Abstract

We explore the use of a combination of double-pulse and single-pulse laser-induced breakdown spectros copy (LIBS) methodologies as a means of differentiating between solid-phase and gaseous-phase analytes (namely, carbon) in an aerosol stream. A range of spectral data was recorded for double-pulse and single-pulse configurations, including both ns and fs prepulse widths, while varying the gas-phase mass percentage of the carbon from about 10% to 90% for various fixed carbon concentrations. The carbon emission response, as measured by the peak-to-continuum ratio, was greater for the double-pulse configuration as compared with the single-pulse response and was also enhanced as the percentage of solid-phase carbon was increased. Using a combination of the double-pulse and single-pulse emission signals, a monotonically increasing response function was found to correlate with the percentage of gas-phase analyte. However, individual data points at the measured gas-phase percentages reveal considerable scatter from the predicted trend. Furthermore, the double-pulse to single-pulse ratio was only pronounced with the ns–ns configuration as compared with the fs–ns scheme. Overall, the LIBS methodology has been demonstrated as a potential means to discriminate between gas-phase and particulate-phase fractions of the same elemental species in an aerosol, although future optimization of the temporal parameters should be explored to improve the precision and accuracy of this approach.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. J. Radziemski, T. R. Loree, D. A. Cremers, and N. M. Hoffman, “Time-resolved laser- induced breakdown spectrometry of aerosols,” Anal. Chem. 55, 1246-1252 (1983).
    [CrossRef]
  2. M. Capitelli, A. Casavola, G. Colonna, and A. De Giacomo, “Laser-induced plasma expansion: theoretical and experimental aspects,” Spectrochim. Acta, Part B 59, 271-289 (2004).
    [CrossRef]
  3. J. Sneddon and Y. Lee, “Novel and recent applications of elemental determination by laser-induced breakdown spectrometry,” Anal. Lett. 32, 2143-2162 (1999).
    [CrossRef]
  4. D. A. Rusak, B. C. Castle, B. W. Smith, and J. D. Winefordner, “Fundamentals and applications of laser-induced breakdown spectroscopy,” Crit. Rev. Anal. Chem. 27, 257-290 (1997).
    [CrossRef]
  5. V. Hohreiter and D. W. Hahn, “Calibration effects for laser-induced breakdown spectroscopy of gaseous sample streams: analyte response of gaseous phase species vs. solid phase species,” Anal. Chem. 77, 1118-1124 (2005).
    [CrossRef] [PubMed]
  6. J. E. Carranza and D. W. Hahn, “Assessment of the upper particle size limit for quantitative analysis of aerosols using laser induced breakdown spectroscopy,” Anal. Chem. 74, 5450-5454 (2002).
    [CrossRef] [PubMed]
  7. E. Vors and L. Salmon, “Laser-induced breakdown spectroscopy (LIBS) for carbon single shot analysis of micrometer-sized particles,” Anal. Bioanal. Chem. 385, 281-286 (2006).
    [CrossRef] [PubMed]
  8. P. K. Diwakar, P. B. Jackson, and D. W. Hahn, “Investigation of multi-component aerosol particles and the effect on quantitative laser-induced breakdown spectroscopy: consideration of localized matrix effects,” Spectrochim. Acta, Part B 62, 1466-1474 (2007).
    [CrossRef]
  9. T. Amodeo, C. Dutouquet, O. Le Bihan, M. Attoui, and E. Frejafon, “On-line determination of nanometric and sub-micrometric particle physicochemical characteristics using spectral imaging-aided laser-induced breakdown spectroscopy coupled with a scanning mobility particle sizer,” Spectrochim, Acta Part B 64, 1141-1152(2008).
    [CrossRef]
  10. P. S. Dalyander, I. B. Gornushkin, and D. W. Hahn, “Numerical simulation of laser-induced breakdown spectroscopy: modeling of aerosol analysis with finite diffusion and vaporization effects,” Spectrochim. Acta, Part B 63, 293-304 (2008).
    [CrossRef]
  11. V. Hohreiter and D. W. Hahn, “Plasma-particle interactions in a laser-induced plasma: implications for laser-induced breakdown spectroscopy,” Anal. Chem. 78, 1509-1514 (2006).
    [CrossRef] [PubMed]
  12. J. Uebbing, J. Brust, W. Sdorra, F. Leis, and K. Niemax, “Reheating of a laser-produced plasma by a second pulse laser,” Appl. Spectrosc. 45, 1419-1423 (1991).
    [CrossRef]
  13. F. Colao, V. Lazic, R. Fantoni, and S. Pershin, “A comparison of single and double pulse laser-induced breakdown spectroscopy of aluminum samples,” Spectrochim. Acta, Part B 57, 1167-1179 (2002).
    [CrossRef]
  14. V. Sturm, L. Peter, and R. Noll, “Steel analysis with laser-induced breakdown spectrometry in the vacuum ultraviolet,” Appl. Spectrosc. 54, 1275-1278 (2000).
    [CrossRef]
  15. S. Nakamura, Y. Ito, and K. Sone, “Determination of an iron suspension in water by laser-induced breakdown spectroscopy with two sequential laser pulses,” Anal. Chem. 68, 2981-2986(1996).
    [CrossRef] [PubMed]
  16. M. Corsi, G. Cristoforetti, M. Guiffrida, M. Hildago, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, and C. Vallebona, “Three-dimensional analysis of laser-induced plasmas in single and double pulse configuration,” Spectrochim. Acta, Part B 59, 723-735 (2004).
    [CrossRef]
  17. B. C. Windom, P. K. Diwakar, and D. W. Hahn, “Double-pulse LIBS for analysis of gaseous and aerosol systems: plasma-analyte interactions,” Spectrochim. Acta, Part B 61, 788-796(2006).
    [CrossRef]
  18. F. Ferioli and S. G. Buckley, “Measurements of hydrocarbons using laser-induced breakdown spectroscopy,” Combust. Flame 144, 435-447 (2006).
    [CrossRef]
  19. V. Sturm and R. Noll, “Laser-induced breakdown spectroscopy of gas mixtures of air, CO2, N2, and C3H8 for simultaneous C, H, O, and N measurement,” Appl. Opt. 42, 6221-6225 (2003).
    [CrossRef] [PubMed]
  20. P. Gibbon, Short-Pulse Laser Interactions with Matter, (Imperial College Press, London, 2007).
  21. M. Tran, B. W. Smith, D. W. Hahn, and J. D. Winefordner, “Detection of gaseous and particulate fluorides by laser-induced breakdown spectroscopy,” Appl. Spectrosc. 55, 1455-1461 (2001).
    [CrossRef]
  22. L. Dudragne, Ph. Adam, and J. Amouroux, “Time-resolved laser-induced breakdown spectroscopy: application for qualitative and quantitative detection of fluorine, chlorine, sulfur, and carbon in air,” Appl. Spectrosc. 52, 1321-1327 (1998).
    [CrossRef]
  23. D. W. Hahn, J. E. Carranza, G. R. Arsenault, H. A. Johnsen, and K. R. Hencken, “Aerosol generation system for development and calibration of laser-induced breakdown spectroscopy instrumentation,” Rev. Sci. Instrum. 72, 3706-3713(2001).
    [CrossRef]
  24. D. W. Hahn, “LIBS analysis of aerosol particles,” Spectroscopy 24, 26-33 (2009).

2009 (1)

D. W. Hahn, “LIBS analysis of aerosol particles,” Spectroscopy 24, 26-33 (2009).

2008 (2)

T. Amodeo, C. Dutouquet, O. Le Bihan, M. Attoui, and E. Frejafon, “On-line determination of nanometric and sub-micrometric particle physicochemical characteristics using spectral imaging-aided laser-induced breakdown spectroscopy coupled with a scanning mobility particle sizer,” Spectrochim, Acta Part B 64, 1141-1152(2008).
[CrossRef]

P. S. Dalyander, I. B. Gornushkin, and D. W. Hahn, “Numerical simulation of laser-induced breakdown spectroscopy: modeling of aerosol analysis with finite diffusion and vaporization effects,” Spectrochim. Acta, Part B 63, 293-304 (2008).
[CrossRef]

2007 (1)

P. K. Diwakar, P. B. Jackson, and D. W. Hahn, “Investigation of multi-component aerosol particles and the effect on quantitative laser-induced breakdown spectroscopy: consideration of localized matrix effects,” Spectrochim. Acta, Part B 62, 1466-1474 (2007).
[CrossRef]

2006 (4)

E. Vors and L. Salmon, “Laser-induced breakdown spectroscopy (LIBS) for carbon single shot analysis of micrometer-sized particles,” Anal. Bioanal. Chem. 385, 281-286 (2006).
[CrossRef] [PubMed]

B. C. Windom, P. K. Diwakar, and D. W. Hahn, “Double-pulse LIBS for analysis of gaseous and aerosol systems: plasma-analyte interactions,” Spectrochim. Acta, Part B 61, 788-796(2006).
[CrossRef]

F. Ferioli and S. G. Buckley, “Measurements of hydrocarbons using laser-induced breakdown spectroscopy,” Combust. Flame 144, 435-447 (2006).
[CrossRef]

V. Hohreiter and D. W. Hahn, “Plasma-particle interactions in a laser-induced plasma: implications for laser-induced breakdown spectroscopy,” Anal. Chem. 78, 1509-1514 (2006).
[CrossRef] [PubMed]

2005 (1)

V. Hohreiter and D. W. Hahn, “Calibration effects for laser-induced breakdown spectroscopy of gaseous sample streams: analyte response of gaseous phase species vs. solid phase species,” Anal. Chem. 77, 1118-1124 (2005).
[CrossRef] [PubMed]

2004 (2)

M. Capitelli, A. Casavola, G. Colonna, and A. De Giacomo, “Laser-induced plasma expansion: theoretical and experimental aspects,” Spectrochim. Acta, Part B 59, 271-289 (2004).
[CrossRef]

M. Corsi, G. Cristoforetti, M. Guiffrida, M. Hildago, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, and C. Vallebona, “Three-dimensional analysis of laser-induced plasmas in single and double pulse configuration,” Spectrochim. Acta, Part B 59, 723-735 (2004).
[CrossRef]

2003 (1)

2002 (2)

F. Colao, V. Lazic, R. Fantoni, and S. Pershin, “A comparison of single and double pulse laser-induced breakdown spectroscopy of aluminum samples,” Spectrochim. Acta, Part B 57, 1167-1179 (2002).
[CrossRef]

J. E. Carranza and D. W. Hahn, “Assessment of the upper particle size limit for quantitative analysis of aerosols using laser induced breakdown spectroscopy,” Anal. Chem. 74, 5450-5454 (2002).
[CrossRef] [PubMed]

2001 (2)

D. W. Hahn, J. E. Carranza, G. R. Arsenault, H. A. Johnsen, and K. R. Hencken, “Aerosol generation system for development and calibration of laser-induced breakdown spectroscopy instrumentation,” Rev. Sci. Instrum. 72, 3706-3713(2001).
[CrossRef]

M. Tran, B. W. Smith, D. W. Hahn, and J. D. Winefordner, “Detection of gaseous and particulate fluorides by laser-induced breakdown spectroscopy,” Appl. Spectrosc. 55, 1455-1461 (2001).
[CrossRef]

2000 (1)

1999 (1)

J. Sneddon and Y. Lee, “Novel and recent applications of elemental determination by laser-induced breakdown spectrometry,” Anal. Lett. 32, 2143-2162 (1999).
[CrossRef]

1998 (1)

1997 (1)

D. A. Rusak, B. C. Castle, B. W. Smith, and J. D. Winefordner, “Fundamentals and applications of laser-induced breakdown spectroscopy,” Crit. Rev. Anal. Chem. 27, 257-290 (1997).
[CrossRef]

1996 (1)

S. Nakamura, Y. Ito, and K. Sone, “Determination of an iron suspension in water by laser-induced breakdown spectroscopy with two sequential laser pulses,” Anal. Chem. 68, 2981-2986(1996).
[CrossRef] [PubMed]

1991 (1)

1983 (1)

L. J. Radziemski, T. R. Loree, D. A. Cremers, and N. M. Hoffman, “Time-resolved laser- induced breakdown spectrometry of aerosols,” Anal. Chem. 55, 1246-1252 (1983).
[CrossRef]

Adam, Ph.

Amodeo, T.

T. Amodeo, C. Dutouquet, O. Le Bihan, M. Attoui, and E. Frejafon, “On-line determination of nanometric and sub-micrometric particle physicochemical characteristics using spectral imaging-aided laser-induced breakdown spectroscopy coupled with a scanning mobility particle sizer,” Spectrochim, Acta Part B 64, 1141-1152(2008).
[CrossRef]

Amouroux, J.

Arsenault, G. R.

D. W. Hahn, J. E. Carranza, G. R. Arsenault, H. A. Johnsen, and K. R. Hencken, “Aerosol generation system for development and calibration of laser-induced breakdown spectroscopy instrumentation,” Rev. Sci. Instrum. 72, 3706-3713(2001).
[CrossRef]

Attoui, M.

T. Amodeo, C. Dutouquet, O. Le Bihan, M. Attoui, and E. Frejafon, “On-line determination of nanometric and sub-micrometric particle physicochemical characteristics using spectral imaging-aided laser-induced breakdown spectroscopy coupled with a scanning mobility particle sizer,” Spectrochim, Acta Part B 64, 1141-1152(2008).
[CrossRef]

Brust, J.

Buckley, S. G.

F. Ferioli and S. G. Buckley, “Measurements of hydrocarbons using laser-induced breakdown spectroscopy,” Combust. Flame 144, 435-447 (2006).
[CrossRef]

Capitelli, M.

M. Capitelli, A. Casavola, G. Colonna, and A. De Giacomo, “Laser-induced plasma expansion: theoretical and experimental aspects,” Spectrochim. Acta, Part B 59, 271-289 (2004).
[CrossRef]

Carranza, J. E.

J. E. Carranza and D. W. Hahn, “Assessment of the upper particle size limit for quantitative analysis of aerosols using laser induced breakdown spectroscopy,” Anal. Chem. 74, 5450-5454 (2002).
[CrossRef] [PubMed]

D. W. Hahn, J. E. Carranza, G. R. Arsenault, H. A. Johnsen, and K. R. Hencken, “Aerosol generation system for development and calibration of laser-induced breakdown spectroscopy instrumentation,” Rev. Sci. Instrum. 72, 3706-3713(2001).
[CrossRef]

Casavola, A.

M. Capitelli, A. Casavola, G. Colonna, and A. De Giacomo, “Laser-induced plasma expansion: theoretical and experimental aspects,” Spectrochim. Acta, Part B 59, 271-289 (2004).
[CrossRef]

Castle, B. C.

D. A. Rusak, B. C. Castle, B. W. Smith, and J. D. Winefordner, “Fundamentals and applications of laser-induced breakdown spectroscopy,” Crit. Rev. Anal. Chem. 27, 257-290 (1997).
[CrossRef]

Colao, F.

F. Colao, V. Lazic, R. Fantoni, and S. Pershin, “A comparison of single and double pulse laser-induced breakdown spectroscopy of aluminum samples,” Spectrochim. Acta, Part B 57, 1167-1179 (2002).
[CrossRef]

Colonna, G.

M. Capitelli, A. Casavola, G. Colonna, and A. De Giacomo, “Laser-induced plasma expansion: theoretical and experimental aspects,” Spectrochim. Acta, Part B 59, 271-289 (2004).
[CrossRef]

Corsi, M.

M. Corsi, G. Cristoforetti, M. Guiffrida, M. Hildago, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, and C. Vallebona, “Three-dimensional analysis of laser-induced plasmas in single and double pulse configuration,” Spectrochim. Acta, Part B 59, 723-735 (2004).
[CrossRef]

Cremers, D. A.

L. J. Radziemski, T. R. Loree, D. A. Cremers, and N. M. Hoffman, “Time-resolved laser- induced breakdown spectrometry of aerosols,” Anal. Chem. 55, 1246-1252 (1983).
[CrossRef]

Cristoforetti, G.

M. Corsi, G. Cristoforetti, M. Guiffrida, M. Hildago, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, and C. Vallebona, “Three-dimensional analysis of laser-induced plasmas in single and double pulse configuration,” Spectrochim. Acta, Part B 59, 723-735 (2004).
[CrossRef]

Dalyander, P. S.

P. S. Dalyander, I. B. Gornushkin, and D. W. Hahn, “Numerical simulation of laser-induced breakdown spectroscopy: modeling of aerosol analysis with finite diffusion and vaporization effects,” Spectrochim. Acta, Part B 63, 293-304 (2008).
[CrossRef]

De Giacomo, A.

M. Capitelli, A. Casavola, G. Colonna, and A. De Giacomo, “Laser-induced plasma expansion: theoretical and experimental aspects,” Spectrochim. Acta, Part B 59, 271-289 (2004).
[CrossRef]

Diwakar, P. K.

P. K. Diwakar, P. B. Jackson, and D. W. Hahn, “Investigation of multi-component aerosol particles and the effect on quantitative laser-induced breakdown spectroscopy: consideration of localized matrix effects,” Spectrochim. Acta, Part B 62, 1466-1474 (2007).
[CrossRef]

B. C. Windom, P. K. Diwakar, and D. W. Hahn, “Double-pulse LIBS for analysis of gaseous and aerosol systems: plasma-analyte interactions,” Spectrochim. Acta, Part B 61, 788-796(2006).
[CrossRef]

Dudragne, L.

Dutouquet, C.

T. Amodeo, C. Dutouquet, O. Le Bihan, M. Attoui, and E. Frejafon, “On-line determination of nanometric and sub-micrometric particle physicochemical characteristics using spectral imaging-aided laser-induced breakdown spectroscopy coupled with a scanning mobility particle sizer,” Spectrochim, Acta Part B 64, 1141-1152(2008).
[CrossRef]

Fantoni, R.

F. Colao, V. Lazic, R. Fantoni, and S. Pershin, “A comparison of single and double pulse laser-induced breakdown spectroscopy of aluminum samples,” Spectrochim. Acta, Part B 57, 1167-1179 (2002).
[CrossRef]

Ferioli, F.

F. Ferioli and S. G. Buckley, “Measurements of hydrocarbons using laser-induced breakdown spectroscopy,” Combust. Flame 144, 435-447 (2006).
[CrossRef]

Frejafon, E.

T. Amodeo, C. Dutouquet, O. Le Bihan, M. Attoui, and E. Frejafon, “On-line determination of nanometric and sub-micrometric particle physicochemical characteristics using spectral imaging-aided laser-induced breakdown spectroscopy coupled with a scanning mobility particle sizer,” Spectrochim, Acta Part B 64, 1141-1152(2008).
[CrossRef]

Gibbon, P.

P. Gibbon, Short-Pulse Laser Interactions with Matter, (Imperial College Press, London, 2007).

Gornushkin, I. B.

P. S. Dalyander, I. B. Gornushkin, and D. W. Hahn, “Numerical simulation of laser-induced breakdown spectroscopy: modeling of aerosol analysis with finite diffusion and vaporization effects,” Spectrochim. Acta, Part B 63, 293-304 (2008).
[CrossRef]

Guiffrida, M.

M. Corsi, G. Cristoforetti, M. Guiffrida, M. Hildago, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, and C. Vallebona, “Three-dimensional analysis of laser-induced plasmas in single and double pulse configuration,” Spectrochim. Acta, Part B 59, 723-735 (2004).
[CrossRef]

Hahn, D. W.

D. W. Hahn, “LIBS analysis of aerosol particles,” Spectroscopy 24, 26-33 (2009).

P. S. Dalyander, I. B. Gornushkin, and D. W. Hahn, “Numerical simulation of laser-induced breakdown spectroscopy: modeling of aerosol analysis with finite diffusion and vaporization effects,” Spectrochim. Acta, Part B 63, 293-304 (2008).
[CrossRef]

P. K. Diwakar, P. B. Jackson, and D. W. Hahn, “Investigation of multi-component aerosol particles and the effect on quantitative laser-induced breakdown spectroscopy: consideration of localized matrix effects,” Spectrochim. Acta, Part B 62, 1466-1474 (2007).
[CrossRef]

V. Hohreiter and D. W. Hahn, “Plasma-particle interactions in a laser-induced plasma: implications for laser-induced breakdown spectroscopy,” Anal. Chem. 78, 1509-1514 (2006).
[CrossRef] [PubMed]

B. C. Windom, P. K. Diwakar, and D. W. Hahn, “Double-pulse LIBS for analysis of gaseous and aerosol systems: plasma-analyte interactions,” Spectrochim. Acta, Part B 61, 788-796(2006).
[CrossRef]

V. Hohreiter and D. W. Hahn, “Calibration effects for laser-induced breakdown spectroscopy of gaseous sample streams: analyte response of gaseous phase species vs. solid phase species,” Anal. Chem. 77, 1118-1124 (2005).
[CrossRef] [PubMed]

J. E. Carranza and D. W. Hahn, “Assessment of the upper particle size limit for quantitative analysis of aerosols using laser induced breakdown spectroscopy,” Anal. Chem. 74, 5450-5454 (2002).
[CrossRef] [PubMed]

M. Tran, B. W. Smith, D. W. Hahn, and J. D. Winefordner, “Detection of gaseous and particulate fluorides by laser-induced breakdown spectroscopy,” Appl. Spectrosc. 55, 1455-1461 (2001).
[CrossRef]

D. W. Hahn, J. E. Carranza, G. R. Arsenault, H. A. Johnsen, and K. R. Hencken, “Aerosol generation system for development and calibration of laser-induced breakdown spectroscopy instrumentation,” Rev. Sci. Instrum. 72, 3706-3713(2001).
[CrossRef]

Hencken, K. R.

D. W. Hahn, J. E. Carranza, G. R. Arsenault, H. A. Johnsen, and K. R. Hencken, “Aerosol generation system for development and calibration of laser-induced breakdown spectroscopy instrumentation,” Rev. Sci. Instrum. 72, 3706-3713(2001).
[CrossRef]

Hildago, M.

M. Corsi, G. Cristoforetti, M. Guiffrida, M. Hildago, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, and C. Vallebona, “Three-dimensional analysis of laser-induced plasmas in single and double pulse configuration,” Spectrochim. Acta, Part B 59, 723-735 (2004).
[CrossRef]

Hoffman, N. M.

L. J. Radziemski, T. R. Loree, D. A. Cremers, and N. M. Hoffman, “Time-resolved laser- induced breakdown spectrometry of aerosols,” Anal. Chem. 55, 1246-1252 (1983).
[CrossRef]

Hohreiter, V.

V. Hohreiter and D. W. Hahn, “Plasma-particle interactions in a laser-induced plasma: implications for laser-induced breakdown spectroscopy,” Anal. Chem. 78, 1509-1514 (2006).
[CrossRef] [PubMed]

V. Hohreiter and D. W. Hahn, “Calibration effects for laser-induced breakdown spectroscopy of gaseous sample streams: analyte response of gaseous phase species vs. solid phase species,” Anal. Chem. 77, 1118-1124 (2005).
[CrossRef] [PubMed]

Ito, Y.

S. Nakamura, Y. Ito, and K. Sone, “Determination of an iron suspension in water by laser-induced breakdown spectroscopy with two sequential laser pulses,” Anal. Chem. 68, 2981-2986(1996).
[CrossRef] [PubMed]

Jackson, P. B.

P. K. Diwakar, P. B. Jackson, and D. W. Hahn, “Investigation of multi-component aerosol particles and the effect on quantitative laser-induced breakdown spectroscopy: consideration of localized matrix effects,” Spectrochim. Acta, Part B 62, 1466-1474 (2007).
[CrossRef]

Johnsen, H. A.

D. W. Hahn, J. E. Carranza, G. R. Arsenault, H. A. Johnsen, and K. R. Hencken, “Aerosol generation system for development and calibration of laser-induced breakdown spectroscopy instrumentation,” Rev. Sci. Instrum. 72, 3706-3713(2001).
[CrossRef]

Lazic, V.

F. Colao, V. Lazic, R. Fantoni, and S. Pershin, “A comparison of single and double pulse laser-induced breakdown spectroscopy of aluminum samples,” Spectrochim. Acta, Part B 57, 1167-1179 (2002).
[CrossRef]

Le Bihan, O.

T. Amodeo, C. Dutouquet, O. Le Bihan, M. Attoui, and E. Frejafon, “On-line determination of nanometric and sub-micrometric particle physicochemical characteristics using spectral imaging-aided laser-induced breakdown spectroscopy coupled with a scanning mobility particle sizer,” Spectrochim, Acta Part B 64, 1141-1152(2008).
[CrossRef]

Lee, Y.

J. Sneddon and Y. Lee, “Novel and recent applications of elemental determination by laser-induced breakdown spectrometry,” Anal. Lett. 32, 2143-2162 (1999).
[CrossRef]

Legnaioli, S.

M. Corsi, G. Cristoforetti, M. Guiffrida, M. Hildago, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, and C. Vallebona, “Three-dimensional analysis of laser-induced plasmas in single and double pulse configuration,” Spectrochim. Acta, Part B 59, 723-735 (2004).
[CrossRef]

Leis, F.

Loree, T. R.

L. J. Radziemski, T. R. Loree, D. A. Cremers, and N. M. Hoffman, “Time-resolved laser- induced breakdown spectrometry of aerosols,” Anal. Chem. 55, 1246-1252 (1983).
[CrossRef]

Nakamura, S.

S. Nakamura, Y. Ito, and K. Sone, “Determination of an iron suspension in water by laser-induced breakdown spectroscopy with two sequential laser pulses,” Anal. Chem. 68, 2981-2986(1996).
[CrossRef] [PubMed]

Niemax, K.

Noll, R.

Palleschi, V.

M. Corsi, G. Cristoforetti, M. Guiffrida, M. Hildago, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, and C. Vallebona, “Three-dimensional analysis of laser-induced plasmas in single and double pulse configuration,” Spectrochim. Acta, Part B 59, 723-735 (2004).
[CrossRef]

Pershin, S.

F. Colao, V. Lazic, R. Fantoni, and S. Pershin, “A comparison of single and double pulse laser-induced breakdown spectroscopy of aluminum samples,” Spectrochim. Acta, Part B 57, 1167-1179 (2002).
[CrossRef]

Peter, L.

Radziemski, L. J.

L. J. Radziemski, T. R. Loree, D. A. Cremers, and N. M. Hoffman, “Time-resolved laser- induced breakdown spectrometry of aerosols,” Anal. Chem. 55, 1246-1252 (1983).
[CrossRef]

Rusak, D. A.

D. A. Rusak, B. C. Castle, B. W. Smith, and J. D. Winefordner, “Fundamentals and applications of laser-induced breakdown spectroscopy,” Crit. Rev. Anal. Chem. 27, 257-290 (1997).
[CrossRef]

Salmon, L.

E. Vors and L. Salmon, “Laser-induced breakdown spectroscopy (LIBS) for carbon single shot analysis of micrometer-sized particles,” Anal. Bioanal. Chem. 385, 281-286 (2006).
[CrossRef] [PubMed]

Salvetti, A.

M. Corsi, G. Cristoforetti, M. Guiffrida, M. Hildago, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, and C. Vallebona, “Three-dimensional analysis of laser-induced plasmas in single and double pulse configuration,” Spectrochim. Acta, Part B 59, 723-735 (2004).
[CrossRef]

Sdorra, W.

Smith, B. W.

M. Tran, B. W. Smith, D. W. Hahn, and J. D. Winefordner, “Detection of gaseous and particulate fluorides by laser-induced breakdown spectroscopy,” Appl. Spectrosc. 55, 1455-1461 (2001).
[CrossRef]

D. A. Rusak, B. C. Castle, B. W. Smith, and J. D. Winefordner, “Fundamentals and applications of laser-induced breakdown spectroscopy,” Crit. Rev. Anal. Chem. 27, 257-290 (1997).
[CrossRef]

Sneddon, J.

J. Sneddon and Y. Lee, “Novel and recent applications of elemental determination by laser-induced breakdown spectrometry,” Anal. Lett. 32, 2143-2162 (1999).
[CrossRef]

Sone, K.

S. Nakamura, Y. Ito, and K. Sone, “Determination of an iron suspension in water by laser-induced breakdown spectroscopy with two sequential laser pulses,” Anal. Chem. 68, 2981-2986(1996).
[CrossRef] [PubMed]

Sturm, V.

Tognoni, E.

M. Corsi, G. Cristoforetti, M. Guiffrida, M. Hildago, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, and C. Vallebona, “Three-dimensional analysis of laser-induced plasmas in single and double pulse configuration,” Spectrochim. Acta, Part B 59, 723-735 (2004).
[CrossRef]

Tran, M.

Uebbing, J.

Vallebona, C.

M. Corsi, G. Cristoforetti, M. Guiffrida, M. Hildago, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, and C. Vallebona, “Three-dimensional analysis of laser-induced plasmas in single and double pulse configuration,” Spectrochim. Acta, Part B 59, 723-735 (2004).
[CrossRef]

Vors, E.

E. Vors and L. Salmon, “Laser-induced breakdown spectroscopy (LIBS) for carbon single shot analysis of micrometer-sized particles,” Anal. Bioanal. Chem. 385, 281-286 (2006).
[CrossRef] [PubMed]

Windom, B. C.

B. C. Windom, P. K. Diwakar, and D. W. Hahn, “Double-pulse LIBS for analysis of gaseous and aerosol systems: plasma-analyte interactions,” Spectrochim. Acta, Part B 61, 788-796(2006).
[CrossRef]

Winefordner, J. D.

M. Tran, B. W. Smith, D. W. Hahn, and J. D. Winefordner, “Detection of gaseous and particulate fluorides by laser-induced breakdown spectroscopy,” Appl. Spectrosc. 55, 1455-1461 (2001).
[CrossRef]

D. A. Rusak, B. C. Castle, B. W. Smith, and J. D. Winefordner, “Fundamentals and applications of laser-induced breakdown spectroscopy,” Crit. Rev. Anal. Chem. 27, 257-290 (1997).
[CrossRef]

Anal. Bioanal. Chem. (1)

E. Vors and L. Salmon, “Laser-induced breakdown spectroscopy (LIBS) for carbon single shot analysis of micrometer-sized particles,” Anal. Bioanal. Chem. 385, 281-286 (2006).
[CrossRef] [PubMed]

Anal. Chem. (5)

V. Hohreiter and D. W. Hahn, “Calibration effects for laser-induced breakdown spectroscopy of gaseous sample streams: analyte response of gaseous phase species vs. solid phase species,” Anal. Chem. 77, 1118-1124 (2005).
[CrossRef] [PubMed]

J. E. Carranza and D. W. Hahn, “Assessment of the upper particle size limit for quantitative analysis of aerosols using laser induced breakdown spectroscopy,” Anal. Chem. 74, 5450-5454 (2002).
[CrossRef] [PubMed]

L. J. Radziemski, T. R. Loree, D. A. Cremers, and N. M. Hoffman, “Time-resolved laser- induced breakdown spectrometry of aerosols,” Anal. Chem. 55, 1246-1252 (1983).
[CrossRef]

V. Hohreiter and D. W. Hahn, “Plasma-particle interactions in a laser-induced plasma: implications for laser-induced breakdown spectroscopy,” Anal. Chem. 78, 1509-1514 (2006).
[CrossRef] [PubMed]

S. Nakamura, Y. Ito, and K. Sone, “Determination of an iron suspension in water by laser-induced breakdown spectroscopy with two sequential laser pulses,” Anal. Chem. 68, 2981-2986(1996).
[CrossRef] [PubMed]

Anal. Lett. (1)

J. Sneddon and Y. Lee, “Novel and recent applications of elemental determination by laser-induced breakdown spectrometry,” Anal. Lett. 32, 2143-2162 (1999).
[CrossRef]

Appl. Opt. (1)

Appl. Spectrosc. (4)

Combust. Flame (1)

F. Ferioli and S. G. Buckley, “Measurements of hydrocarbons using laser-induced breakdown spectroscopy,” Combust. Flame 144, 435-447 (2006).
[CrossRef]

Crit. Rev. Anal. Chem. (1)

D. A. Rusak, B. C. Castle, B. W. Smith, and J. D. Winefordner, “Fundamentals and applications of laser-induced breakdown spectroscopy,” Crit. Rev. Anal. Chem. 27, 257-290 (1997).
[CrossRef]

Rev. Sci. Instrum. (1)

D. W. Hahn, J. E. Carranza, G. R. Arsenault, H. A. Johnsen, and K. R. Hencken, “Aerosol generation system for development and calibration of laser-induced breakdown spectroscopy instrumentation,” Rev. Sci. Instrum. 72, 3706-3713(2001).
[CrossRef]

Spectrochim, Acta Part B (1)

T. Amodeo, C. Dutouquet, O. Le Bihan, M. Attoui, and E. Frejafon, “On-line determination of nanometric and sub-micrometric particle physicochemical characteristics using spectral imaging-aided laser-induced breakdown spectroscopy coupled with a scanning mobility particle sizer,” Spectrochim, Acta Part B 64, 1141-1152(2008).
[CrossRef]

Spectrochim. Acta, Part B (6)

P. S. Dalyander, I. B. Gornushkin, and D. W. Hahn, “Numerical simulation of laser-induced breakdown spectroscopy: modeling of aerosol analysis with finite diffusion and vaporization effects,” Spectrochim. Acta, Part B 63, 293-304 (2008).
[CrossRef]

F. Colao, V. Lazic, R. Fantoni, and S. Pershin, “A comparison of single and double pulse laser-induced breakdown spectroscopy of aluminum samples,” Spectrochim. Acta, Part B 57, 1167-1179 (2002).
[CrossRef]

M. Corsi, G. Cristoforetti, M. Guiffrida, M. Hildago, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, and C. Vallebona, “Three-dimensional analysis of laser-induced plasmas in single and double pulse configuration,” Spectrochim. Acta, Part B 59, 723-735 (2004).
[CrossRef]

B. C. Windom, P. K. Diwakar, and D. W. Hahn, “Double-pulse LIBS for analysis of gaseous and aerosol systems: plasma-analyte interactions,” Spectrochim. Acta, Part B 61, 788-796(2006).
[CrossRef]

M. Capitelli, A. Casavola, G. Colonna, and A. De Giacomo, “Laser-induced plasma expansion: theoretical and experimental aspects,” Spectrochim. Acta, Part B 59, 271-289 (2004).
[CrossRef]

P. K. Diwakar, P. B. Jackson, and D. W. Hahn, “Investigation of multi-component aerosol particles and the effect on quantitative laser-induced breakdown spectroscopy: consideration of localized matrix effects,” Spectrochim. Acta, Part B 62, 1466-1474 (2007).
[CrossRef]

Spectroscopy (1)

D. W. Hahn, “LIBS analysis of aerosol particles,” Spectroscopy 24, 26-33 (2009).

Other (1)

P. Gibbon, Short-Pulse Laser Interactions with Matter, (Imperial College Press, London, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Experimental apparatus for the double-pulse and single-pulse ns–ns LIBS configuration.

Fig. 2
Fig. 2

Timing schematic for the double-pulse and single-pulse experiments employing the double ns–ns laser platform. For the fs–ns laser platform the pulse delay was shortened to 500 ns (fs pulse preceding the ns pulse) and the ICCD gate delay and width were each set to 10 μs .

Fig. 3
Fig. 3

1000-shot average LIBS spectra for (a) 90% gas-phase carbon and (b) 10% gas-phase carbon for both single-pulse and double-pulse using the ns–ns configuration. All data were recorded at a fixed total carbon concentration of 5.8 μg / l . The spectra have been offset and do not have the same intensity scales.

Fig. 4
Fig. 4

LIBS calibration curves for (a) 90% gas-phase carbon and (b) 10% gas-phase carbon for both single-pulse and double-pulse ns–ns configurations. Error bars represent one standard deviation.

Fig. 5
Fig. 5

Peak-to-base ratios for fs–ns and ns-only excitation of carbon in (a) pure gaseous phase and (b) pure particulate (i.e., aerosol) phase as a function of the mass loading in the chamber. Error bars represent one standard deviation.

Fig. 6
Fig. 6

Signal-to-noise ratio as a function of the percentage of gaseous carbon for a fixed total carbon concentration of 5.8 μg / l for the ns–ns configuration. Error bars represent one standard deviation.

Fig. 7
Fig. 7

Slopes of the calibration curves as a function of percent gas-phase carbon for the single-pulse and double-pulse ns–ns LIBS configurations. Error bars are based on the average standard deviation over all concentrations for each respective calibration curve.

Fig. 8
Fig. 8

Ratio of double-pulse to single-pulse LIBS calibration curve slopes as a function of the percentage of gas-phase carbon for the ns–ns configuration. The solid line represents a ratio of the linear trend lines as shown in Fig. 7. The discrete data represent the experimental values at each gas-phase concentration. Error bars are based on the formal propagation of error from Fig. 7 for each respective gas-phase concentration.

Fig. 9
Fig. 9

Peak-to-base ratios for excitation of carbon in gaseous/ particle-phase mixtures as a function of the percentage of gaseous carbon present for the fs–ns configuration. The negative slopes are indicative of stronger LIBS signals from the solid-phase carbon. For each mixture, the total mass loading of all carbon present was held to 1.5 μg / l . Error bars represent one standard deviation.

Fig. 10
Fig. 10

Ratio of double-pulse to single-pulse P / B values as a function of the percentage of gas-phase carbon for the fs–ns configuration. Data in the figure were constructed using the data shown in Fig. 9. Error bars represent one standard deviation.

Tables (1)

Tables Icon

Table 1 Parameters for the ns–ns and fs–ns Platforms

Metrics