Abstract

We present a femtosecond off-axis digital holography for investigating the dynamic reversible surface change of a metal film induced by femtosecond laser pulses with fluences near the ablation threshold. A reflection Michelson interferometer (RMI) and a transmission Mach–Zehnder interferometer (TMZI) are integrated in the same setup for recording digital holograms. The RMI is used to measure the laser-induced surface deformation of the metal film, while the TMZI is used to analyze the refraction index change of the metal film induced by the femtosecond laser pulses. Experimental results show that both surface modification and refraction index change of chromium metal film can be observed when femtosecond laser pulses are below and above the ablation threshold. Based on the experimental results, the physical processes of the metal induced by femtosecond laser pulses are given qualitatively.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Baumgart, W. Bintig, A. Ngezahayo, S. Willenbrock, H. Murua Escobar, W. Ertmer, H. Lubatschowski, and A. Heisterkamp, “Quantified femtosecond laser based opto-perforation of living GFSHR-17 and MTH53 a cells,” Opt. Express 16, 3021–3031(2008).
    [CrossRef]
  2. C. L. Arnold, A. Heisterkamp, W. Ertmer, and H. Lubatschowski, “Computational model for nonlinear plasma formation in high NA micromachining of transparent materials and biological cells,” Opt. Express 15, 10303–10317 (2007).
    [CrossRef]
  3. C. Guo, “Observation of selective charge separation following strong-field single ionization,” Phys. Rev. A 71, 021405 (2005).
    [CrossRef]
  4. V. Malka, S. Fritzler, E. Lefebvre, M.-M. Aleonard, F. Burgy, J.-P. Chambaret, J.-F. Chemin, K. Krushelnick, G. Malka, S. P. D. Mangles, Z. Najmudin, M. Pittman, J.-P. Rousseau, J.-N. Scheurer, B. Walton, and A. E. Dangor, “Electron acceleration by a wake field forced by an intense ultrashort laser pulse,” Science 298, 1596–1600 (2002).
    [CrossRef]
  5. A. H. Zewail, “Femtochemistry: atomic-scale dynamics of the chemical bond,” J. Phys. Chem. A 104, 5660–5694 (2000).
    [CrossRef]
  6. A. Y. Vorobyev and C. Guo, “Femtosecond laser nanostructure of metals,” Opt. Express 14, 2164–2169 (2006).
    [CrossRef]
  7. A. Kiani, K. Venkatakrishnan, and B. Tan, “Micro/nano scale amorphization of silicon by femtosecond laser irradiation,” Opt. Express 17, 16518–16526 (2009).
    [CrossRef]
  8. M. S. Giridhar, K. Seong, A. Schülzgen, P. Khulbe, N. Peyghambarian, and M. Mansuripur, “Femtosecond pulsed laser micromachining of glass substrates with application to microfluidic devices,” Appl. Opt. 43, 4584–4589 (2004).
    [CrossRef]
  9. C. Hensley, D. H. Broaddus, C. B. Schaffer, and A. L. Gaeta, “Photonic band-gap fiber gas cell fabricated using femtosecond micromachining,” Opt. Express 15, 6690–6695 (2007).
    [CrossRef]
  10. R. R. Gattass, L. R. Cerami, and E. Mazur, “Micromachining of bulk glass with bursts of femtosecond laser pulses at variable repetition rates,” Opt. Express 14, 5279–5284 (2006).
    [CrossRef]
  11. Q.-Z. Zhao, J.-R. Qiu, X.-W. Jiang, E.-W. Dai, C.-H. Zhou, and C.-S. Zhu, “Direct writing computer-generated holograms on metal film by an infrared femtosecond laser,” Opt. Express 13, 2089–2092 (2005).
    [CrossRef]
  12. J. P. Geindre, P. Audebert, A. Rousse, F. Fallies, J. C. Gauthier, A. Mysyrowicz, A. Dos Santos, G. Hamoniaux, and A. Antonetti, “Frequency-domain interferometer for measuring the phase and amplitude of a femtosecond pump-probing a laser-produced plasma,” Opt. Lett. 19, 1997–1999 (1994).
    [CrossRef]
  13. C. Schaffer, N. Nishimura, E. Glezer, A. M.-T. Kim, and E. Mazur, “Dynamics of femtosecond laser-induced breakdown in water from femtoseconds to microseconds,” Opt. Express 10, 196–203 (2002).
  14. A. Gopal, S. Minardi, and M. Tatarakis, “Quantitative two-dimensional shadow graphic method for high-sensitivity density measurement of under-critical laser plasmas,” Opt. Lett. 32, 1238–1240 (2007).
    [CrossRef]
  15. N. Zhang, X. Zhu, J. Yang, X. Wang, and M. Wang, “Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of aluminum,” Phys. Rev. Lett. 99, 167602 (2007).
    [CrossRef]
  16. J. P. McDonald, S. Ma, T. M. Pollock, S. M. Yalisove, and J. A. Nees, “Femtosecond pulsed laser ablation dynamics and ablation morphology of nickel based superalloy CMSX-4,” J. Appl. Phys. 103, 093111 (2008).
    [CrossRef]
  17. Z. Liu, G. J. Steckman, and D. Psaltis, “Holographic recording of fast phenomena,” Appl. Phys. Lett. 80, 731–733 (2002).
    [CrossRef]
  18. A. A. Bugayev and M. C. Gupta, “Femtosecond holographic interferometry for studies of semiconductor ablation using vanadium dioxide film,” Opt. Lett. 28, 1463–1465 (2003).
    [CrossRef]
  19. M. Centurion, Y. Pu, Z. Liu, D. Psaltis, and T. Hänsch, “Holographic recording of laser-induced plasma,” Opt. Lett. 29, 772–774 (2004).
    [CrossRef]
  20. D. G. Papazoglou and S. Tzortzakis, “In-line holography for the characterization of ultrafast laser filamentation in transparent media,” Appl. Phys. Lett. 93, 041120 (2008).
    [CrossRef]
  21. V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, and D. von der Linde, “Femtosecond time-resolved interferometric microscopy,” Appl. Phys. A 78, 483–489 (2004).
    [CrossRef]
  22. T. Balciunas, A. Melninkaitis, G. Tamosauskas, and V. Sirutkaitis, “Time-resolved off-axis digital holography for characterization of ultrafast phenomena in water,” Opt. Lett. 33, 58–60 (2008).
    [CrossRef]
  23. X. Wang, H. Zhai, and G. Mu, “Pulsed digital holography system recording ultrafast process of the femtosecond order,” Opt. Lett. 31, 1636–1638 (2006).
    [CrossRef]
  24. E. Dai, C. Zhou, and G. Li, “Dammann SHG-FROG for characterization of the ultrashort optical pulses,” Opt. Express 13, 6145–6152 (2005).
    [CrossRef]
  25. J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
    [CrossRef]
  26. E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination digital off-axis,” Appl. Opt. 39, 4070–4075 (2000).
    [CrossRef]
  27. M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72, 156–160 (1982).
    [CrossRef]
  28. J. Xie, C. Zhou, E. Dai, and Z. Han, “Invertible dark-center diffraction of the metal film induced by femtosecond laser,” Opt. Commun. 281, 5396–5399 (2008).
    [CrossRef]
  29. J. Huang, Y. Zhang, and J. K. Chen, “Ultrafast solid–liquid–vapor phase change in a thin gold film irradiated by multiple femtosecond laser pulses,” Int. J. Heat Mass Transfer 52, 3091–3100 (2009).
    [CrossRef]
  30. D. von der Linde and K. Sokolowski-Tinten, “The physical mechanisms of short-pulse laser ablation,” Appl. Surf. Sci. 154–155, 1–10 (2000).
    [CrossRef]
  31. S. K. Sundaram and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater. 1, 217–224 (2002).
    [CrossRef]
  32. J. P. McDonald, J. A. Nees, and S. M. Yalisove, “Pump-probe imaging of femtosecond pulsed laser ablation of silicon with thermally grown oxide films,” J. Appl. Phys. 102, 063109(2007).
    [CrossRef]
  33. D. J. Hwang, H. Jeon, C. P. Grigoropoulos, J. Yoo, and R. E. Russo, “Femtosecond laser ablation induced plasma characteristics from submicron craters in thin metal film,” Appl. Phys. Lett. 91, 251118 (2007).
    [CrossRef]
  34. P. Lorazo, L. J. Lewis, and M. Meunier, “Short-pulse laser ablation of solids: from phase explosion of fragmentation,” Phys. Rev. Lett. 91, 225502 (2003).
    [CrossRef]
  35. X. Xu, G. Chen, and K. H. Song, “Experimental and numerical investigation of heat transfer and phase change phenomena during excimer laser interaction with nickel,” Int. J. Heat Mass Transfer 42, 1371–1382 (1999).
    [CrossRef]
  36. S. Nolte, C. Momma, H. Jacobs, A. Tünnermann, B. N. Chichkov, B. Wellegehausen, and H. Welling, “Ablation of metals by ultrashort laser pulses,” J. Opt. Soc. Am. B 14, 2716–2722(1997).
    [CrossRef]
  37. B. Tan, A. Dalili, and K. Venkatakrishnan, “High repetition rate femtosecond laser nano-machining of thin films,” Appl. Phys. A: Mater. Sci. Process. 95, 537–545 (2009).
    [CrossRef]

2009 (3)

A. Kiani, K. Venkatakrishnan, and B. Tan, “Micro/nano scale amorphization of silicon by femtosecond laser irradiation,” Opt. Express 17, 16518–16526 (2009).
[CrossRef]

J. Huang, Y. Zhang, and J. K. Chen, “Ultrafast solid–liquid–vapor phase change in a thin gold film irradiated by multiple femtosecond laser pulses,” Int. J. Heat Mass Transfer 52, 3091–3100 (2009).
[CrossRef]

B. Tan, A. Dalili, and K. Venkatakrishnan, “High repetition rate femtosecond laser nano-machining of thin films,” Appl. Phys. A: Mater. Sci. Process. 95, 537–545 (2009).
[CrossRef]

2008 (5)

J. Xie, C. Zhou, E. Dai, and Z. Han, “Invertible dark-center diffraction of the metal film induced by femtosecond laser,” Opt. Commun. 281, 5396–5399 (2008).
[CrossRef]

D. G. Papazoglou and S. Tzortzakis, “In-line holography for the characterization of ultrafast laser filamentation in transparent media,” Appl. Phys. Lett. 93, 041120 (2008).
[CrossRef]

T. Balciunas, A. Melninkaitis, G. Tamosauskas, and V. Sirutkaitis, “Time-resolved off-axis digital holography for characterization of ultrafast phenomena in water,” Opt. Lett. 33, 58–60 (2008).
[CrossRef]

J. P. McDonald, S. Ma, T. M. Pollock, S. M. Yalisove, and J. A. Nees, “Femtosecond pulsed laser ablation dynamics and ablation morphology of nickel based superalloy CMSX-4,” J. Appl. Phys. 103, 093111 (2008).
[CrossRef]

J. Baumgart, W. Bintig, A. Ngezahayo, S. Willenbrock, H. Murua Escobar, W. Ertmer, H. Lubatschowski, and A. Heisterkamp, “Quantified femtosecond laser based opto-perforation of living GFSHR-17 and MTH53 a cells,” Opt. Express 16, 3021–3031(2008).
[CrossRef]

2007 (6)

C. L. Arnold, A. Heisterkamp, W. Ertmer, and H. Lubatschowski, “Computational model for nonlinear plasma formation in high NA micromachining of transparent materials and biological cells,” Opt. Express 15, 10303–10317 (2007).
[CrossRef]

C. Hensley, D. H. Broaddus, C. B. Schaffer, and A. L. Gaeta, “Photonic band-gap fiber gas cell fabricated using femtosecond micromachining,” Opt. Express 15, 6690–6695 (2007).
[CrossRef]

A. Gopal, S. Minardi, and M. Tatarakis, “Quantitative two-dimensional shadow graphic method for high-sensitivity density measurement of under-critical laser plasmas,” Opt. Lett. 32, 1238–1240 (2007).
[CrossRef]

N. Zhang, X. Zhu, J. Yang, X. Wang, and M. Wang, “Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of aluminum,” Phys. Rev. Lett. 99, 167602 (2007).
[CrossRef]

J. P. McDonald, J. A. Nees, and S. M. Yalisove, “Pump-probe imaging of femtosecond pulsed laser ablation of silicon with thermally grown oxide films,” J. Appl. Phys. 102, 063109(2007).
[CrossRef]

D. J. Hwang, H. Jeon, C. P. Grigoropoulos, J. Yoo, and R. E. Russo, “Femtosecond laser ablation induced plasma characteristics from submicron craters in thin metal film,” Appl. Phys. Lett. 91, 251118 (2007).
[CrossRef]

2006 (3)

2005 (3)

2004 (3)

2003 (2)

A. A. Bugayev and M. C. Gupta, “Femtosecond holographic interferometry for studies of semiconductor ablation using vanadium dioxide film,” Opt. Lett. 28, 1463–1465 (2003).
[CrossRef]

P. Lorazo, L. J. Lewis, and M. Meunier, “Short-pulse laser ablation of solids: from phase explosion of fragmentation,” Phys. Rev. Lett. 91, 225502 (2003).
[CrossRef]

2002 (4)

C. Schaffer, N. Nishimura, E. Glezer, A. M.-T. Kim, and E. Mazur, “Dynamics of femtosecond laser-induced breakdown in water from femtoseconds to microseconds,” Opt. Express 10, 196–203 (2002).

Z. Liu, G. J. Steckman, and D. Psaltis, “Holographic recording of fast phenomena,” Appl. Phys. Lett. 80, 731–733 (2002).
[CrossRef]

V. Malka, S. Fritzler, E. Lefebvre, M.-M. Aleonard, F. Burgy, J.-P. Chambaret, J.-F. Chemin, K. Krushelnick, G. Malka, S. P. D. Mangles, Z. Najmudin, M. Pittman, J.-P. Rousseau, J.-N. Scheurer, B. Walton, and A. E. Dangor, “Electron acceleration by a wake field forced by an intense ultrashort laser pulse,” Science 298, 1596–1600 (2002).
[CrossRef]

S. K. Sundaram and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater. 1, 217–224 (2002).
[CrossRef]

2000 (3)

A. H. Zewail, “Femtochemistry: atomic-scale dynamics of the chemical bond,” J. Phys. Chem. A 104, 5660–5694 (2000).
[CrossRef]

D. von der Linde and K. Sokolowski-Tinten, “The physical mechanisms of short-pulse laser ablation,” Appl. Surf. Sci. 154–155, 1–10 (2000).
[CrossRef]

E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination digital off-axis,” Appl. Opt. 39, 4070–4075 (2000).
[CrossRef]

1999 (1)

X. Xu, G. Chen, and K. H. Song, “Experimental and numerical investigation of heat transfer and phase change phenomena during excimer laser interaction with nickel,” Int. J. Heat Mass Transfer 42, 1371–1382 (1999).
[CrossRef]

1997 (1)

1994 (1)

1982 (1)

1967 (1)

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
[CrossRef]

Aleonard, M.-M.

V. Malka, S. Fritzler, E. Lefebvre, M.-M. Aleonard, F. Burgy, J.-P. Chambaret, J.-F. Chemin, K. Krushelnick, G. Malka, S. P. D. Mangles, Z. Najmudin, M. Pittman, J.-P. Rousseau, J.-N. Scheurer, B. Walton, and A. E. Dangor, “Electron acceleration by a wake field forced by an intense ultrashort laser pulse,” Science 298, 1596–1600 (2002).
[CrossRef]

Antonetti, A.

Arnold, C. L.

Audebert, P.

Balciunas, T.

Baumgart, J.

Bintig, W.

Broaddus, D. H.

Bugayev, A. A.

Burgy, F.

V. Malka, S. Fritzler, E. Lefebvre, M.-M. Aleonard, F. Burgy, J.-P. Chambaret, J.-F. Chemin, K. Krushelnick, G. Malka, S. P. D. Mangles, Z. Najmudin, M. Pittman, J.-P. Rousseau, J.-N. Scheurer, B. Walton, and A. E. Dangor, “Electron acceleration by a wake field forced by an intense ultrashort laser pulse,” Science 298, 1596–1600 (2002).
[CrossRef]

Centurion, M.

Cerami, L. R.

Chambaret, J.-P.

V. Malka, S. Fritzler, E. Lefebvre, M.-M. Aleonard, F. Burgy, J.-P. Chambaret, J.-F. Chemin, K. Krushelnick, G. Malka, S. P. D. Mangles, Z. Najmudin, M. Pittman, J.-P. Rousseau, J.-N. Scheurer, B. Walton, and A. E. Dangor, “Electron acceleration by a wake field forced by an intense ultrashort laser pulse,” Science 298, 1596–1600 (2002).
[CrossRef]

Chemin, J.-F.

V. Malka, S. Fritzler, E. Lefebvre, M.-M. Aleonard, F. Burgy, J.-P. Chambaret, J.-F. Chemin, K. Krushelnick, G. Malka, S. P. D. Mangles, Z. Najmudin, M. Pittman, J.-P. Rousseau, J.-N. Scheurer, B. Walton, and A. E. Dangor, “Electron acceleration by a wake field forced by an intense ultrashort laser pulse,” Science 298, 1596–1600 (2002).
[CrossRef]

Chen, G.

X. Xu, G. Chen, and K. H. Song, “Experimental and numerical investigation of heat transfer and phase change phenomena during excimer laser interaction with nickel,” Int. J. Heat Mass Transfer 42, 1371–1382 (1999).
[CrossRef]

Chen, J. K.

J. Huang, Y. Zhang, and J. K. Chen, “Ultrafast solid–liquid–vapor phase change in a thin gold film irradiated by multiple femtosecond laser pulses,” Int. J. Heat Mass Transfer 52, 3091–3100 (2009).
[CrossRef]

Chichkov, B. N.

Cuche, E.

Dai, E.

J. Xie, C. Zhou, E. Dai, and Z. Han, “Invertible dark-center diffraction of the metal film induced by femtosecond laser,” Opt. Commun. 281, 5396–5399 (2008).
[CrossRef]

E. Dai, C. Zhou, and G. Li, “Dammann SHG-FROG for characterization of the ultrashort optical pulses,” Opt. Express 13, 6145–6152 (2005).
[CrossRef]

Dai, E.-W.

Dalili, A.

B. Tan, A. Dalili, and K. Venkatakrishnan, “High repetition rate femtosecond laser nano-machining of thin films,” Appl. Phys. A: Mater. Sci. Process. 95, 537–545 (2009).
[CrossRef]

Dangor, A. E.

V. Malka, S. Fritzler, E. Lefebvre, M.-M. Aleonard, F. Burgy, J.-P. Chambaret, J.-F. Chemin, K. Krushelnick, G. Malka, S. P. D. Mangles, Z. Najmudin, M. Pittman, J.-P. Rousseau, J.-N. Scheurer, B. Walton, and A. E. Dangor, “Electron acceleration by a wake field forced by an intense ultrashort laser pulse,” Science 298, 1596–1600 (2002).
[CrossRef]

Depeursinge, C.

Ertmer, W.

Escobar, H. Murua

Fallies, F.

Fritzler, S.

V. Malka, S. Fritzler, E. Lefebvre, M.-M. Aleonard, F. Burgy, J.-P. Chambaret, J.-F. Chemin, K. Krushelnick, G. Malka, S. P. D. Mangles, Z. Najmudin, M. Pittman, J.-P. Rousseau, J.-N. Scheurer, B. Walton, and A. E. Dangor, “Electron acceleration by a wake field forced by an intense ultrashort laser pulse,” Science 298, 1596–1600 (2002).
[CrossRef]

Gaeta, A. L.

Gattass, R. R.

Gauthier, J. C.

Geindre, J. P.

Giridhar, M. S.

Glezer, E.

Goodman, J. W.

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
[CrossRef]

Gopal, A.

Grigoropoulos, C. P.

D. J. Hwang, H. Jeon, C. P. Grigoropoulos, J. Yoo, and R. E. Russo, “Femtosecond laser ablation induced plasma characteristics from submicron craters in thin metal film,” Appl. Phys. Lett. 91, 251118 (2007).
[CrossRef]

Guo, C.

A. Y. Vorobyev and C. Guo, “Femtosecond laser nanostructure of metals,” Opt. Express 14, 2164–2169 (2006).
[CrossRef]

C. Guo, “Observation of selective charge separation following strong-field single ionization,” Phys. Rev. A 71, 021405 (2005).
[CrossRef]

Gupta, M. C.

Hamoniaux, G.

Han, Z.

J. Xie, C. Zhou, E. Dai, and Z. Han, “Invertible dark-center diffraction of the metal film induced by femtosecond laser,” Opt. Commun. 281, 5396–5399 (2008).
[CrossRef]

Hänsch, T.

Heisterkamp, A.

Hensley, C.

Huang, J.

J. Huang, Y. Zhang, and J. K. Chen, “Ultrafast solid–liquid–vapor phase change in a thin gold film irradiated by multiple femtosecond laser pulses,” Int. J. Heat Mass Transfer 52, 3091–3100 (2009).
[CrossRef]

Hwang, D. J.

D. J. Hwang, H. Jeon, C. P. Grigoropoulos, J. Yoo, and R. E. Russo, “Femtosecond laser ablation induced plasma characteristics from submicron craters in thin metal film,” Appl. Phys. Lett. 91, 251118 (2007).
[CrossRef]

Ina, H.

Jacobs, H.

Jeon, H.

D. J. Hwang, H. Jeon, C. P. Grigoropoulos, J. Yoo, and R. E. Russo, “Femtosecond laser ablation induced plasma characteristics from submicron craters in thin metal film,” Appl. Phys. Lett. 91, 251118 (2007).
[CrossRef]

Jiang, X.-W.

Khulbe, P.

Kiani, A.

Kim, A. M.-T.

Kobayashi, S.

Krushelnick, K.

V. Malka, S. Fritzler, E. Lefebvre, M.-M. Aleonard, F. Burgy, J.-P. Chambaret, J.-F. Chemin, K. Krushelnick, G. Malka, S. P. D. Mangles, Z. Najmudin, M. Pittman, J.-P. Rousseau, J.-N. Scheurer, B. Walton, and A. E. Dangor, “Electron acceleration by a wake field forced by an intense ultrashort laser pulse,” Science 298, 1596–1600 (2002).
[CrossRef]

Lawrence, R. W.

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
[CrossRef]

Lefebvre, E.

V. Malka, S. Fritzler, E. Lefebvre, M.-M. Aleonard, F. Burgy, J.-P. Chambaret, J.-F. Chemin, K. Krushelnick, G. Malka, S. P. D. Mangles, Z. Najmudin, M. Pittman, J.-P. Rousseau, J.-N. Scheurer, B. Walton, and A. E. Dangor, “Electron acceleration by a wake field forced by an intense ultrashort laser pulse,” Science 298, 1596–1600 (2002).
[CrossRef]

Lewis, L. J.

P. Lorazo, L. J. Lewis, and M. Meunier, “Short-pulse laser ablation of solids: from phase explosion of fragmentation,” Phys. Rev. Lett. 91, 225502 (2003).
[CrossRef]

Li, G.

Liu, Z.

M. Centurion, Y. Pu, Z. Liu, D. Psaltis, and T. Hänsch, “Holographic recording of laser-induced plasma,” Opt. Lett. 29, 772–774 (2004).
[CrossRef]

Z. Liu, G. J. Steckman, and D. Psaltis, “Holographic recording of fast phenomena,” Appl. Phys. Lett. 80, 731–733 (2002).
[CrossRef]

Lorazo, P.

P. Lorazo, L. J. Lewis, and M. Meunier, “Short-pulse laser ablation of solids: from phase explosion of fragmentation,” Phys. Rev. Lett. 91, 225502 (2003).
[CrossRef]

Lubatschowski, H.

Ma, S.

J. P. McDonald, S. Ma, T. M. Pollock, S. M. Yalisove, and J. A. Nees, “Femtosecond pulsed laser ablation dynamics and ablation morphology of nickel based superalloy CMSX-4,” J. Appl. Phys. 103, 093111 (2008).
[CrossRef]

Malka, G.

V. Malka, S. Fritzler, E. Lefebvre, M.-M. Aleonard, F. Burgy, J.-P. Chambaret, J.-F. Chemin, K. Krushelnick, G. Malka, S. P. D. Mangles, Z. Najmudin, M. Pittman, J.-P. Rousseau, J.-N. Scheurer, B. Walton, and A. E. Dangor, “Electron acceleration by a wake field forced by an intense ultrashort laser pulse,” Science 298, 1596–1600 (2002).
[CrossRef]

Malka, V.

V. Malka, S. Fritzler, E. Lefebvre, M.-M. Aleonard, F. Burgy, J.-P. Chambaret, J.-F. Chemin, K. Krushelnick, G. Malka, S. P. D. Mangles, Z. Najmudin, M. Pittman, J.-P. Rousseau, J.-N. Scheurer, B. Walton, and A. E. Dangor, “Electron acceleration by a wake field forced by an intense ultrashort laser pulse,” Science 298, 1596–1600 (2002).
[CrossRef]

Mangles, S. P. D.

V. Malka, S. Fritzler, E. Lefebvre, M.-M. Aleonard, F. Burgy, J.-P. Chambaret, J.-F. Chemin, K. Krushelnick, G. Malka, S. P. D. Mangles, Z. Najmudin, M. Pittman, J.-P. Rousseau, J.-N. Scheurer, B. Walton, and A. E. Dangor, “Electron acceleration by a wake field forced by an intense ultrashort laser pulse,” Science 298, 1596–1600 (2002).
[CrossRef]

Mansuripur, M.

Marquet, P.

Mazur, E.

McDonald, J. P.

J. P. McDonald, S. Ma, T. M. Pollock, S. M. Yalisove, and J. A. Nees, “Femtosecond pulsed laser ablation dynamics and ablation morphology of nickel based superalloy CMSX-4,” J. Appl. Phys. 103, 093111 (2008).
[CrossRef]

J. P. McDonald, J. A. Nees, and S. M. Yalisove, “Pump-probe imaging of femtosecond pulsed laser ablation of silicon with thermally grown oxide films,” J. Appl. Phys. 102, 063109(2007).
[CrossRef]

Melninkaitis, A.

Meunier, M.

P. Lorazo, L. J. Lewis, and M. Meunier, “Short-pulse laser ablation of solids: from phase explosion of fragmentation,” Phys. Rev. Lett. 91, 225502 (2003).
[CrossRef]

Minardi, S.

Momma, C.

Mu, G.

Mysyrowicz, A.

Najmudin, Z.

V. Malka, S. Fritzler, E. Lefebvre, M.-M. Aleonard, F. Burgy, J.-P. Chambaret, J.-F. Chemin, K. Krushelnick, G. Malka, S. P. D. Mangles, Z. Najmudin, M. Pittman, J.-P. Rousseau, J.-N. Scheurer, B. Walton, and A. E. Dangor, “Electron acceleration by a wake field forced by an intense ultrashort laser pulse,” Science 298, 1596–1600 (2002).
[CrossRef]

Nees, J. A.

J. P. McDonald, S. Ma, T. M. Pollock, S. M. Yalisove, and J. A. Nees, “Femtosecond pulsed laser ablation dynamics and ablation morphology of nickel based superalloy CMSX-4,” J. Appl. Phys. 103, 093111 (2008).
[CrossRef]

J. P. McDonald, J. A. Nees, and S. M. Yalisove, “Pump-probe imaging of femtosecond pulsed laser ablation of silicon with thermally grown oxide films,” J. Appl. Phys. 102, 063109(2007).
[CrossRef]

Ngezahayo, A.

Nishimura, N.

Nolte, S.

Papazoglou, D. G.

D. G. Papazoglou and S. Tzortzakis, “In-line holography for the characterization of ultrafast laser filamentation in transparent media,” Appl. Phys. Lett. 93, 041120 (2008).
[CrossRef]

Peyghambarian, N.

Pittman, M.

V. Malka, S. Fritzler, E. Lefebvre, M.-M. Aleonard, F. Burgy, J.-P. Chambaret, J.-F. Chemin, K. Krushelnick, G. Malka, S. P. D. Mangles, Z. Najmudin, M. Pittman, J.-P. Rousseau, J.-N. Scheurer, B. Walton, and A. E. Dangor, “Electron acceleration by a wake field forced by an intense ultrashort laser pulse,” Science 298, 1596–1600 (2002).
[CrossRef]

Pollock, T. M.

J. P. McDonald, S. Ma, T. M. Pollock, S. M. Yalisove, and J. A. Nees, “Femtosecond pulsed laser ablation dynamics and ablation morphology of nickel based superalloy CMSX-4,” J. Appl. Phys. 103, 093111 (2008).
[CrossRef]

Psaltis, D.

M. Centurion, Y. Pu, Z. Liu, D. Psaltis, and T. Hänsch, “Holographic recording of laser-induced plasma,” Opt. Lett. 29, 772–774 (2004).
[CrossRef]

Z. Liu, G. J. Steckman, and D. Psaltis, “Holographic recording of fast phenomena,” Appl. Phys. Lett. 80, 731–733 (2002).
[CrossRef]

Pu, Y.

Qiu, J.-R.

Rousse, A.

Rousseau, J.-P.

V. Malka, S. Fritzler, E. Lefebvre, M.-M. Aleonard, F. Burgy, J.-P. Chambaret, J.-F. Chemin, K. Krushelnick, G. Malka, S. P. D. Mangles, Z. Najmudin, M. Pittman, J.-P. Rousseau, J.-N. Scheurer, B. Walton, and A. E. Dangor, “Electron acceleration by a wake field forced by an intense ultrashort laser pulse,” Science 298, 1596–1600 (2002).
[CrossRef]

Russo, R. E.

D. J. Hwang, H. Jeon, C. P. Grigoropoulos, J. Yoo, and R. E. Russo, “Femtosecond laser ablation induced plasma characteristics from submicron craters in thin metal film,” Appl. Phys. Lett. 91, 251118 (2007).
[CrossRef]

Santos, A. Dos

Schaffer, C.

Schaffer, C. B.

Scheurer, J.-N.

V. Malka, S. Fritzler, E. Lefebvre, M.-M. Aleonard, F. Burgy, J.-P. Chambaret, J.-F. Chemin, K. Krushelnick, G. Malka, S. P. D. Mangles, Z. Najmudin, M. Pittman, J.-P. Rousseau, J.-N. Scheurer, B. Walton, and A. E. Dangor, “Electron acceleration by a wake field forced by an intense ultrashort laser pulse,” Science 298, 1596–1600 (2002).
[CrossRef]

Schülzgen, A.

Seong, K.

Sirutkaitis, V.

Sokolowski-Tinten, K.

V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, and D. von der Linde, “Femtosecond time-resolved interferometric microscopy,” Appl. Phys. A 78, 483–489 (2004).
[CrossRef]

D. von der Linde and K. Sokolowski-Tinten, “The physical mechanisms of short-pulse laser ablation,” Appl. Surf. Sci. 154–155, 1–10 (2000).
[CrossRef]

Song, K. H.

X. Xu, G. Chen, and K. H. Song, “Experimental and numerical investigation of heat transfer and phase change phenomena during excimer laser interaction with nickel,” Int. J. Heat Mass Transfer 42, 1371–1382 (1999).
[CrossRef]

Steckman, G. J.

Z. Liu, G. J. Steckman, and D. Psaltis, “Holographic recording of fast phenomena,” Appl. Phys. Lett. 80, 731–733 (2002).
[CrossRef]

Sundaram, S. K.

S. K. Sundaram and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater. 1, 217–224 (2002).
[CrossRef]

Takeda, M.

Tamosauskas, G.

Tan, B.

B. Tan, A. Dalili, and K. Venkatakrishnan, “High repetition rate femtosecond laser nano-machining of thin films,” Appl. Phys. A: Mater. Sci. Process. 95, 537–545 (2009).
[CrossRef]

A. Kiani, K. Venkatakrishnan, and B. Tan, “Micro/nano scale amorphization of silicon by femtosecond laser irradiation,” Opt. Express 17, 16518–16526 (2009).
[CrossRef]

Tatarakis, M.

Temnov, V. V.

V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, and D. von der Linde, “Femtosecond time-resolved interferometric microscopy,” Appl. Phys. A 78, 483–489 (2004).
[CrossRef]

Tünnermann, A.

Tzortzakis, S.

D. G. Papazoglou and S. Tzortzakis, “In-line holography for the characterization of ultrafast laser filamentation in transparent media,” Appl. Phys. Lett. 93, 041120 (2008).
[CrossRef]

Venkatakrishnan, K.

B. Tan, A. Dalili, and K. Venkatakrishnan, “High repetition rate femtosecond laser nano-machining of thin films,” Appl. Phys. A: Mater. Sci. Process. 95, 537–545 (2009).
[CrossRef]

A. Kiani, K. Venkatakrishnan, and B. Tan, “Micro/nano scale amorphization of silicon by femtosecond laser irradiation,” Opt. Express 17, 16518–16526 (2009).
[CrossRef]

von der Linde, D.

V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, and D. von der Linde, “Femtosecond time-resolved interferometric microscopy,” Appl. Phys. A 78, 483–489 (2004).
[CrossRef]

D. von der Linde and K. Sokolowski-Tinten, “The physical mechanisms of short-pulse laser ablation,” Appl. Surf. Sci. 154–155, 1–10 (2000).
[CrossRef]

Vorobyev, A. Y.

Walton, B.

V. Malka, S. Fritzler, E. Lefebvre, M.-M. Aleonard, F. Burgy, J.-P. Chambaret, J.-F. Chemin, K. Krushelnick, G. Malka, S. P. D. Mangles, Z. Najmudin, M. Pittman, J.-P. Rousseau, J.-N. Scheurer, B. Walton, and A. E. Dangor, “Electron acceleration by a wake field forced by an intense ultrashort laser pulse,” Science 298, 1596–1600 (2002).
[CrossRef]

Wang, M.

N. Zhang, X. Zhu, J. Yang, X. Wang, and M. Wang, “Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of aluminum,” Phys. Rev. Lett. 99, 167602 (2007).
[CrossRef]

Wang, X.

N. Zhang, X. Zhu, J. Yang, X. Wang, and M. Wang, “Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of aluminum,” Phys. Rev. Lett. 99, 167602 (2007).
[CrossRef]

X. Wang, H. Zhai, and G. Mu, “Pulsed digital holography system recording ultrafast process of the femtosecond order,” Opt. Lett. 31, 1636–1638 (2006).
[CrossRef]

Wellegehausen, B.

Welling, H.

Willenbrock, S.

Xie, J.

J. Xie, C. Zhou, E. Dai, and Z. Han, “Invertible dark-center diffraction of the metal film induced by femtosecond laser,” Opt. Commun. 281, 5396–5399 (2008).
[CrossRef]

Xu, X.

X. Xu, G. Chen, and K. H. Song, “Experimental and numerical investigation of heat transfer and phase change phenomena during excimer laser interaction with nickel,” Int. J. Heat Mass Transfer 42, 1371–1382 (1999).
[CrossRef]

Yalisove, S. M.

J. P. McDonald, S. Ma, T. M. Pollock, S. M. Yalisove, and J. A. Nees, “Femtosecond pulsed laser ablation dynamics and ablation morphology of nickel based superalloy CMSX-4,” J. Appl. Phys. 103, 093111 (2008).
[CrossRef]

J. P. McDonald, J. A. Nees, and S. M. Yalisove, “Pump-probe imaging of femtosecond pulsed laser ablation of silicon with thermally grown oxide films,” J. Appl. Phys. 102, 063109(2007).
[CrossRef]

Yang, J.

N. Zhang, X. Zhu, J. Yang, X. Wang, and M. Wang, “Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of aluminum,” Phys. Rev. Lett. 99, 167602 (2007).
[CrossRef]

Yoo, J.

D. J. Hwang, H. Jeon, C. P. Grigoropoulos, J. Yoo, and R. E. Russo, “Femtosecond laser ablation induced plasma characteristics from submicron craters in thin metal film,” Appl. Phys. Lett. 91, 251118 (2007).
[CrossRef]

Zewail, A. H.

A. H. Zewail, “Femtochemistry: atomic-scale dynamics of the chemical bond,” J. Phys. Chem. A 104, 5660–5694 (2000).
[CrossRef]

Zhai, H.

Zhang, N.

N. Zhang, X. Zhu, J. Yang, X. Wang, and M. Wang, “Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of aluminum,” Phys. Rev. Lett. 99, 167602 (2007).
[CrossRef]

Zhang, Y.

J. Huang, Y. Zhang, and J. K. Chen, “Ultrafast solid–liquid–vapor phase change in a thin gold film irradiated by multiple femtosecond laser pulses,” Int. J. Heat Mass Transfer 52, 3091–3100 (2009).
[CrossRef]

Zhao, Q.-Z.

Zhou, C.

J. Xie, C. Zhou, E. Dai, and Z. Han, “Invertible dark-center diffraction of the metal film induced by femtosecond laser,” Opt. Commun. 281, 5396–5399 (2008).
[CrossRef]

E. Dai, C. Zhou, and G. Li, “Dammann SHG-FROG for characterization of the ultrashort optical pulses,” Opt. Express 13, 6145–6152 (2005).
[CrossRef]

Zhou, C.-H.

Zhou, P.

V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, and D. von der Linde, “Femtosecond time-resolved interferometric microscopy,” Appl. Phys. A 78, 483–489 (2004).
[CrossRef]

Zhu, C.-S.

Zhu, X.

N. Zhang, X. Zhu, J. Yang, X. Wang, and M. Wang, “Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of aluminum,” Phys. Rev. Lett. 99, 167602 (2007).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. A (1)

V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, and D. von der Linde, “Femtosecond time-resolved interferometric microscopy,” Appl. Phys. A 78, 483–489 (2004).
[CrossRef]

Appl. Phys. A: Mater. Sci. Process. (1)

B. Tan, A. Dalili, and K. Venkatakrishnan, “High repetition rate femtosecond laser nano-machining of thin films,” Appl. Phys. A: Mater. Sci. Process. 95, 537–545 (2009).
[CrossRef]

Appl. Phys. Lett. (4)

D. J. Hwang, H. Jeon, C. P. Grigoropoulos, J. Yoo, and R. E. Russo, “Femtosecond laser ablation induced plasma characteristics from submicron craters in thin metal film,” Appl. Phys. Lett. 91, 251118 (2007).
[CrossRef]

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
[CrossRef]

Z. Liu, G. J. Steckman, and D. Psaltis, “Holographic recording of fast phenomena,” Appl. Phys. Lett. 80, 731–733 (2002).
[CrossRef]

D. G. Papazoglou and S. Tzortzakis, “In-line holography for the characterization of ultrafast laser filamentation in transparent media,” Appl. Phys. Lett. 93, 041120 (2008).
[CrossRef]

Appl. Surf. Sci. (1)

D. von der Linde and K. Sokolowski-Tinten, “The physical mechanisms of short-pulse laser ablation,” Appl. Surf. Sci. 154–155, 1–10 (2000).
[CrossRef]

Int. J. Heat Mass Transfer (2)

J. Huang, Y. Zhang, and J. K. Chen, “Ultrafast solid–liquid–vapor phase change in a thin gold film irradiated by multiple femtosecond laser pulses,” Int. J. Heat Mass Transfer 52, 3091–3100 (2009).
[CrossRef]

X. Xu, G. Chen, and K. H. Song, “Experimental and numerical investigation of heat transfer and phase change phenomena during excimer laser interaction with nickel,” Int. J. Heat Mass Transfer 42, 1371–1382 (1999).
[CrossRef]

J. Appl. Phys. (2)

J. P. McDonald, J. A. Nees, and S. M. Yalisove, “Pump-probe imaging of femtosecond pulsed laser ablation of silicon with thermally grown oxide films,” J. Appl. Phys. 102, 063109(2007).
[CrossRef]

J. P. McDonald, S. Ma, T. M. Pollock, S. M. Yalisove, and J. A. Nees, “Femtosecond pulsed laser ablation dynamics and ablation morphology of nickel based superalloy CMSX-4,” J. Appl. Phys. 103, 093111 (2008).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

J. Phys. Chem. A (1)

A. H. Zewail, “Femtochemistry: atomic-scale dynamics of the chemical bond,” J. Phys. Chem. A 104, 5660–5694 (2000).
[CrossRef]

Nat. Mater. (1)

S. K. Sundaram and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater. 1, 217–224 (2002).
[CrossRef]

Opt. Commun. (1)

J. Xie, C. Zhou, E. Dai, and Z. Han, “Invertible dark-center diffraction of the metal film induced by femtosecond laser,” Opt. Commun. 281, 5396–5399 (2008).
[CrossRef]

Opt. Express (9)

E. Dai, C. Zhou, and G. Li, “Dammann SHG-FROG for characterization of the ultrashort optical pulses,” Opt. Express 13, 6145–6152 (2005).
[CrossRef]

A. Y. Vorobyev and C. Guo, “Femtosecond laser nanostructure of metals,” Opt. Express 14, 2164–2169 (2006).
[CrossRef]

A. Kiani, K. Venkatakrishnan, and B. Tan, “Micro/nano scale amorphization of silicon by femtosecond laser irradiation,” Opt. Express 17, 16518–16526 (2009).
[CrossRef]

C. Schaffer, N. Nishimura, E. Glezer, A. M.-T. Kim, and E. Mazur, “Dynamics of femtosecond laser-induced breakdown in water from femtoseconds to microseconds,” Opt. Express 10, 196–203 (2002).

C. Hensley, D. H. Broaddus, C. B. Schaffer, and A. L. Gaeta, “Photonic band-gap fiber gas cell fabricated using femtosecond micromachining,” Opt. Express 15, 6690–6695 (2007).
[CrossRef]

R. R. Gattass, L. R. Cerami, and E. Mazur, “Micromachining of bulk glass with bursts of femtosecond laser pulses at variable repetition rates,” Opt. Express 14, 5279–5284 (2006).
[CrossRef]

Q.-Z. Zhao, J.-R. Qiu, X.-W. Jiang, E.-W. Dai, C.-H. Zhou, and C.-S. Zhu, “Direct writing computer-generated holograms on metal film by an infrared femtosecond laser,” Opt. Express 13, 2089–2092 (2005).
[CrossRef]

J. Baumgart, W. Bintig, A. Ngezahayo, S. Willenbrock, H. Murua Escobar, W. Ertmer, H. Lubatschowski, and A. Heisterkamp, “Quantified femtosecond laser based opto-perforation of living GFSHR-17 and MTH53 a cells,” Opt. Express 16, 3021–3031(2008).
[CrossRef]

C. L. Arnold, A. Heisterkamp, W. Ertmer, and H. Lubatschowski, “Computational model for nonlinear plasma formation in high NA micromachining of transparent materials and biological cells,” Opt. Express 15, 10303–10317 (2007).
[CrossRef]

Opt. Lett. (6)

Phys. Rev. A (1)

C. Guo, “Observation of selective charge separation following strong-field single ionization,” Phys. Rev. A 71, 021405 (2005).
[CrossRef]

Phys. Rev. Lett. (2)

N. Zhang, X. Zhu, J. Yang, X. Wang, and M. Wang, “Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of aluminum,” Phys. Rev. Lett. 99, 167602 (2007).
[CrossRef]

P. Lorazo, L. J. Lewis, and M. Meunier, “Short-pulse laser ablation of solids: from phase explosion of fragmentation,” Phys. Rev. Lett. 91, 225502 (2003).
[CrossRef]

Science (1)

V. Malka, S. Fritzler, E. Lefebvre, M.-M. Aleonard, F. Burgy, J.-P. Chambaret, J.-F. Chemin, K. Krushelnick, G. Malka, S. P. D. Mangles, Z. Najmudin, M. Pittman, J.-P. Rousseau, J.-N. Scheurer, B. Walton, and A. E. Dangor, “Electron acceleration by a wake field forced by an intense ultrashort laser pulse,” Science 298, 1596–1600 (2002).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup of DH: M1–M8, mirrors; BS1–BS4, beam splitters; CCD, charge-coupled device; filter, pass 400 nm light and block 800 nm light; Cr film, chromium film. The thickness of the Cr film is thin ( 145 nm ), so the light can pass through it.

Fig. 2
Fig. 2

(a) Initial and (b) transient holograms of a Cr film recorded with CCD1 in reflection mode; (c) initial and (d) transient holograms recorded with CCD2 in transmission mode. The power of the pump pulses is below the ablation threshold.

Fig. 3
Fig. 3

(a) Reconstructed amplitude change and (b) transient phase difference of Figs. 2a, 2b in reflection mode. (c) Transient amplitude and phase profiles along the vertical cross lines in (a) and (b). (d) Reconstructed surface deformation.

Fig. 4
Fig. 4

(a) Reconstructed amplitude change and (b) transient phase difference from Figs. 2c, 2d in transmission mode. (c) Transient amplitude and phase profiles along the vertical cross lines in (a) and (b). (d) Surface plot representation of refraction index change.

Fig. 5
Fig. 5

Laser-induced surface deformation and optical refraction index change in the central part of the Cr film with different pump laser powers.

Fig. 6
Fig. 6

(a) Initial and (b) final holograms before and after the laser power is above the ablation threshold, which are recorded in reflection mode, (c) phase change of the ablation crater, and (d) 3D surface representation of the ablation crater.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

O ( x , y ) = exp ( i 2 π d / λ ) i λ d t ( x o , y o ) exp { i π λ d [ ( x x o ) 2 + ( y y o ) 2 ] } d x o d y o ,
t ( x o , y o ) = A o ( x o , y o ) exp [ i ϕ o ( x o , y o ) ] ,
R ( x , y ) = A R ( x , y ) exp [ i 2 π λ x sin α ] .
I H ( x , y ) = | R | 2 + | O | 2 + R * O + R O * ,
ψ ( x , y ) = U I H = U | R | 2 + U | O | 2 + U R * O + U R O * .
ψ o ( x , y ) = | R | 2 O .
O ( x o , y o ) = exp ( i 2 π d / λ ) i λ d ψ o ( x , y ) exp { i π λ d [ ( x x o ) 2 + ( y y o ) 2 ] } d x d y = C t ( x o , y o ) ,
t in ( x o , y o ) = A in ( x o , y o ) exp [ i ϕ in ( x o , y o ) ] ,
t tr ( x o , y o ) = A tr ( x o , y o ) exp [ i ϕ tr ( x o , y o ) ] .
ϕ diff ( x o , y o ) = ϕ tr ( x o , y o ) ϕ in ( x o , y o ) ,
A change ( x o , y o ) = A tr ( x o , y o ) / A in ( x o , y o ) .
h = λ 4 π δ ϕ ,
Δ n = λ 2 π d δ ϕ .

Metrics