

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Standoff detection of chemical and biological threats using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 62, 353-363 (2008).
[CrossRef] [PubMed]

Mönch, I.

Morrison, R. J. S.

P. Yaroshchyk, R. J. S. Morrison, D. Body, and B. L. Chadwick, “Quantitative determination of wear metals in engine oils using laser-induced breakdown spectroscopy: a comparison between liquid jets and static liquids,” Spectrochim. Acta Part B 60, 986-992 (2005).
[CrossRef]

Mory, D.

M. Hoehse, D. Mory, S. Florek, F. Weritz, I. Gornushkin, and U. Panne, “A combined laser-induced breakdown and Raman spectroscopy echelle system for elemental and molecular microanalysis,” Spectrochim. Acta Part B 64, 1219-1227 (2009).
[CrossRef]

Moulin, C.

P. Fichet, P. Mauchien, J.-F. Wagner, and C. Moulin, “Quantitative elemental determination in water and oil by laser induced breakdown spectroscopy,” Anal. Chim. Acta 429, 269-278 (2001).
[CrossRef]

Mowery, M. D.

M. D. Mowery, R. Sing, J. Kirsch, A. Razaghi, S. Béchard, and R. A. Reed, “Rapid at-line analysis of coating thickness and uniformity on tablets using laser induced breakdown spectroscopy,” J. Pharm. Biomed. Anal. 28, 935-943 (2002).
[CrossRef] [PubMed]

Mullett, W. M.

M. C. Madamba, W. M. Mullett, S. Debnath, and E. Kwong, “Characterization of tablet film coatings using a laser-induced breakdown spectroscopic technique,” AAPS PharmSciTech 8, 103 (2007).
[CrossRef]

Munson, C. A.

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects,” Anal. Bioanal. Chem. 395, 283-300(2009).
[CrossRef] [PubMed]

F. C. De Lucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Current status of standoff LIBS security applications at the United States Army Research Laboratory,” Spectroscopy 24, 32-38 (2009).

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Standoff detection of chemical and biological threats using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 62, 353-363 (2008).
[CrossRef] [PubMed]

Myers, R. A.

Nemets, V. M.

A. A. Boľshakov, A. A. Ganeev, and V. M. Nemets, “Prospects in analytical atomic spectrometry,” Russ. Chem. Rev. 75, 289-302 (2006), http://arxiv.org/pdf/physics/0607078.
[CrossRef]

Niessner, R.

I. Radivojevic, R. Niessner, C. Haisch, S. Florek, H. Becker-Ross, and U. Panne, “Detection of bromine in thermoplasts from consumer electronics by laser-induced plasma spectroscopy,” Spectrochim. Acta Part B 59, 335-343 (2004).
[CrossRef]

Noll, R.

Omenetto, N.

J. D. Winefordner, I. B. Gornushkin, T. Correll, E. Gibb, B. W. Smith, and N. Omenetto, “Comparing several atomic spectrometric methods to the super stars: special emphasis on laser induced breakdown spectrometry, LIBS, a future super star,” J. Anal. At. Spectrom. 19, 1061-1083(2004).
[CrossRef]

Orsini, D. F.

E. J. Ferreira, E. C. Ferreira, A. C. B. Delbem, D. M.B. P. Milori, and D. F. Orsini, “Ensemble of classifiers for analyzing coffees with laser induced breakdown spectroscopy,” in Abstracts of the 5th Euro Mediterranean Symposium on Laser Induced Spectroscopy, Rome, Italy, L.Ganeve, ed. (ENEA, 2009), p. 102.

Panne, U.

M. Hoehse, D. Mory, S. Florek, F. Weritz, I. Gornushkin, and U. Panne, “A combined laser-induced breakdown and Raman spectroscopy echelle system for elemental and molecular microanalysis,” Spectrochim. Acta Part B 64, 1219-1227 (2009).
[CrossRef]

I. Radivojevic, R. Niessner, C. Haisch, S. Florek, H. Becker-Ross, and U. Panne, “Detection of bromine in thermoplasts from consumer electronics by laser-induced plasma spectroscopy,” Spectrochim. Acta Part B 59, 335-343 (2004).
[CrossRef]

Pasquini, C.

C. Pasquini, J. Cortez, L. M. C. Silva, and F. B. Gonzaga, “Laser induced breakdown spectroscopy,” J. Brazil. Chem. Soc. 18, 463-512 (2007).
[CrossRef]

Piscitelli, V.

V. Piscitelli, M. A. Martínez, A. J. Fernández, J. J. González, X. L. Mao, and R. E. Russo, “Double pulse laser induced breakdown spectroscopy: experimental study of lead emission intensity dependence on the wavelengths and sample matrix,” Spectrochim. Acta Part B 64, 147-154 (2009).
[CrossRef]

Radivojevic, I.

I. Radivojevic, R. Niessner, C. Haisch, S. Florek, H. Becker-Ross, and U. Panne, “Detection of bromine in thermoplasts from consumer electronics by laser-induced plasma spectroscopy,” Spectrochim. Acta Part B 59, 335-343 (2004).
[CrossRef]

Radziemski, L. J.

D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, 2006).
[CrossRef]

Razaghi, A.

M. D. Mowery, R. Sing, J. Kirsch, A. Razaghi, S. Béchard, and R. A. Reed, “Rapid at-line analysis of coating thickness and uniformity on tablets using laser induced breakdown spectroscopy,” J. Pharm. Biomed. Anal. 28, 935-943 (2002).
[CrossRef] [PubMed]

Reed, R. A.

M. D. Mowery, R. Sing, J. Kirsch, A. Razaghi, S. Béchard, and R. A. Reed, “Rapid at-line analysis of coating thickness and uniformity on tablets using laser induced breakdown spectroscopy,” J. Pharm. Biomed. Anal. 28, 935-943 (2002).
[CrossRef] [PubMed]

Russo, R.

M. Boueri, M. Baudelet, J. Yu, X. Mao, S. S. Mao, and R. Russo, “Early stage expansion and time-resolved spectral emission of laser-induced plasma from polymer,” Appl. Surf. Sci. 255, 9566-9571 (2009).
[CrossRef]

Russo, R. E.

V. Piscitelli, M. A. Martínez, A. J. Fernández, J. J. González, X. L. Mao, and R. E. Russo, “Double pulse laser induced breakdown spectroscopy: experimental study of lead emission intensity dependence on the wavelengths and sample matrix,” Spectrochim. Acta Part B 64, 147-154 (2009).
[CrossRef]

X. Mao, S.-B. Wen, and R. E. Russo, “Time-resolved laser induced plasma dynamics,” Appl. Surf. Sci. 253, 6316-6321(2007).
[CrossRef]

Sallé, B.

B. Sallé, P. Mauchien, and S. Maurice, “Laser-induced breakdown spectroscopy in open-path configuration for the analysis of distant objects--a review,” Spectrochim. Acta Part B 62, 739-768 (2007).
[CrossRef]

P. Fichet, M. Tabarant, B. Sallé, and C. Gautier, “Comparison between LIBS and ICP/OES,” Anal. Bioanal. Chem. 385, 338-344 (2006).
[CrossRef] [PubMed]

Sattmann, R.

Silva, L. M. C.

C. Pasquini, J. Cortez, L. M. C. Silva, and F. B. Gonzaga, “Laser induced breakdown spectroscopy,” J. Brazil. Chem. Soc. 18, 463-512 (2007).
[CrossRef]

Sing, R.

M. D. Mowery, R. Sing, J. Kirsch, A. Razaghi, S. Béchard, and R. A. Reed, “Rapid at-line analysis of coating thickness and uniformity on tablets using laser induced breakdown spectroscopy,” J. Pharm. Biomed. Anal. 28, 935-943 (2002).
[CrossRef] [PubMed]

Slickers, K. A.

K. A. Slickers, “Spectrochemical analysis in the metallurgical industry,” Pure Appl. Chem. 65, 2443-2452 (1993).
[CrossRef]

Smith, B. W.

J. D. Winefordner, I. B. Gornushkin, T. Correll, E. Gibb, B. W. Smith, and N. Omenetto, “Comparing several atomic spectrometric methods to the super stars: special emphasis on laser induced breakdown spectrometry, LIBS, a future super star,” J. Anal. At. Spectrom. 19, 1061-1083(2004).
[CrossRef]

B. C. Castle, A. K. Knight, K. Visser, B. W. Smith, and J. D. Winefordner, “Battery powered laser-induced plasma spectrometer for elemental determinations,” J. Anal. At. Spectrom. 13, 589-595 (1998).
[CrossRef]

Sneddon, J.

Y.-I. Lee, K. Song, and J. Sneddon, Laser-Induced Breakdown Spectroscopy (Nova Science, 2000).

Song, K.

Y.-I. Lee, K. Song, and J. Sneddon, Laser-Induced Breakdown Spectroscopy (Nova Science, 2000).

Spizzichino, V.

L. Caneve, F. Colao, F. Fabbri, R. Fantoni, V. Spizzichino, and J. Striber, “Laser-induced breakdown spectroscopy analysis of asbestos,” Spectrochim. Acta Part B 60, 1115-1120 (2005).
[CrossRef]

Squillante, M. R.

Striber, J.

L. Caneve, F. Colao, F. Fabbri, R. Fantoni, V. Spizzichino, and J. Striber, “Laser-induced breakdown spectroscopy analysis of asbestos,” Spectrochim. Acta Part B 60, 1115-1120 (2005).
[CrossRef]

Tabarant, M.

P. Fichet, M. Tabarant, B. Sallé, and C. Gautier, “Comparison between LIBS and ICP/OES,” Anal. Bioanal. Chem. 385, 338-344 (2006).
[CrossRef] [PubMed]

Thomsen, V. B. E.

V. B. E. Thomsen, Modern Spectrochemical Analysis of Metals: An Introduction for Users of Arc/Spark Instrumentation (ASM International, 1996).
[PubMed]

Visser, K.

B. C. Castle, A. K. Knight, K. Visser, B. W. Smith, and J. D. Winefordner, “Battery powered laser-induced plasma spectrometer for elemental determinations,” J. Anal. At. Spectrom. 13, 589-595 (1998).
[CrossRef]

Wagner, J.-F.

P. Fichet, P. Mauchien, J.-F. Wagner, and C. Moulin, “Quantitative elemental determination in water and oil by laser induced breakdown spectroscopy,” Anal. Chim. Acta 429, 269-278 (2001).
[CrossRef]

Weiguang, M.

Wen, S.-B.

X. Mao, S.-B. Wen, and R. E. Russo, “Time-resolved laser induced plasma dynamics,” Appl. Surf. Sci. 253, 6316-6321(2007).
[CrossRef]

Weritz, F.

M. Hoehse, D. Mory, S. Florek, F. Weritz, I. Gornushkin, and U. Panne, “A combined laser-induced breakdown and Raman spectroscopy echelle system for elemental and molecular microanalysis,” Spectrochim. Acta Part B 64, 1219-1227 (2009).
[CrossRef]

Winefordner, J. D.

J. D. Winefordner, I. B. Gornushkin, T. Correll, E. Gibb, B. W. Smith, and N. Omenetto, “Comparing several atomic spectrometric methods to the super stars: special emphasis on laser induced breakdown spectrometry, LIBS, a future super star,” J. Anal. At. Spectrom. 19, 1061-1083(2004).
[CrossRef]

B. C. Castle, A. K. Knight, K. Visser, B. W. Smith, and J. D. Winefordner, “Battery powered laser-induced plasma spectrometer for elemental determinations,” J. Anal. At. Spectrom. 13, 589-595 (1998).
[CrossRef]

Yamamoto, K. Y.

Yaroshchyk, P.

P. Yaroshchyk, R. J. S. Morrison, D. Body, and B. L. Chadwick, “Quantitative determination of wear metals in engine oils using laser-induced breakdown spectroscopy: a comparison between liquid jets and static liquids,” Spectrochim. Acta Part B 60, 986-992 (2005).
[CrossRef]

Yin, W.

Yu, J.

M. Boueri, M. Baudelet, J. Yu, X. Mao, S. S. Mao, and R. Russo, “Early stage expansion and time-resolved spectral emission of laser-induced plasma from polymer,” Appl. Surf. Sci. 255, 9566-9571 (2009).
[CrossRef]

Zhang, L.

AAPS PharmSciTech (1)

M. C. Madamba, W. M. Mullett, S. Debnath, and E. Kwong, “Characterization of tablet film coatings using a laser-induced breakdown spectroscopic technique,” AAPS PharmSciTech 8, 103 (2007).
[CrossRef]

Anal. Bioanal. Chem. (2)

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects,” Anal. Bioanal. Chem. 395, 283-300(2009).
[CrossRef] [PubMed]

P. Fichet, M. Tabarant, B. Sallé, and C. Gautier, “Comparison between LIBS and ICP/OES,” Anal. Bioanal. Chem. 385, 338-344 (2006).
[CrossRef] [PubMed]

Anal. Chem. (1)

B. J. Marquardt, S. R. Goode, and S. M. Angel, “In situ determination of lead in paint by laser-induced breakdown spectroscopy using a fiber-optic probe,” Anal. Chem. 68, 977-981 (1996).
[CrossRef]

Anal. Chim. Acta (1)

P. Fichet, P. Mauchien, J.-F. Wagner, and C. Moulin, “Quantitative elemental determination in water and oil by laser induced breakdown spectroscopy,” Anal. Chim. Acta 429, 269-278 (2001).
[CrossRef]

Anal. Sci. (1)

B. Chen, H. Kano, and M. Kuzuya, “Quantitative analysis of trace lead in tin-base lead-free solder by laser-induced plasma spectroscopy in air at atmospheric pressure,” Anal. Sci. 24, 289-291 (2008).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Spectrosc. (4)

Appl. Surf. Sci. (2)

M. Boueri, M. Baudelet, J. Yu, X. Mao, S. S. Mao, and R. Russo, “Early stage expansion and time-resolved spectral emission of laser-induced plasma from polymer,” Appl. Surf. Sci. 255, 9566-9571 (2009).
[CrossRef]

X. Mao, S.-B. Wen, and R. E. Russo, “Time-resolved laser induced plasma dynamics,” Appl. Surf. Sci. 253, 6316-6321(2007).
[CrossRef]

J. Anal. At. Spectrom. (4)

A. Bogaerts, Z. Chen, and D. Bleiner, “Laser ablation of copper in different background gases: comparative study by numerical modeling and experiments,” J. Anal. At. Spectrom. 21, 384-395 (2006).
[CrossRef]

J. D. Winefordner, I. B. Gornushkin, T. Correll, E. Gibb, B. W. Smith, and N. Omenetto, “Comparing several atomic spectrometric methods to the super stars: special emphasis on laser induced breakdown spectrometry, LIBS, a future super star,” J. Anal. At. Spectrom. 19, 1061-1083(2004).
[CrossRef]

B. C. Castle, A. K. Knight, K. Visser, B. W. Smith, and J. D. Winefordner, “Battery powered laser-induced plasma spectrometer for elemental determinations,” J. Anal. At. Spectrom. 13, 589-595 (1998).
[CrossRef]

C. J. Lorenzen, C. Carlhoff, U. Hahn, and M. Jogwich, “Applications of laser-induced emission spectral analysis for industrial process and quality control,” J. Anal. At. Spectrom. 7, 1029-1035 (1992).
[CrossRef]

J. Brazil. Chem. Soc. (1)

C. Pasquini, J. Cortez, L. M. C. Silva, and F. B. Gonzaga, “Laser induced breakdown spectroscopy,” J. Brazil. Chem. Soc. 18, 463-512 (2007).
[CrossRef]

J. Pharm. Biomed. Anal. (1)

M. D. Mowery, R. Sing, J. Kirsch, A. Razaghi, S. Béchard, and R. A. Reed, “Rapid at-line analysis of coating thickness and uniformity on tablets using laser induced breakdown spectroscopy,” J. Pharm. Biomed. Anal. 28, 935-943 (2002).
[CrossRef] [PubMed]

Pure Appl. Chem. (1)

K. A. Slickers, “Spectrochemical analysis in the metallurgical industry,” Pure Appl. Chem. 65, 2443-2452 (1993).
[CrossRef]

Russ. Chem. Rev. (1)

A. A. Boľshakov, A. A. Ganeev, and V. M. Nemets, “Prospects in analytical atomic spectrometry,” Russ. Chem. Rev. 75, 289-302 (2006), http://arxiv.org/pdf/physics/0607078.
[CrossRef]

Spectrochim. Acta Part B (8)

C. Aragón and J. A. Agueilera, “Characterization of laser induced plasmas by optical emission spectroscopy: a review of experiments and methods,” Spectrochim. Acta Part B 63, 893-916 (2008).
[CrossRef]

A. Bogaerts and Z. Chen, “Effect of laser parameters on laser ablation and laser-induced plasma formation: anumerical modeling investigation,” Spectrochim. Acta Part B 60, 1280-1307 (2005).
[CrossRef]

V. Piscitelli, M. A. Martínez, A. J. Fernández, J. J. González, X. L. Mao, and R. E. Russo, “Double pulse laser induced breakdown spectroscopy: experimental study of lead emission intensity dependence on the wavelengths and sample matrix,” Spectrochim. Acta Part B 64, 147-154 (2009).
[CrossRef]

B. Sallé, P. Mauchien, and S. Maurice, “Laser-induced breakdown spectroscopy in open-path configuration for the analysis of distant objects--a review,” Spectrochim. Acta Part B 62, 739-768 (2007).
[CrossRef]

P. Yaroshchyk, R. J. S. Morrison, D. Body, and B. L. Chadwick, “Quantitative determination of wear metals in engine oils using laser-induced breakdown spectroscopy: a comparison between liquid jets and static liquids,” Spectrochim. Acta Part B 60, 986-992 (2005).
[CrossRef]

I. Radivojevic, R. Niessner, C. Haisch, S. Florek, H. Becker-Ross, and U. Panne, “Detection of bromine in thermoplasts from consumer electronics by laser-induced plasma spectroscopy,” Spectrochim. Acta Part B 59, 335-343 (2004).
[CrossRef]

L. Caneve, F. Colao, F. Fabbri, R. Fantoni, V. Spizzichino, and J. Striber, “Laser-induced breakdown spectroscopy analysis of asbestos,” Spectrochim. Acta Part B 60, 1115-1120 (2005).
[CrossRef]

M. Hoehse, D. Mory, S. Florek, F. Weritz, I. Gornushkin, and U. Panne, “A combined laser-induced breakdown and Raman spectroscopy echelle system for elemental and molecular microanalysis,” Spectrochim. Acta Part B 64, 1219-1227 (2009).
[CrossRef]

Spectroscopy (1)

F. C. De Lucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Current status of standoff LIBS security applications at the United States Army Research Laboratory,” Spectroscopy 24, 32-38 (2009).

Other (8)

R. Bruder, D. Menut, and V. Detalle, “Effects of LIBS measurement parameters on wall paintings pigments alteration and detection,” in Lasers in the Conservation of Artworks, J.Nimmrichter, W.Kautek, and M.Schreiner, eds. (Springer, 2007), pp. 367-375.
[CrossRef]

E. J. Ferreira, E. C. Ferreira, A. C. B. Delbem, D. M.B. P. Milori, and D. F. Orsini, “Ensemble of classifiers for analyzing coffees with laser induced breakdown spectroscopy,” in Abstracts of the 5th Euro Mediterranean Symposium on Laser Induced Spectroscopy, Rome, Italy, L.Ganeve, ed. (ENEA, 2009), p. 102.

Applied Spectra instruments, www.appliedspectra.com/products.

V. B. E. Thomsen, Modern Spectrochemical Analysis of Metals: An Introduction for Users of Arc/Spark Instrumentation (ASM International, 1996).
[PubMed]

J.P.Singh and S.N.Thakur, eds., Laser-Induced Breakdown Spectroscopy (Elsevier, 2007).

D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, 2006).
[CrossRef]

A.W.Miziolek, V.Palleschi, and I.Schechter, eds., Laser-Induced Breakdown Spectroscopy (LIBS), Fundamentals and Applications (Cambridge University, 2006).
[CrossRef]

Y.-I. Lee, K. Song, and J. Sneddon, Laser-Induced Breakdown Spectroscopy (Nova Science, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Schematic diagram of a typical laboratory benchtop LIBS setup.

Fig. 2
Fig. 2

LIBS spectra obtained from different solder materials (high-lead, low-lead, and lead-free).

Fig. 3
Fig. 3

Results of the principal component analysis applied to the LIBS spectra of various solders (see the legend in this figure).

Fig. 4
Fig. 4

Calibration results for quantitative determination of lead in tin-dominated matrices (solder materials). Certified standards were traceable to the standard reference materials from the National Institute of Standards and Technology (NIST).

Fig. 5
Fig. 5

Fragment of the LIBS spectrum from a children’s toy and a calibration plot for the determination of lead in plastic.

Fig. 6
Fig. 6

Results of the depth profile analysis of paint layers with different lead content.

Fig. 7
Fig. 7

Calibration plot for determination of bromine in polyethylene. Inset shows the LIBS spectrum with bromine ( 827.2 nm ), carbon ( 833.5 nm ), and chlorine ( 837.6 nm ) lines.

Fig. 8
Fig. 8

Results of the principal component analysis of the LIBS spectra collected from fiberglass panels. Different colors of the data points correspond to the different panels. The same color represents spectra obtained from the same panel at different locations.

Fig. 9
Fig. 9

Discrimination of coffee beans based on the principal component analysis of their LIBS spectra.

Fig. 10
Fig. 10

Principal component analysis of (a) the LIBS spectra and (b) the combined LIBS and Raman spectra collected from generic and brand-name drugs.

Fig. 11
Fig. 11

Schematics of the standoff LIBS system used as a 50-m remote detector of explosive materials.

Fig. 12
Fig. 12

Example of the standoff LIBS data projections from a variety of tested materials in principal component coordinates.

Tables (2)

Tables Icon

Table 1 Comparison of the Results of Measuring Pb Concentration in Solder Plating by LIBS and ICP-AES

Tables Icon

Table 2 Results of the Partial Least Squares (PLS) Identification of the LIBS Spectra of 10W-30 Grade Oil from Four Vendors

Metrics