Abstract

Based on the Fourier transform infrared spectrometer, a system for measuring the loss spectrum of hollow fiber is established. Loss spectra can be measured for hollow fibers with length ranging from several centimeters to 3m. Two kinds of light source coupler are designed and fabricated for achieving stable coupling and a repeatable spectrum. One is a short waveguide, and the other is a tapered tube. Both are inner-coated with a silver layer and they are of the same inner diameter at the output end as the measured hollow fiber. Characteristics of the measuring system are discussed theoretically and experimentally when using the two couplers. Several kinds of hollow fibers are measured, and the properties of the loss spectra are discussed. The measured loss value is shown to be dependent on the output divergence angle of the coupler. The tapered coupler has a larger output divergence and causes higher measured loss than that of the waveguide coupler.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Mohebbi, “Transmission characteristics of femtosecond optical pulses in hollow-core fibers,” Opt. Commun. 253, 290–300 (2005).
    [CrossRef]
  2. S. Sato, Y. W. Shi, Y. Matsuura, M. Miyagi, and H. Ashida, “Hollow waveguide based nanosecond, near-infrared pulsed laser ablation of tissue,” Lasers Surg. Med. 37, 149–154(2005).
    [CrossRef] [PubMed]
  3. S. S. Kim, N. Menegazzo, C. Young, J. Chan, C. Carter, and B. Mizaikoff, “Mid-infrared trace gas analysis with single-pass Fourier transform infrared hollow waveguide gas sensors,” Appl. Spectrosc. 63, 331–337 (2009).
    [CrossRef] [PubMed]
  4. M. Miyagi and S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. 2, 116–126 (1984).
    [CrossRef]
  5. C. C. Gregory, and J. A. Harrington, “Attenuation, modal, and polarization properties of n<1, hollow dielectric fibers,” Appl. Opt. 32, 5302–5309 (1993).
    [CrossRef] [PubMed]
  6. C. B. Jing, J. X. Hou, and X. G. Xu, “Fabrication and optical characteristics of thick GeO2 sol-gel coatings,” Opt. Mater. 30, 857–864 (2008).
    [CrossRef]
  7. R. K. Nubling and J. A. Harrington, “Optical properties of single-crystal sapphire fibers,” Appl. Opt. 36, 5934–5940 (1997).
    [CrossRef] [PubMed]
  8. Y. Matsuura, H. Hiraga, Y. Wang, Y. Kato, M. Miyagi, S. Abe, and S. Onodera, “Lensed-taper launching coupler for small-bore, infrared hollow fibers,” Appl. Opt. 36, 7818–7821 (1997).
    [CrossRef]
  9. R. George and J. A. Harrington, “Infrared transmissive, hollow plastic waveguides with inner Ag-AgI coatings,” Appl. Opt. 44, 6449–6455 (2005).
    [CrossRef] [PubMed]
  10. K. Iwai, M. Miyagi, Y. W. Shi, X. S. Zhu, and Y. Matsuura, “Infrared hollow fiber with a vitreous film as the dielectric inner coating layer,” Opt. Lett. 32, 3420–3422 (2007).
    [CrossRef] [PubMed]
  11. R. K. Nubling and J. A. Harrington, “Launch conditions and mode coupling in hollow-glass waveguides,” Opt. Eng. 37, 2454–2458 (1998).
    [CrossRef]
  12. Y. Matsuura, M. Saito, and M. Miyagi, “Loss characteristics of circular hollow fibers for incoherent infrared light,” J. Opt. Soc. Am. A 6, 423–427 (1989).
    [CrossRef]
  13. Y. W. Shi, K. Ito, L. Ma, T. Yoshida, Y. Matsuura, and M. Miyagi, “Fabrication of a polymer-coated silver hollow optical fiber with high performance,” Appl. Opt. 45, 6736–3670 (2006).
    [CrossRef] [PubMed]
  14. E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1998), Vol.  1, pp. 749–763, Vol.  3, pp. 653–682.
  15. J. A. Dobrowolski, Y. Guo, and T. Tiwald, “Toward perfect antireflection coatings. 3. Experimental results obtained with the use of Reststrahlen materials,” Appl. Opt. 45, 1555–1562(2006).
    [CrossRef] [PubMed]

2009 (1)

2008 (1)

C. B. Jing, J. X. Hou, and X. G. Xu, “Fabrication and optical characteristics of thick GeO2 sol-gel coatings,” Opt. Mater. 30, 857–864 (2008).
[CrossRef]

2007 (1)

2006 (2)

2005 (3)

R. George and J. A. Harrington, “Infrared transmissive, hollow plastic waveguides with inner Ag-AgI coatings,” Appl. Opt. 44, 6449–6455 (2005).
[CrossRef] [PubMed]

M. Mohebbi, “Transmission characteristics of femtosecond optical pulses in hollow-core fibers,” Opt. Commun. 253, 290–300 (2005).
[CrossRef]

S. Sato, Y. W. Shi, Y. Matsuura, M. Miyagi, and H. Ashida, “Hollow waveguide based nanosecond, near-infrared pulsed laser ablation of tissue,” Lasers Surg. Med. 37, 149–154(2005).
[CrossRef] [PubMed]

1998 (1)

R. K. Nubling and J. A. Harrington, “Launch conditions and mode coupling in hollow-glass waveguides,” Opt. Eng. 37, 2454–2458 (1998).
[CrossRef]

1997 (2)

1993 (1)

1989 (1)

1984 (1)

M. Miyagi and S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. 2, 116–126 (1984).
[CrossRef]

Abe, S.

Ashida, H.

S. Sato, Y. W. Shi, Y. Matsuura, M. Miyagi, and H. Ashida, “Hollow waveguide based nanosecond, near-infrared pulsed laser ablation of tissue,” Lasers Surg. Med. 37, 149–154(2005).
[CrossRef] [PubMed]

Carter, C.

Chan, J.

Dobrowolski, J. A.

George, R.

Gregory, C. C.

Guo, Y.

Harrington, J. A.

Hiraga, H.

Hou, J. X.

C. B. Jing, J. X. Hou, and X. G. Xu, “Fabrication and optical characteristics of thick GeO2 sol-gel coatings,” Opt. Mater. 30, 857–864 (2008).
[CrossRef]

Ito, K.

Iwai, K.

Jing, C. B.

C. B. Jing, J. X. Hou, and X. G. Xu, “Fabrication and optical characteristics of thick GeO2 sol-gel coatings,” Opt. Mater. 30, 857–864 (2008).
[CrossRef]

Kato, Y.

Kawakami, S.

M. Miyagi and S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. 2, 116–126 (1984).
[CrossRef]

Kim, S. S.

Ma, L.

Matsuura, Y.

Menegazzo, N.

Miyagi, M.

Mizaikoff, B.

Mohebbi, M.

M. Mohebbi, “Transmission characteristics of femtosecond optical pulses in hollow-core fibers,” Opt. Commun. 253, 290–300 (2005).
[CrossRef]

Nubling, R. K.

R. K. Nubling and J. A. Harrington, “Launch conditions and mode coupling in hollow-glass waveguides,” Opt. Eng. 37, 2454–2458 (1998).
[CrossRef]

R. K. Nubling and J. A. Harrington, “Optical properties of single-crystal sapphire fibers,” Appl. Opt. 36, 5934–5940 (1997).
[CrossRef] [PubMed]

Onodera, S.

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1998), Vol.  1, pp. 749–763, Vol.  3, pp. 653–682.

Saito, M.

Sato, S.

S. Sato, Y. W. Shi, Y. Matsuura, M. Miyagi, and H. Ashida, “Hollow waveguide based nanosecond, near-infrared pulsed laser ablation of tissue,” Lasers Surg. Med. 37, 149–154(2005).
[CrossRef] [PubMed]

Shi, Y. W.

Tiwald, T.

Wang, Y.

Xu, X. G.

C. B. Jing, J. X. Hou, and X. G. Xu, “Fabrication and optical characteristics of thick GeO2 sol-gel coatings,” Opt. Mater. 30, 857–864 (2008).
[CrossRef]

Yoshida, T.

Young, C.

Zhu, X. S.

Appl. Opt. (6)

Appl. Spectrosc. (1)

J. Lightwave Technol. (1)

M. Miyagi and S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. 2, 116–126 (1984).
[CrossRef]

J. Opt. Soc. Am. A (1)

Lasers Surg. Med. (1)

S. Sato, Y. W. Shi, Y. Matsuura, M. Miyagi, and H. Ashida, “Hollow waveguide based nanosecond, near-infrared pulsed laser ablation of tissue,” Lasers Surg. Med. 37, 149–154(2005).
[CrossRef] [PubMed]

Opt. Commun. (1)

M. Mohebbi, “Transmission characteristics of femtosecond optical pulses in hollow-core fibers,” Opt. Commun. 253, 290–300 (2005).
[CrossRef]

Opt. Eng. (1)

R. K. Nubling and J. A. Harrington, “Launch conditions and mode coupling in hollow-glass waveguides,” Opt. Eng. 37, 2454–2458 (1998).
[CrossRef]

Opt. Lett. (1)

Opt. Mater. (1)

C. B. Jing, J. X. Hou, and X. G. Xu, “Fabrication and optical characteristics of thick GeO2 sol-gel coatings,” Opt. Mater. 30, 857–864 (2008).
[CrossRef]

Other (1)

E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1998), Vol.  1, pp. 749–763, Vol.  3, pp. 653–682.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic diagram of the measuring system.

Fig. 2
Fig. 2

Pictures and focus images for a waveguide coupler and a tapered coupler.

Fig. 3
Fig. 3

Measured loss spectra of leaky infrared hollow fibers using different couplers.

Fig. 4
Fig. 4

Light intensity distribution at the output end of the fiber coupler. (a) Plane Z 1 and (b) plane Z 2 were 1.5 and 3 mm from the output end, respectively.

Fig. 5
Fig. 5

Light intensity distribution at the output end of the tapered coupler.

Fig. 6
Fig. 6

Calculated and measured loss spectra using (a) the waveguide coupler and (b) the tapered coupler.

Fig. 7
Fig. 7

Calculated and measured loss spectra for a Ge O 2 coated hollow glass fiber.

Fig. 8
Fig. 8

Calculated and measured loss spectra for a hollow sapphire fiber.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

P ( z ) = 0 θ max p ( θ z ) exp { [ 1 R ( θ z ) ] z / 2 T cot θ z } sin θ z d θ z ,

Metrics